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Appendix E: Hénon’s Trick 289

Appendix F: Periodic Orbit Extraction Code 291

Appendix G: Relative Rotation Rate Package 296

Appendix H: Historical Comments 305

Appendix I: Projects 309

Commonly Used Notation 314



CONTENTS ix

10



x CONTENTS



Preface

An Experimental Approach to Nonlinear Dynamics and Chaos is a textbook and a refer-
ence work designed for advanced undergraduate and beginning graduate students. This
book provides an elementary introduction to the basic theoretical and experimental tools
necessary to begin research into the nonlinear behavior of mechanical, electrical, optical,
and other systems. A focus of the text is the description of several desktop experiments,
such as the nonlinear vibrations of a current-carrying wire placed between the poles of an
electromagnet and the chaotic patterns of a ball bouncing on a vibrating table. Each of
these experiments is ideally suited for the small-scale environment of an undergraduate
science laboratory.

In addition, the book includes software that simulates several systems described in
this text. The software provides the student with the opportunity to immediately explore
nonlinear phenomena outside of the laboratory. The feedback of the interactive computer
simulations enhances the learning process by promoting the formation and testing of exper-
imental hypotheses. Taken together, the text and associated software provide a hands-on
introduction to recent theoretical and experimental discoveries in nonlinear dynamics.

Studies of nonlinear systems are truly interdisciplinary, ranging from experimental
analyses of the rhythms of the human heart and brain to attempts at weather prediction.
Similarly, the tools needed to analyze nonlinear systems are also interdisciplinary and
include techniques and methodologies from all the sciences. The tools presented in the
text include those of:

theoretical and applied mathematics (dynamical systems theory and perturbation
theory),

theoretical physics (development of models for physical phenomena, application of phys-
ical laws to explain the dynamics, and the topological characterization of chaotic
motions),

experimental physics (circuit diagrams and desktop experiments),

engineering (instabilities in mechanical, electrical, and optical systems), and

computer science (numerical algorithms in C and symbolic computations with Mathe-
matica).

A major goal of this project is to show how to integrate tools from these different disciplines
when studying nonlinear systems.

xi



xii

Many sections of this book develop one specific “tool” needed in the analysis of a non-
linear system. Some of these tools are mathematical, such as the application of symbolic
dynamics to nonlinear equations; some are experimental, such as the necessary circuit
elements required to construct an experimental surface of section; and some are computa-
tional, such as the algorithms needed for calculating fractal dimensions from an experimen-
tal time series. We encourage students to try out these tools on a system or experiment of
their own design. To help with this, Appendix I provides an overview of possible projects
suitable for research by an advanced undergraduate. Some of these projects are in acoustics
(oscillations in gas columns), hydrodynamics (convective loop—Lorenz equations, Hele-
Shaw cell, surface waves), mechanics (oscillations of beams, stability of bicycles, forced
pendulum, compass needle in oscillating B-field, impact-oscillators, chaotic art mobiles,
ball in a swinging track), optics (semiconductor laser instabilities, laser rate equations),
and other systems showing complex behavior in both space and time (video-feedback,
ferrohydrodynamics, capillary ripples).

A good background for the material in this book would include a firm grounding in
Newtonian physics and a course in differential equations that introduces the qualitative
theory of ordinary differential equations. For the latter chapters, a good dose of mathe-
matical maturity is also helpful.

This book can be used as a primary or reference text for both experimental and
theoretical courses. For instance, it can be used in a junior level mathematics course that
covers dynamical systems or as a reference or lab manual for junior and senior level physics
labs. In addition, it can serve as a reference manual for demonstrations and, perhaps more
importantly, as a source book for undergraduate research projects. Finally, it could also
be the basis for a new interdisciplinary course in nonlinear dynamics. This new course
would contain an equal mixture of mathematics, physics, computing, and laboratory work.
The primary goal of this new course is to give students the desire, skills, and confidence
needed to begin their own research into nonlinear systems.

To assist with this new course we are currently designing labs and software, including
complementary descriptions of the theory, for the bouncing ball system, the double scroll
LRC circuit, and a nonlinear string vibrations apparatus. The bouncing ball package
has been completed and consists of a mechanical apparatus (a loudspeaker driven by
a function generator and a ball bearing), the Bouncing Ball simulation system for the
Macintosh computer, and a lab manual. This package has been used in the Bryn Mawr
College Physics Laboratory since 1986.

This book makes use of numerical algorithms, symbolic packages, and simple exper-
iments in showing how to approach and unravel nonlinear problems. Because nonlinear
effects are commonly observed in everyday phenomena (avalanches in sandpiles, a dripping
faucet, frost on a window pane), they easily capture the imagination and, more impor-
tantly, fall within the research capabilities of a young scientist. Many experiments in
nonlinear dynamics are individual or small group projects in which it is common for a
student to follow an experiment from conception to completion in an academic year.

In our opinion nonlinear dynamics research illustrates the finest aspects of small sci-
ence. It can be the effort of a few individuals, requiring modest funding, and often deals
with “homemade” experiments which are intriguing and accessible to students at all levels.
We hope that this book helps its readers in making the transition from studying science
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to doing science.
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Introduction

What is nonlinear dynamics?

A dynamical system consists of two ingredients: a rule or “dynamic,” which
specifies how a system evolves, and an initial condition or “state” from which
the system starts. The most successful class of rules for describing natural
phenomena are differential equations. All the major theories of physics are
stated in terms of differential equations. This observation led the mathemati-
cian V. I. Arnold to comment, “consequently, differential equations lie at the
basis of scientific mathematical philosophy,” our scientific world view. This
scientific philosophy began with the discovery of the calculus by Newton and
Leibniz and continues to the present day.

Dynamical systems theory and nonlinear dynamics grew out of the qual-
itative study of differential equations, which in turn began as an attempt
to understand and predict the motions that surround us: the orbits of the
planets, the vibrations of a string, the ripples on the surface of a pond,
the forever evolving patterns of the weather. The first two hundred years
of this scientific philosophy, from Newton and Euler through to Hamilton
and Maxwell, produced many stunning successes in formulating the “rules
of the world,” but only limited results in finding their solutions. Some of
the motions around us—such as the swinging of a clock pendulum—are reg-
ular and easily explained, while others—such as the shifting patterns of a
waterfall—are irregular and initially appear to defy any rule.

The mathematician Henri Poincaré (1892) was the first to appreciate the
true source of the problem: the difficulty lay not in the rules, but rather
in specifying the initial conditions. At the beginning of this century, in his
essay Science and Method, Poincaré wrote:

A very small cause which escapes our notice determines a con-
siderable effect that we cannot fail to see, and then we say that

1



2 Introduction

that effect is due to chance. If we knew exactly the laws of nature
and the situation of the universe at the initial moment, we could
predict exactly the situation of that same universe at a succeeding
moment. But even if it were the case that the natural laws had no
longer any secret for us, we could still only know the initial situ-
ation approximately. If that enabled us to predict the succeeding
situation with the same approximation, that is all we require, and
we should say that the phenomenon had been predicted, that it
is governed by laws. But it is not always so; it may happen that
small differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will produce
an enormous error in the latter. Prediction becomes impossible,
and we have the fortuitous phenomenon.

Poincaré’s discovery of sensitive dependence on initial conditions in what are
now termed chaotic dynamical systems has only been fully appreciated by the
larger scientific community during the past three decades. Mathematicians,
physicists, chemists, biologists, engineers, meteorologists—indeed, individ-
uals from all fields have, with the help of computer simulations and new
experiments, discovered for themselves the cornucopia of chaotic phenomena
existing in the simplest nonlinear systems.

Before we proceed, we should distinguish nonlinear dynamics from dy-
namical systems theory.1 The latter is a well-defined branch of mathematics,
while nonlinear dynamics is an interdisciplinary field that draws on all the
sciences, especially mathematics and the physical sciences.

Scientists in all fields are united by their need to solve nonlinear equa-
tions, and each different discipline has made valuable contributions to the
analysis of nonlinear systems. A meteorologist discovered the first strange
attractor in an attempt to understand the unpredictability of the weather.2

A biologist promoted the study of the quadratic map in an attempt to under-
stand population dynamics.3 And engineers, computer scientists, and applied
mathematicians gave us a wealth of problems along with the computers and

1For an outline of the mathematical theory of dynamical systems see D. V. Anosov,
I. U. Bronshtein, S.Kh. Aranson, and V. Z. Grines, Smooth dynamical systems, in En-
cyclopaedia of Mathematical Sciences, Vol. 1, edited by D. V. Anosov and V. I. Arnold
(Springer-Verlag: New York, 1988).

2E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141 (1963).
3R. M. May, Simple mathematical models with very complicated dynamics, Nature

261, 459–467 (1976).



What is nonlinear dynamics? 3

programs needed to bring nonlinear systems alive on our computer screens.
Nonlinear dynamics is interdisciplinary, and nonlinear dynamicists rely on
their colleagues throughout all the sciences.

To define a nonlinear dynamical system we first look at an example of
a linear dynamical system. A linear dynamical system is one in which the
dynamic rule is linearly proportional to the system variables. Linear sys-
tems can be analyzed by breaking the problem into pieces and then adding
these pieces together to build a complete solution. For example, consider the
second-order linear differential equation

d2x

dt2
= −x.

The dynamical system defined by this differential equation is linear because
all the terms are linear functions of x. The second derivative of x (the
acceleration) is proportional to −x. To solve this linear differential equation
we must find some function x(t) with the following property: the second
derivative of x (with respect to the independent variable t) is equal to −x.
Two possible solutions immediately come to mind,

x1(t) = sin(t) and x2(t) = cos(t),

since
d2

dt2
x1(t) = − sin(t) = −x1(t)

and
d2

dt2
x2(t) = − cos(t) = −x2(t),

that is, both x1 and x2 satisfy the linear differential equation. Because the
differential equation is linear, the sum of these two solutions defined by

x(t) = x1(t) + x2(t)

is also a solution.4 This can be verified by calculating

d2

dt2
x(t) =

d2

dt2
x1(t) +

d2

dt2
x2(t)

= −[x1(t) + x2(t)]

= −x(t).

4The full definition of a linear system also requires that the sum of scalar products
x(t) = a1x1(t) + a2x2(t), where a1 and a2 are constants, is also a solution.
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Any number of solutions can be added together in this way to form a new
solution; this property of linear differential equations is called the principle
of superposition. It is the cornerstone from which all linear theory is built.

Now let’s see what happens when we apply the same method to a non-
linear system. For example, consider the second-order nonlinear differential
equation

d2x

dt2
= −x2.

Let’s assume we can find two different solutions to this nonlinear differential
equation, which we will again call x1(t) and x2(t). A quick calculation,

d2x

dt2
=

d2x1

dt2
+
d2x2

dt2

= −(x2
1 + x2

2)

6= −(x2
1 + x2

2 + 2x1x2)

= −(x1 + x2)2

= −x2,

shows that the solutions of a nonlinear equation cannot usually be added
together to build a larger solution because of the “cross-terms” (2x1x2). The
principle of superposition fails to hold for nonlinear systems.

Traditionally, a differential equation is “solved” by finding a function
that satisfies the differential equation. A trajectory is then determined by
starting the solution with a particular initial condition. For example, if
we want to predict the position of a comet ten years from now we need to
measure its current position and velocity, write down the differential equation
for its motion, and then integrate the differential equation starting from the
measured initial condition. The traditional view of a solution thus centers on
finding an individual orbit or trajectory. That is, given the initial condition
and the rule, we are asked to predict the future position of the comet. Before
Poincaré’s work it was thought that a nonlinear system would always have a
solution; we just needed to be clever enough to find it.

Poincaré’s discovery of chaotic behavior in the three-body problem
showed that such a view is wrong. No matter how clever we are we won’t be
able to write down the equations that solve many nonlinear systems. This
is not wholly unexpected. After all, in a (bounded) closed form solution
we might expect that any small change in initial conditions should produce
a proportional change in the predicted trajectories. But a chaotic system
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can produce large differences in the long-term trajectories even when two
initial conditions are close. Poincaré realized the full implications of this
simple discovery, and he immediately redefined the notion of a “solution” to
a differential equation.

Poincaré was less interested in an individual orbit than in all possible
orbits. He shifted the emphasis from a local solution—knowing the exact
motion of an individual trajectory—to a global solution—knowing the qual-
itative behavior of all possible trajectories for a given class of systems. In
our comet example, a qualitative solution for the differential equation gov-
erning the comet’s trajectory might appear easier to achieve since it would
not require us to integrate the equations of motion to find the exact future
position of the comet. The qualitative solution is often difficult to completely
specify, though, because it requires a global view of the dynamics, that is,
the possible examination of a large number of related systems.

Finding individual solutions is the traditional approach to solving a dif-
ferential equation. In contrast, recurrence is a key theme in Poincaré’s quest
for the qualitative solution of a differential equation. To understand the re-
currence properties of a dynamical system, we need to know what regions of
space are visited and how often the orbit returns to those regions. We can
seek to statistically characterize how often a region of space is visited; this
leads to the so-called ergodic5 theory of dynamical systems. Additionally, we
can try to understand the geometric transformations undergone by a group
of trajectories; this leads to the so-called topological theory of dynamical
systems emphasized in this book.

There are many different levels of recurrence. For instance, the comet
could crash into a planet. After that nothing much happens (unless you’re
a dinosaur). Another possibility is that the comet could go into an orbit
about a star and from then on follow a periodic motion. In this case the
comet will always return to the same points along the orbit. The recurrence
is strictly periodic and easily predicted. But there are other possibilities.
In particular, the comet could follow a chaotic path exhibiting a complex
recurrence pattern, visiting and revisiting different regions of space in an
erratic manner.

To summarize, Poincaré advocated the qualitative study of differential
equations. We may lose sight of some specific details about any individual

5V. I. Arnold and A. Avez, Ergodic problems of classical mechanics (W. A. Benjamin:
New York, 1968).
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trajectory, but we want to sketch out the patterns formed by a large collection
of different trajectories from related systems. This global view is motivated
by the fact that it is nonsensical to study the orbit of a single trajectory
in a chaotic dynamical system. To understand the motions that surround
us, which are largely governed by nonlinear laws and interactions, requires
the development of new qualitative techniques for analyzing the motions in
nonlinear dynamical systems.

What is in this book?

This book introduces qualitative (bifurcation theory, symbolic dynamics,
etc.) and quantitative (perturbation theory, numerical methods, etc.) meth-
ods that can be used in analyzing a nonlinear dynamical system. Further,
it provides a basic set of experimental techniques required to set up and ob-
serve nonlinear phenomena in the laboratory. Some of these methods go back
to Poincaré’s original work in the last century, while many others, such as
computer simulations, are more recent. A wide assortment of seemingly dis-
parate techniques is used in the analysis of the humblest nonlinear dynamical
system. Whereas linear theory resembles an edifice built upon the principle
of superposition, nonlinear theory more closely resembles a toolbox, in which
many of the essential tools have been borrowed from the laboratories of many
different friends.

To paraphrase Tolstoy, all linear systems resemble one another, but each
nonlinear system is nonlinear in its own way. Therefore, on our first encounter
with a new nonlinear system we need to search our toolbox for the proper
diagnostic tools (power spectra, fractal dimensions, periodic orbit extraction,
etc.) so that we can identify and characterize the nonlinear and chaotic
structures. And next, we need to analyze and unfold these structures with
the help of additional tools and methods (computer simulations, simplified
geometric models, universality theory, etc.) to find those properties that are
common to a large class of nonlinear systems.

The tools in our toolbox are collected from scientists in a wide range of
disciplines: mathematics, physics, computing, engineering, economics, and so
on. Each discipline has developed a different dialect, and sometimes even a
new language, in which to discuss nonlinear problems. And so one challenge
facing a new researcher in nonlinear dynamics is to develop some fluency in
these different dialects.
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It is typical in many fields, from cabinet making to mathematics, to in-
troduce the tyro first to the tedious elements and next, when these basic el-
ements are mastered, to introduce her to the joys of the celestial whole. The
cabinet maker first learns to sweep and sand and measure and hold. Likewise,
the aspiring mathematician learns how to express limits, take derivatives,
calculate integrals, and make substitutions.

All too often the consequence of an introduction through tedium is the
destruction of the inquisitive, eager spirit of inquiry. We hope to diminish
this tedium by tying the eagerness of the student to projects and experiments
that illustrate nonlinear concepts. In a few words: we want the student to
get her hands dirty. Then, with maturity and insight born from firsthand
experience, she will be ready to fill in the big picture with rigorous definitions
and more comprehensive study.

The study of nonlinear dynamics is eclectic, selecting what appears to
be most useful among various and diverse theories and methods. This poses
an additional challenge since the skills required for research in nonlinear
dynamics can range from a knowledge of some sophisticated mathematics
(hyperbolicity theory) to a detailed understanding of the nuts and bolts of
computer hardware (binary arithmetic, digitizers). Nonlinear dynamics is
not a tidy subject, but it is vital.

The common thread throughout all nonlinear dynamics is the need and
desire to solve nonlinear problems, by hook or by crook. Indeed, many tools
in the nonlinear dynamicist’s toolbox originally were crafted as the solution
to a specific experimental problem or application. Only after solving many
individual nonlinear problems did the common threads and structures slowly
emerge.

The first half of this book, Chapters 1, 2, and 3, uses a similar experi-
mental approach to nonlinear dynamics and is suitable for an advanced un-
dergraduate course. Our approach seeks to develop and motivate the study
of nonlinear dynamics through the detailed analysis of a few specific systems
that can be realized by desktop experiments: the period doubling route to
chaos in a bouncing ball, the symbolic analysis of the quadratic map, and
the quasiperiodic and chaotic vibrations of a string. The detailed analysis of
these examples develops intuition for—and motivates the study of—nonlinear
systems. In addition, analysis and simulation of these elementary examples
provide ample practice with the tools in our nonlinear dynamics toolbox.
The second half of the book, Chapters 4 and 5, provides a more formal treat-
ment of the theory illustrated in the desktop experiments, thereby setting
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the stage for an advanced or graduate level course in nonlinear dynamics. In
addition, Chapters 4 and 5 provide the more advanced student or researcher
with a concise introduction to the mathematical foundations of nonlinear dy-
namics, as well as introducing the topological approach toward the analysis
of chaos.

The pedagogical approach also differs between the first and second half
of the book. The first half tends to introduce new concepts and vocabulary
through usage, example, and repeated exposure. We believe this method is
pedagogically sound for a first course and is reminiscent of teaching methods
found in an intensive foreign language course. In the second half of the book
examples tend to follow formal definitions, as is more common in a traditional
mathematics course.

Although a linear reading of the first three chapters of this text is the
most useful, it is also possible to pick and choose material from different
sections to suit specific course needs. A mixture of mathematical, theoretical,
experimental, and computational methods are employed in the first three
chapters. The following table provides a rough road map to the type of
material found in each section:

Mathematical Theoretical Experimental Computational
1.5 1.2, 1.3, 1.4 1.1 1.6

2.2, 2.3, 2.4, 2.7, 2.8, 2.1 2.6
2.5, 2.9, 2.11 2.10, 2.12 Mathematica usage

3.3, 3.4, 3.6, 3.7 3.2, 3.5, 3.8 3.8.3, 3.8.4, 3.8.5
Appendix B Appendices

A,C,D,E,F,G

The mathematical sections present the core material for a mathematical
dynamical systems course. The experimental sections present the core exper-
imental techniques used for laboratory work with a low-dimensional chaotic
system. For instance, those interested in experimental techniques could turn
directly to the experimental sections for the information they seek.

Some Terminology:

Maps, Flows, and Fractals

In this section we heuristically introduce some of the basic terminology used
in nonlinear dynamics. This material should be read quickly, as background
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to the rest of the book. It might also be helpful to read Appendix H, Histor-
ical Comments, before delving into the more technical material. For precise
definitions of the mathematical notions introduced in this section we highly
recommend V. I. Arnold’s masterful introduction to the theory of ordinary
differential equations.6 The goal in this section is to begin using the vocab-
ulary of nonlinear dynamics even before this vocabulary is precisely defined.

Flows and Maps

A geometric formulation of the theory of differential equations says that
a differential equation is a vector field on a manifold. To understand this
definition we present an informal description of a manifold and a vector
field.

A manifold is any smooth geometric space (line, surface, solid). The
smoothness condition ensures that the manifold cannot have any sharp edges.
An example of a one-dimensional manifold is an infinite straight line. A differ-
ent one-dimensional manifold is a circle. Examples of two-dimensional mani-
folds are the surface of an infinite cylinder, the surface of a sphere, the surface
of a torus, and the unbounded real plane (Fig. 1). Three-dimensional man-
ifolds are harder to visualize. The simplest example of a three-dimensional
manifold is unbounded three-space, R3. The surface of a cone is an example
of a two-dimensional surface that is not a manifold. At the apex of the cone
is a sharp point, which violates the smoothness condition for a manifold.
Manifolds are useful geometric objects because the smoothness condition en-
sures that a local coordinate system can be erected at each and every point
on the manifold.

A vector field is a rule that smoothly assigns a vector (a directed line
segment) to each point of a manifold. This rule is often written as a system
of first-order differential equations. To see how this works, consider again
the linear differential equation

d2x

dt2
= −x.

Let us rewrite this second-order differential equation as a system of two
first-order differential equations by introducing the new variable v, velocity,

6V. I. Arnold, Ordinary differential equations (MIT Press: Cambridge, MA, 1973).
Also see D. K. Arrowsmith and C. M. Place, Ordinary differential equations (Chapman
and Hall: New York, 1982).
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(b)(a)

Figure 1: (a) The surfaces of the three-dimensional objects are two-
dimensional manifolds. (b) Examples of objects that are not manifolds.

defined by dx/dt = v, so that

dx

dt
= v,

dv

dt
= −x.

The manifold in this example is the real plane, R2, which consists of the
ordered pair of variables (x, v). Each point in this plane represents an indi-
vidual state, or possible initial condition, of the system. And the collection of
all possible states is called the phase space of the system. A process is said to
be deterministic if both its future and past states are uniquely determined by
its present state. A process is called semideterministic when only the future
state, but not the past, is uniquely determined by the present state. Not
all physical systems are deterministic, as the bouncing ball system (which is
only semideterministic) of Chapter 1 demonstrates. Nevertheless, full deter-
minism is commonly assumed in the classical scientific world view.

A system of first-order differential equations assigns to each point of the
manifold a vector, thereby forming a vector field on the manifold (Fig. 2).
In our example each point of the phase plane (x, v) gets assigned a vector
(v,−x), which forms rings of arrows about the origin (Fig. 3). A solution
to a differential equation is called a trajectory or an integral curve, since it
results from “integrating” the differential equations of motion. An individual
vector in the vector field determines how the solution behaves locally. It tells
the trajectory to “go thataway.” The collection of all solutions, or integral
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Figure 2: Examples of vector fields on different manifolds.

!ow

!owintegral
curve

2Rv

x

Figure 3: Vector field and flow for a linear differential equation.

curves, is called the flow (Fig. 3).
When analyzing a system of differential equations it is important to

present both the equations and the manifold on which the equations are
specified. It is often possible to simplify our analysis by transferring the
vector field to a different manifold, thereby changing the topology of the
phase space (see section 3.4.3). Topology is a kind of geometry which studies
those properties of a space that are unchanged under a reversible continuous
transformation. It is sometimes called rubber sheet geometry. A basketball
and a football are identical to a topologist. They are both “topological”
spheres. However, a torus and a sphere are different topological spaces as
you cannot push or pull a sphere into a torus without first cutting up the
sphere. Topology is also defined as the study of closeness within neighbor-
hoods. Topological spaces can be analyzed by studying which points are
“close to” or “in the neighborhood of” other points. Consider the line seg-
ment between 0 and 1. The endpoints 0 and 1 are far away; they aren’t
neighbors. But if we glue the ends together to form a circle, then the end-
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(a) (b)

(c) (d)

Figure 4: Typical motions in a planar vector field: (a) source, (b) sink, (c)
saddle, and (d) limit cycle.

points become identical, and the points around 0 and 1 have a new set of
neighbors.

In its grandest form, Poincaré’s program to study the qualitative behav-
ior of ordinary differential equations would require us to analyze the generic
dynamics of all vector fields on all manifolds. We are nowhere near achieving
this goal yet. Poincaré was inspired to carry out this program by his success
with the Swedish mathematician Ivar Bendixson in analyzing all typical be-
havior for differential equations in the plane. As illustrated in Figure 4, the
Poincaré-Bendixson Theorem says that typically no more than four kinds of
motion are found in a planar vector field, those of a source, sink, saddle, and
limit cycle. In particular, no chaotic motion is possible in time-independent
planar vector fields. To get chaotic motion in a system of differential equa-
tions one needs three dimensions, that is, a vector field on a three-dimensional
manifold.

The asymptotic motions (t→∞ limit sets) of a flow are characterized by
four general types of behavior. In order of increasing complexity these are
equilibrium points, periodic solutions, quasiperiodic solutions, and chaos.

An equilibrium point of a flow is a constant, time-independent solution.
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The equilibrium solutions are located where the vector field vanishes. The
source in Figure 0.4(a) is an example of an unstable equilibrium solution.
Trajectories near to the source move away from the source as time goes by.
The sink in Figure 0.4(b) is an example of a stable equilibrium solution.
Trajectories near the sink tend toward it as time goes by.

A periodic solution of a flow is a time-dependent trajectory that precisely
returns to itself in a time T , called the period. A periodic trajectory is a
closed curve. Like an equilibrium point, a periodic trajectory can be stable
or unstable, depending on whether nearby trajectories tend toward or away
from the periodic cycle. One illustration of a stable periodic trajectory is the
limit cycle shown in Figure 0.4(d). A quasiperiodic solution is one formed
from the sum of periodic solutions with incommensurate periods. Two pe-
riods are incommensurate if their ratio is irrational. The ability to create
and control periodic and quasiperiodic cycles is essential to modern society:
clocks, electronic oscillators, pacemakers, and so on.

An asymptotic motion that is not an equilibrium point, periodic, or
quasiperiodic is often called chaotic. This catchall use of the term chaos is
not very specific, but it is practical. Additionally, we require that a chaotic
motion is a bounded asymptotic solution that possesses sensitive dependence
on initial conditions: two trajectories that begin arbitrarily close to one an-
other on the chaotic limit set start to diverge so quickly that they become, for
all practical purposes, uncorrelated. Simply put, a chaotic system is a deter-
ministic system that exhibits random (uncorrelated) behavior. This apparent
random behavior in a deterministic system is illustrated in the bouncing ball
system (see section 1.4.5). A more rigorous definition of chaos is presented
in section 4.10.

All of the stable asymptotic motions (or limit sets) just described (e.g.,
sinks, stable limit cycles), are examples of attractors. The unstable limit sets
(e.g., sources) are examples of repellers. The term strange attractor (strange
repeller) is used to describe attracting (repelling) limit sets that are chaotic.
We will get our first look at a strange attractor in a physical system when
we study the bouncing ball system in Chapter 1.

Maps are the discrete time analogs of flows. While flows are specified by
differential equations, maps are specified by difference equations. A point on
a trajectory of a flow is indicated by a real parameter t, which we think of
as the time. Similarly, a point in the orbit of a map is indexed by an integer
subscript n, which we think of as the discrete analog of time. Maps and flows
will be the two primary types of dynamical systems studied in this book.
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Maps (difference equations) are easier to solve numerically than flows
(differential equations). Therefore, many of the earliest numerical studies of
chaos began by studying maps. A famous map exhibiting chaos studied by
the French astronomer Michel Hénon (1976), now known as the Hénon map,
is

xn+1 = α− x2
n + βyn,

yn+1 = xn,

where n is an integer index for this pair of nonlinear coupled difference equa-
tions, with α = 1.4 and β = 0.3 being the parameter values most commonly
studied. The Hénon map carries a point in the plane, (x0, y0), to some new
point, (x1, y1). An orbit of a map is the sequence of points generated by
some initial condition of a map. For instance, if we start the Hénon map at
the point (x0, y0) = (0.0, 0.5), we find that the orbit for this pair of initial
conditions is

x1 = 1.4− (0.0 ∗ 0.0) + 0.3 ∗ 0.5 = 1.55,

y1 = 0.0,

x2 = 1.4− (1.55 ∗ 1.55) + 0.3 ∗ 0.0 = −1.0025,

y2 = 1.55,

and so on to generate (x3, y3), (x4, y4), etc. Unlike planar differential equa-
tions, this two-dimensional difference equation can generate chaotic orbits.
In fact, in Chapter 2 we will study a one-dimensional difference equation
called the quadratic map, which can also generate chaotic orbits.

The Hénon map is an example of a diffeomorphism of a manifold (in
this case the manifold is the plane R2). A map is a homeomorphism if it is
bijective (one-to-one and onto), continuous, and has a continuous inverse. A
diffeomorphism is a differentiable homeomorphism. A map with an inverse
is called invertible. A map without an inverse is called noninvertible.

Maps exhibit similar types of asymptotic behavior as flows: equilibrium
points, periodic orbits, quasiperiodic orbits, and chaotic orbits. There are
many similarities and a few important differences between the theory and
language describing the dynamics of maps and flows. For a detailed com-
parison of these two theories see Arrowsmith and Place, An introduction to
dynamical systems.
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Figure 5: A Poincaré map for a three-dimensional flow with a two-
dimensional cross section.

The dynamics of flows and maps are closely related. The study of a flow
can often be replaced by the study of a map. One prescription for doing this
is the so-called Poincaré map of a flow. As illustrated in Figure 5, a cross
section of the flow is obtained by choosing some surface transverse to the
flow. A cross section for a three-dimensional flow is shown in the illustration
and is obtained by choosing the x–y plane, (x, y, z = 0). The flow defines a
map of this cross section to itself, and this map is an example of a Poincaré
map (also called a first return map). A trajectory of the flow carries a point
(x(t1), y(t1)) into a new point (x(t2), y(t2)). And this in turn goes to the
point (x(t3), y(t3)). In this way the flow generates a map of a portion of the
plane, and an orbit of this map consists of the sequence of points

(x1, y1) = (x(t1), y(t1), z = 0, ż < 0),

(x2, y2) = (x(t2), y(t2), z = 0, ż < 0),

(x3, y3) = (x(t3), y(t3), z = 0, ż < 0),

and so on.
There is another reason for studying maps. To quote Steve Smale on the

“diffeomorphism problem,”7

7S. Smale, Differential dynamical systems, Bull. Am. Math. Soc. 73, 747–817 (1967).
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[T]here is a second and more important reason for studying the
diffeomorphism problem (besides its great natural beauty). That
is, the same phenomena and problems of the qualitative theory of
ordinary differential equations are present in their simplest form
in the diffeomorphism problem. Having first found theorems in
the diffeomorphism case, it is usually a secondary task to translate
the results back into the differential equations framework.

The first dynamical system we will study, the bouncing ball system, illus-
trates more fully the close connection between maps and flows.

Binary Arithmetic

Before turning to nonlinear dynamics proper, we need some familiarity with
the binary number system. Consider the problem of converting a fraction
between 0 and 1 (x0 ∈ [0, 1]) written in decimal (base 10) to a binary number
(base 2). The formal expansion for a binary fraction in powers of 2 is

x0 =
β1

2
+
β2

22
+
β3

23
+
β4

24
+
β5

25
+ · · · (decimal)

=
β1

2
+
β2

4
+
β3

8
+
β4

16
+
β5

32
+ · · ·

= 0.β1β2β3β4β5 . . . (binary)

where βi ∈ {0, 1}. The goal is to find the βi’s for a given decimal fraction.
For example, if x0 = 3/4 then

x0 =
3

4

=
1

2
+

1

4
+

0

8
+

0

16
+

0

32
+ · · ·

= 0.11 (binary).

The general procedure for converting a decimal fraction less than one to
binary is based on repeated doublings in which the ones or “carry” digit is
used for the βi’s. This is illustrated in the following calculation for x0 = 0.314:

2× 0.314 = 0.628 −→ β1 = 0

2× 0.628 = 1.256 −→ β2 = 1

2× 0.256 = 0.512 −→ β3 = 0
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Level 1

Level 2

Level 3

Level 4

Level 0

0 1/3

0

0 1/9 2/9 3/9 6/9 7/9 8/9 9/9

2/3 3/3

1

Figure 6: Construction of Cantor’s middle thirds set.

2× 0.512 = 1.024 −→ β4 = 1

2× 0.024 = 0.048 −→ β5 = 0

2× 0.048 = 0.096 −→ β6 = 0

so

x0 = 0.010100 . . . (binary).

Fractals

Nature abounds with intricate fragmented shapes and structures, including
coastlines, clouds, lightning bolts, and snowflakes. In 1975 Benoit Mandel-
brot coined the term fractal to describe such irregular shapes. The essential
feature of a fractal is the existence of a similar structure at all length scales.
That is, a fractal object has the property that a small part resembles a larger
part, which in turn resembles the whole object. Technically, this property
is called self-similarity and is theoretically described in terms of a scaling
relation.

Chaotic dynamical systems almost inevitably give rise to fractals. And
fractal analysis is often useful in describing the geometric structure of a
chaotic dynamical system. In particular, fractal objects can be assigned one
or more fractal dimensions, which are often fractional; that is, they are not
integer dimensions.

To see how this works, consider a Cantor set, which is defined recursively
as follows (Fig. 6). At the zeroth level the construction of the Cantor set
begins with the unit interval, that is, all points on the line between 0 and
1. The first level is obtained from the zeroth level by deleting all points
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that lie in the “middle third,” that is, all points between 1/3 and 2/3. The
second level is obtained from the first level by deleting the middle third of
each interval at the first level, that is, all points from 1/9 to 2/9, and 7/9 to
8/9. In general, the next level is obtained from the previous level by deleting
the middle third of all intervals at the previous level. This process continues
forever, and the result is a collection of points that are tenuously cut out
from the unit interval. At the nth level the set consists of 2n segments, each
of which has length ln = (1/3)n, so that the length of the Cantor set is

lim
n→∞

2n
(

1

3

)n
= 0.

In the 1920s the mathematician Hausdorff developed another way to
“measure” the size of a set. He suggested that we should examine the number
of small intervals, N(ε), needed to “cover” the set at a scale ε. The measure
of the set is calculated from

lim
ε→0

N(ε) =
(

1

ε

)df
.

An example of a fractal dimension is obtained by inverting this equation,

df = lim
ε→0

 lnN(ε)

ln
(

1
ε

)
 .

Returning to the Cantor set, we see that at the nth level the length of the

covering intervals are ε =
(

1
3

)n
, and the number of intervals needed to cover

all segments at the nth level is N(ε) = 2n. Taking the limits n→∞ (ε→ 0),
we find

df = lim
ε→0

 lnN(ε)

ln
(

1
ε

)
 = lim

n→∞

ln 2n

ln 3n
=

ln 2

ln 3
≈ 0.6309.

The middle-thirds Cantor set has a simple scaling relation, because the
factor 1/3 is all that goes into determining the successive levels. A further
elementary discussion of the middle-thirds Cantor set is found in Devaney’s
Chaos, fractals, and dynamics. In general, fractals arising in a chaotic dy-
namical system have a far more complex scaling relation, usually involving a
range of scales that can depend on their location within the set. Such fractals
are called multifractals.
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P. Bergé, Y. Pomeau, and C. Vidal, Order within chaos (John Wiley: New York, 1984).

R. L. Devaney, An introduction to chaotic dynamical systems, second ed.

(Addison-Wesley: New York, 1989).

E. A. Jackson, Perspectives of nonlinear dynamics, Vol. 1–2 (Cambridge University Press:

New York, 1990).

F. Moon, Chaotic vibrations (John Wiley: New York, 1987).

J. Thompson and H. Stewart, Nonlinear dynamics and chaos (John Wiley: New York,

1986).

S. Rasband, Chaotic dynamics of nonlinear systems (John Wiley: New York, 1990).

S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer-

Verlag: New York, 1990).



20 Introduction

These review articles provide a quick introduction to the current research
problems and methods of nonlinear dynamics:

J.-P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys.

53 (4), pp. 643–654 (1981).

J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod.

Phys. 57 (3), pp. 617–656 (1985).

C. Grebogi, E. Ott, and J. Yorke, Chaos, strange attractors, and fractal basin boundaries

in nonlinear dynamics, Science 238, pp. 632–638 (1987).

E. Ott, Strange attractors and chaotic motions of dynamical systems, Rev. Mod. Phys.

53 (4), pp. 655–671 (1981).

T. Parker and L. Chua, Chaos: A tutorial for engineers, Proc. IEEE 75 (8), pp. 982–1008

(1987).

R. Shaw, Strange attractors, chaotic behavior, and information flow, Z. Naturforsch. 36a,

pp. 80–112 (1981).

Advanced theoretical results are described in the following books:

V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, second

ed. (Springer-Verlag: New York, 1988).

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurca-

tions of vector fields, second printing (Springer-Verlag: New York, 1986).

D. Ruelle, Elements of differentiable dynamics and bifurcation theory (Academic Press:

New York, 1989).

S. Wiggins, Global bifurcations and chaos (Springer-Verlag: New York, 1988).



Chapter 1

Bouncing Ball

1.1 Introduction

Consider the motion of a ball bouncing on a periodically vibrating table. The
bouncing ball system is illustrated in Figure 1.1 and arises quite naturally
as a model problem in several engineering applications. Examples include
the generation and control of noise in machinery such as jackhammers, the
transportation and separation of granular solids such as rice, and the trans-
portation of components in automatic assembly devices, which commonly
employ oscillating tracks. These vibrating tracks are used to transport parts
much like a conveyor belt [1].

Assume that the ball’s motion is confined to the vertical direction and
that, between impacts, the ball’s height is determined by Newton’s laws for
the motion of a particle in a constant gravitational field. A nonlinear force
is applied to the ball when it hits the table. At impact, the ball’s velocity
suddenly reverses from the downward to the upward direction (Fig. 1.1).

The bouncing ball system is easy to study experimentally [2]. One exper-
imental realization of the system consists of little more than a ball bearing
and a periodically driven loudspeaker with a concave optical lens attached to
its surface. The ball bearing will rattle on top of this lens when the speaker’s
vibration amplitude is large enough. The curvature of the lens is chosen so
as to help focus the ball’s motion in the vertical direction.

Impacts between the ball and lens can be detected by listening to the
rhythmic clicking patterns produced when the ball hits the lens. A piezo-
electric film, which generates a small current every time a stress is applied,

21
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(a) (b)

Figure 1.1: Ball bouncing on an oscillating table.

is fastened to the lens and acts as an impact detector. The piezoelectric
film generates a voltage spike at each impact. This spike is monitored on an
oscilloscope, thus providing a visual representation of the ball’s motion. A
schematic of the bouncing ball machine is shown in Figure 1.2. More details
about its construction are provided in reference [3].

The ball’s motion can be described in several equivalent ways. The sim-
plest representation is to plot the ball’s height and the table’s height, mea-
sured from the ground, as a function of time. Between impacts, the graph of
the ball’s vertical displacement follows a parabolic trajectory as illustrated
in Figure 1.3(a). The table’s vertical displacement varies sinusoidally. If the
ball’s height is recorded at discrete time steps,

{x(t0), x(t1), . . . , x(ti), . . . , x(tn)}, (1.1)

then we have a time series of the ball’s height where x(ti) is the height of
the ball at time ti.

Another view of the ball’s motion is obtained by plotting the ball’s height
on the vertical axis, and the ball’s velocity on the horizontal axis. The plot
shown in Figure 1.3(b) is essentially a phase space representation of the ball’s
motion. Since the ball’s height is bounded, so is the ball’s velocity. Thus
the phase space picture gives us a description of the ball’s motion that is
more compact than that given by a plot of the time series. Additionally, the
sudden reversal in the ball’s velocity at impact (from positive to negative)
is easy to see at the bottom of Figure 1.3(b). Between impacts, the graph
again follows a parabolic trajectory.

Yet another representation of the ball’s motion is a plot of the ball’s
velocity and the table’s forcing phase at each impact. This is the so-called
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Figure 1.2: Schematic for a bouncing ball machine.

impact map and is shown in Figure 1.3(c). The impact map goes to a single
point for the simple periodic trajectory shown in Figure 1.3. The vertical
coordinate of this point is the ball’s velocity at impact and the horizontal
coordinate is the table’s forcing phase. This phase, θ, is defined as the
product of the table’s angular frequency, ω, and the time, t:

θ = ωt, ω = 2π/T, (1.2)

where T is the forcing period. Since the table’s motion is 2π-periodic in the
phase variable θ, we usually consider the phase mod 2π, which means we
divide θ by 2π and take the remainder:

θ mod 2π = remainder(θ/2π). (1.3)

A time series, phase space, and impact map plot are presented together in
Figure 1.4 for a complex motion in the bouncing ball system. This particular
motion is an example of a nonperiodic orbit known as a strange attractor.
The impact map, Figure 1.4(c), is a compact and abstract representation
of the motion. In this particular example we see that the ball never settles
down to a periodic motion, in which it would impact at only a few points,
but rather explores a wide range of phases and velocities. We will say much
more about these strange trajectories throughout this book, but right now
we turn to the details of modeling the dynamics of a bouncing ball.
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(a)

(b) (c)

Figure 1.3: Simple periodic orbit of a bouncing ball: (a) height vs. time,
(b) phase space (height vs. velocity), (c) impact map (velocity and forcing
phase at impact). (Generated by the Bouncing Ball program.)

1.2 Model

To model the bouncing ball system we assume that the table’s mass is much
greater than the ball’s mass and the impact between the ball and the table is
instantaneous. These assumptions are realistic for the experimental system
described in the previous section and simply mean that the table’s motion is
not affected by the collisions. The collisions are usually inelastic; that is, a
little energy is lost at each impact. If no energy is lost then the collisions are
called elastic. We will examine both cases in this book: the case in which
energy is dissipated (dissipative) and the case in which energy is conserved
(conservative).

1.2.1 Stationary Table

First, though, we must figure out how the ball’s velocity changes at each
impact. Consider two different reference frames: the ball’s motion as seen
from the ground (the ground’s reference frame) and the ball’s motion as seen
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(a)

(b) (c)

Figure 1.4: “Strange” orbit of a bouncing ball: (a) height vs. time, (b) phase
space, (c) impact map. (Generated by the Bouncing Ball program.)

from the table (the table’s reference frame). Begin by considering the simple
case where the table is stationary and the two reference frames are identical.
As we will show shortly, understanding the stationary case will solve the
nonstationary case.

Let v′k be the ball’s velocity right before the kth impact, and let vk be
the ball’s velocity right after the kth impact. The prime notation indicates
a velocity immediately before an impact. If the table is stationary and the
collisions are elastic, then vk = −v′k: the ball reverses direction but does
not change speed since there is no energy loss. If the collisions are inelastic
and the table is stationary, then the ball’s speed will be reduced after the
collision because energy is lost: vk = −αv′k (0 ≤ α < 1), where α is the
coefficient of restitution. The constant α is a measure of the energy loss
at each impact. If α = 1, the system is conservative and the collisions are
elastic. The coefficient of restitution is strictly less than one for inelastic
collisions.1

1The coefficient of restitution α is called the damping coefficient in the Bouncing Ball
program.
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vk vk= – uk

(a) (b)
vk

uk

Figure 1.5: Motion of the ball in the reference frame of the ground (a) and
the table (b).

1.2.2 Impact Relation for the Oscillating Table

When the table is in motion, the ball’s velocity immediately after an impact
will have an additional term due to the kick from the table. To calculate the
change in the ball’s velocity, imagine the motion of the ball from the table’s
perspective. The key observation is that in the table’s reference frame the
table is always stationary. The ball, however, appears to have an additional
velocity which is equal to the opposite of the table’s velocity in the ground’s
reference frame. Therefore, to calculate the ball’s change in velocity we can
calculate the change in velocity in the table’s reference frame and then add
the table’s velocity to get the ball’s velocity in the ground’s reference frame.
In Figure 1.5 we show the motion of the ball and the table in both the
ground’s and the table’s reference frames.

Let uk be the table’s velocity in the ground’s reference frame. Further, let
v̄′k and v̄k be the velocity in the table’s reference frame immediately before
and after the kth impact, respectively. The bar denotes measurements in the
table’s reference frame; the unbarred coordinates are measurements in the
ground’s reference frame. Then, in the table’s reference frame,

v̄k = −αv̄′k, (1.4)

since the table is always stationary. To find the ball’s velocity in the ground’s
reference frame we must add the table’s velocity to the ball’s apparent ve-
locity,

vk = v̄k + uk, v′k = v̄′k + uk,
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or equivalently,
v̄k = vk − uk, v̄′k = v′k − uk. (1.5)

Therefore, in the ground’s reference frame, equation (1.4) becomes

vk − uk = −α[v′k − uk], (1.6)

when it is rewritten using equation (1.5). Rewriting equation (1.6) gives the
velocity vk after the kth impact as

vk = [1 + α]uk − αv′k. (1.7)

This last equation is known as the impact relation. It says the kick from the
table contributes [1 + α]uk to the ball’s velocity.

1.2.3 The Equations of Motion: Phase and Velocity
Maps.

To determine the motion of the ball we must calculate the times, hence
phases (from eq. (1.2)), when the ball and the table collide. An impact
occurs when the difference between the ball position and the table position
is zero. Between impacts, the ball goes up and down according to Newton’s
law for the motion of a projectile in a constant gravitational field of strength
g. Since the motion between impacts is simple, we will present the motion of
the ball in terms of an impact map, that is, some rule that takes as input the
current values of the impact phase and impact velocity and then generates
the next impact phase and impact velocity.

Let2

x(t) = xk + vk(t− tk)−
1

2
g(t− tk)2 (1.8)

be the ball’s position at time t after the kth impact, where xk is the position
at the kth impact and tk is the time of the kth impact, and let

s(t) = A[sin(ωt+ θ0) + 1] (1.9)

be the table’s position with an amplitude A, angular frequency ω, and phase
θ0 at t = 0. We add one to the sine function to ensure that the table’s

2For a discussion of the motion of a particle in a constant gravitational field see any
introductory physics text such as R. Weidner and R. Sells, Elementary Physics, Vol. 1
(Allyn and Bacon: Boston, 1965), pp. 19–22.
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amplitude is always positive. The difference in position between the ball and
table is

d(t) = x(t)− s(t), (1.10)

which should always be a non-negative function since the ball is never below
the table. The first value at which d(t) = 0, t > tk, implicitly defines the
time of the next impact. Substituting equations (1.8) and (1.9) into equation
(1.10) and setting d(t) to zero yields

0 = xk + vk(tk+1 − tk)−
1

2
g(tk+1 − tk)2 − A[sin(ωtk+1 + θ0) + 1]. (1.11)

Equation (1.11) can be rewritten in terms of the phase when the identification
θ = ωt+ θ0 is made between the phase variable and the time variable. This
leads to the implicit phase map of the form,

0 = A[sin(θk) + 1] + vk

[
1

ω
(θk+1 − θk)

]
−1

2
g
[

1

ω
(θk+1 − θk)

]2

− A[sin(θk+1) + 1], (1.12)

where θk+1 is the next θ for which d(θ) = 0. In deriving equation (1.12) we
used the fact that the table position and the ball position are identical at an
impact; that is, xk = A[sin(θk) + 1].

An explicit velocity map is derived directly from the impact relation,
equation (1.7), as

vk+1 = (1 + α)ωA cos(ωtk+1 + θ0)− α[vk − g(tk+1 − tk)], (1.13)

or, in the phase variable,

vk+1 = (1 + α)ωA cos(θk+1)− α
{
vk − g

[
1

ω
(θk+1 − θk)

]}
, (1.14)

noting that the table’s velocity is just the time derivative of the table’s po-
sition, u(t) = ṡ(t) ≡ ds/dt = Aω cos(ωt + θ0), and that, between impacts,
the ball is subject to the acceleration of gravity, so its velocity is given by
vk − g(t − tk). The overdot is Newton’s original notation denoting differen-
tiation with respect to time.

The implicit phase map (eq. (1.12)) and the explicit velocity map (eq.
(1.14)) constitute the exact model for the bouncing ball system. The dy-
namics of the bouncing ball are easy to simulate on a computer using these
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Parameter Symbol Experimental values

Coefficient of restitution α 0.1–0.9
Table’s amplitude A 0.01–0.1 cm
Table’s period T 0.1–0.01 s
Gravitational acceleration g 981 cm/s2

Frequency f f = 1/T
Angular frequency ω ω = 2πf
Normalized acceleration β β = 2ω2(1 + α)A/g

Table 1.1: Reference values for the Bouncing Ball System.

two equations. Unfortunately, the phase map is an implicit algebraic equa-
tion for the variable θk+1; that is, θk+1 cannot be isolated from the other
variables. To solve the phase function for θk+1 a numerical algorithm is
needed to locate the zeros of the phase function (see Appendix A). Still, this
presents little problem for numerical simulations, or even, as we shall see, for
a good deal of analytical work.

1.2.4 Parameters

The parameters for the bouncing ball system should be determined before
we continue our analysis. The relevant parameters, with typical experimen-
tal values, are listed in Table 1.1. In an experimental system, the table’s
frequency or the table’s amplitude of oscillation is easy to adjust with the
function generator. The coefficient of restitution can also be varied by using
balls composed of different materials. Steel balls, for instance, are relatively
hard and have a high coefficient of restitution. Balls made from brass, glass,
plastic, or wood are softer and tend to dissipate more energy at impact.

As we will show in the next section, the physical parameters listed in
Table 1.1 are related. By rescaling the variables, it is possible to show that
there are only two fundamental parameters in this model. For our purposes
we will take these to be α, the coefficient of restitution, and a new parameter
β, which is essentially proportional to Aω2. The parameter β is, in essence,
a normalized acceleration and it measures the violence with which the table
oscillates up and down.
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x
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Figure 1.6: Symmetric orbit in the high bounce approximation.

1.3 High Bounce Approximation

In the high bounce approximation we imagine that the table’s displacement
amplitude is always small compared to the ball’s maximum height. This
approximation is depicted in Figure 1.6 where the ball’s trajectory is perfectly
symmetric about its midpoint, and therefore

v′k+1 = −vk. (1.15)

The velocity of the ball between the kth and k + 1st impacts is given by

v(t) = vk − g(t− tk). (1.16)

At the k + 1st impact, the velocity is v′k+1 and the time is tk+1, so

v′k+1 = vk − g(tk+1 − tk). (1.17)

Using equation (1.15) and simplifying, we get

tk+1 = tk +
2

g
vk, (1.18)

which is the time map in the high bounce approximation.
To find the velocity map in this approximation we begin with the impact

relation (eq. (1.7)),

vk+1 = (1 + α)uk+1 − αv′k+1

= (1 + α)uk+1 + αvk, (1.19)
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where the last equality follows from the high bounce approximation, equation
(1.15). The table’s velocity at the k + 1st impact can be written as

uk+1 = ωA cos(ωtk+1 + θ0)

= ωA cos[ω(tk + 2vk/g) + θ0], (1.20)

when the time map, equation (1.18), is used. Equations (1.19) and (1.20)
give the velocity map in the high bounce approximation,

vk+1 = αvk + ω(1 + α)A cos[ω(tk + 2vk/g) + θ0]. (1.21)

The impact equations can be simplified somewhat by changing to the
dimensionless quantities

θ = ωt+ θ0, (1.22)

ν = 2ωv/g, and (1.23)

β = 2ω2(1 + α)A/g, (1.24)

which recasts the time map (eq. (1.18)) and the velocity map (eq. (1.21))
into the explicit mapping form

f = fα,β

{
θk+1 = θk + νk,
νk+1 = ανk + β cos(θk + νk).

(1.25)

In the special case where α = 1, this system of equations is known as the
standard map [4]. The subscripts of fα,β explicitly show the dependence of
the map on the parameters α and β. The mapping equation (1.25) is easy to
solve on a computer. Given an initial condition (θ0, ν0), the map explicitly
generates the next impact phase and impact velocity as f 1(θ0, ν0) = (θ1, ν1),
and this in turn generates f 2(θ0, ν0) = f 1(θ1, ν1) = f ◦ f(θ0, ν0) = (θ2, ν2),
etc., where, in this notation, the superscript n in fn indicates functional
composition (see section 2.2). Unlike the exact model, both the phase map
and the velocity map are explicit equations in the high bounce approximation.

The high bounce approximation shares many of the same qualitative prop-
erties of the exact model for the bouncing ball system, and it will serve as
the starting point for several analytic calculations. However, for comparisons
with experimental data, it is worthwhile to put the extra effort into numer-
ically solving the exact equations because the high bounce model fails in at
least two major ways to model the actual physical system [5]. First, the high
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bounce model can generate solutions that cannot possibly occur in the real
system. These unphysical solutions occur for very small bounces at negative
table velocities, where it is possible for the ball to be projected downward
beneath the table. That is, the ball can pass through the table in this ap-
proximation. Second, this approximation cannot reproduce a large class of
real solutions, called “sticking solutions,” which are discussed in section 1.4.3.
Fundamentally, this is because the map in the high bounce approximation
is invertible, whereas the exact model is not invertible. In the exact model
there exist some solutions—in particular the sticking solutions—for which
two or more orbits are mapped to the same identical point. Thus the map
at this point does not have a unique inverse.

1.4 Qualitative Description of Motions

In specifying an individual solution to the bouncing ball system, we need to
know both the initial condition, that is, the initial impact phase and impact
velocity of the ball (θ0, v0), and the relevant system parameters, α, A, and
T . Then, to find an individual trajectory, all we need to do is iterate the
mapping for the appropriate model. However, finding the solution for a
single trajectory gives little insight into the global dynamics of the system.
As stressed in the Introduction, we are not interested so much in solving an
individual orbit, but rather in understanding the behavior of a large collection
of orbits and, when possible, the system as a whole.

An individual solution can be represented by a curve in phase space. In
considering a collection of solutions, we will need to understand the behavior
not of a single curve in phase space, but rather of a bundle of adjacent curves,
a region in phase space. Similarly, in the impact map we want to consider a
collection of initial conditions, a region in the impact map. In general, the
future of an orbit is well defined by a flow or mapping. The fate of a region in
the phase space or the impact map is defined by the collective futures of each
of the individual curves or points, respectively, in the region as is illustrated
in Figure 1.7.

A number of questions can, and will, be asked about the evolution of a
region in phase space (or in the impact map). Do regions in the phase space
expand or contract as the system evolves? In the bouncing ball system,
a bundle of initial conditions will generally contract in area whenever the
system is dissipative—a little energy is lost at each impact, and this results
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(a) (b)

Figure 1.7: (a) Evolution of a region in phase space. (b) Recurrent regions
in the phase space of a nonlinear system.

in a shrinkage of our initial region, or patch, in phase space (see section 4.4.4
for details). Since this region is shrinking, this raises many questions that
will be addressed throughout this book, such as where do all the orbits go,
how much of the initial area remains, and what do the orbits do on this
remaining set once they get to wherever they’re going? This turns out to be
a subtle collection of questions. For instance, even the question of what we
mean by “area” gets tricky because there is more than one useful notion of
the area, or measure, of a set. Another related question is, do these regions
intersect with themselves as they evolve (see Figure 1.7)? The answer is
generally yes, they do intersect, and this observation will lead us to study
the rich collection of recurrence structures of a nonlinear system.

A simple question we can answer is: does there exist a closed, simply-
connected subset, or region, of the whole phase space (or impact map) such
that all the orbits outside this subset eventually enter into it, and, once in-
side, they never get out again? If such a subset exists, it is called a trapping
region. Establishing the existence of a trapping region can simplify our gen-
eral problem somewhat, because instead of considering all possible initial
conditions, we need only consider those initial conditions inside the trapping
region, since all other initial conditions will eventually end up there.

1.4.1 Trapping Region

To find a trapping region for the bouncing ball system we will first find an
upper bound for the next outgoing velocity, vk+1, by looking at the previous
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value, vk. We will then find a lower bound for vk+1. These bounds give us the
boundaries for a trapping region in the bouncing ball’s impact map (θi, vi),
which imply a trapping region in phase space.

To bound the outgoing velocity, we begin with equation (1.13) in the form

vk+1 − αvk = (1 + α)ωA cos(ωtk+1 + θ0) + αg(tk+1 − tk). (1.26)

The first term on the right-hand side is easy to bound. To bound the
second term, we first look at the average ball velocity between impacts, which
is given by

v̄k = vk −
1

2
g(tk+1 − tk).

Rearranging this expression gives

tk+1 − tk =
2

g
(vk − v̄k).

Equation (1.26) now becomes

vk+1 + αvk = (1 + α)Aω cos(ωtk+1 + θ0)− 2αv̄k + 2αvk. (1.27)

Noting that the average table velocity between impacts is the same as the
average ball velocity between impacts (see Prob. 1.14), we find that

vk+1 − αvk ≤ (1 + 3α)Aω. (1.28)

If we define

vmax =
1 + 3α

1− α
Aω, (1.29)

and let vk > vmax, then vk+1 − αvk < (1− α)vk, or

vk+1 < vk.

In this case it is essential that the system be dissipative (α < 1) for a trapping
region to exist. In the conservative limit no trapping region exists—it is
possible for the ball to reach infinite heights and velocities when no energy
is lost at impact.

To find a lower bound for vk+1, we simply realize that the velocity after
impact must always be at least that of the table,

vk+1 ≥ −Aω = vmin. (1.30)
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For the bouncing ball system the compact trapping region, D, given by

D = {(θ, v) | vmin ≤ v ≤ vmax} (1.31)

is simply a strip bounded by vmin and vmax. To prove that D is a trapping
region, we also need to show that v cannot approach vmax asymptotically,
and that once inside D, the orbit cannot leave D (these calculations are left
to the reader—see Prob. 1.15). The previous calculations show that all orbits
of the dissipative bouncing ball system will eventually enter the region D and
be “trapped” there.

1.4.2 Equilibrium Solutions

Once the orbits enter the trapping region, where do they go next? To answer
this question we first solve for the motion of a ball bouncing on a stationary
table. Then we will imagine slowly turning up the table amplitude.

If the table is stationary, then the high bounce approximation is no longer
approximate, but exact. Setting A = 0 in the velocity map, equation (1.21),
immediately gives

vk+1 = αvk. (1.32)

Using the time map, tk+1− tk = (2/g)vk, the coefficient of restitution is easy
to measure [6] by recording three consecutive impact times, since

α =
tk+2 − tk+1

tk+1 − tk
. (1.33)

To find how long it takes the ball to stop bouncing, consider the sum of the
differences of consecutive impact times,

Γ =
∞∑
n=0

τn = τ0 + τ1 + τ2 + · · · , τk ≡ tk+1 − tk. (1.34)

Since τk+1 = ατk, Γ is the summation of a geometric series ,

Γ = τ0 + τ1 + τ2 + · · · = τ0 + ατ0 + α2τ0 + · · · =
∞∑
n=0

τ0α
n =

τ0

1− α
, (1.35)

which can be summed for α < 1. After an infinite number of bounces, the
ball will come to a halt in a finite time.

For these equilibrium solutions, all the orbits in the trapping region come
to rest on the table. When the table’s acceleration is small, the picture does
not change much. The ball comes to rest on the oscillating table and then
moves in unison with the table from then on.
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1.4.3 Sticking Solutions

Now that the ball is moving with the table, what happens as we slowly
turn up the table’s amplitude while keeping the forcing frequency fixed?
Initially, the ball will remain stuck to the table until the table’s maximum
acceleration is greater than the earth’s gravitational acceleration, g. The
table’s acceleration is given by

s̈ = −Aω2 sin(ωt+ θ0). (1.36)

The maximum acceleration is thus Aω2. When Aω2 is greater than g, the
ball becomes unstuck and will fly free from the table until its next impact.
The phase at which the ball becomes initially unstuck occurs when

−g = −Aω2 sin(θunstuck) =⇒ θunstuck = arcsin
(

g

Aω2

)
. (1.37)

Even in a system in which the table’s maximum acceleration is much
greater than g, the ball can become stuck. An infinite number of impacts
can occur in a finite stopping time, Γ. The sum of the times between impacts
converges in a finite time much less than the table’s period, T . The ball
gets stuck again at the end of this sequence of impacts and moves with the
table until it reaches the phase θunstuck. This type of sticking solution is an
eventually periodic orbit. After its first time of getting stuck, it will exactly
repeat this pattern of getting stuck, and then released, forever.

However, these sticking solutions are a bit exotic in several respects.
Sticking solutions are not invertible; that is, an infinite number of initial
conditions can eventually arrive at the same identical sticking solution. It
is impossible to run a sticking solution backward in time to find the exact
initial condition from which the orbit came. This is because of the geometric
convergence of sticking solutions in finite time.

Also, there are an infinite number of different sticking solutions. Three
such solutions are illustrated in Figure 1.8. To see how some of these solutions
are formed, let’s turn the table amplitude up a little so that the stopping
time, Γ, is lengthened. Now, it happens that the ball does not get stuck
in the first table period, T , but keeps bouncing on into the second or third
period. However, as it enters each new period, the bounces get progressively
lower so that the ball does eventually get stuck after several periods. Once
stuck, it again gets released when the table’s acceleration is greater than g,
and this new pattern repeats itself forever.
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Figure 1.8: Sticking solutions in the bouncing ball system.

Figure 1.9: Convergence to a period one orbit.

1.4.4 Period One Orbits and Period Doubling

As we increase the table’s amplitude we often see that the orbit jumps from
a sticking solution to a simple periodic motion. Figure 1.9 shows the conver-
gence of a trajectory of the bouncing ball system to a period one orbit. The
ball’s motion converges toward a periodic orbit with a period exactly equal
to that of the table, hence the term period one orbit (see Prob. 1.1).

What happens to the period one solution as the forcing amplitude of
the table increases further? We discover that the period one orbit bifurcates
(literally, splits in two) to the period two orbit illustrated in Figure 1.10.
Now the ball’s motion is still periodic, but it bounces high, then low, then
high again, requiring twice the table’s period to complete a full cycle. If
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Figure 1.10: Period two orbit of a bouncing ball.

Figure 1.11: Chaotic orbit of a bouncing ball.

we gradually increase the table’s amplitude still further we next discover a
period four orbit, and then a period eight orbit, and so on. In this period
doubling cascade we only see orbits of period

P = 2n = 1, 2, 4, 8, 16 . . . , (1.38)

and not, for instance, period three, five, or six.
The amplitude ranges for which each of these period 2n orbits is observ-

able, however, gets smaller and smaller. Eventually it converges to a critical
table amplitude, beyond which the bouncing ball system exhibits the nonpe-
riodic behavior illustrated in Figure 1.11. This last type of motion found at
the end of the period doubling cascade never settles down to a periodic orbit
and is, in fact, our first physical example of a chaotic trajectory known as a
strange attractor. This motion is an attractor because it is the asymptotic
solution arising from many different initial conditions: different motions of
the system are attracted to this particular motion. At this point, the term
strange is used to distinguish this motion from other motions such as periodic
orbits or equilibrium points. A more precise definition of the term strange is
given in section 3.8.



1.4. QUALITATIVE DESCRIPTION OF MOTIONS 39

Figure 1.12: A zoo of periodic and chaotic motions seen in the bouncing ball
system. (Generated by the Bouncing Ball program.)

At still higher table amplitudes many other types of strange and periodic
motions are possible, a few of which are illustrated in Figure 1.12. The type of
motion depends on the system parameters and the specific initial conditions.
It is common in a nonlinear system for many solutions to coexist. That is, it
is possible to see several different periodic and chaotic motions for the same
parameter values. These coexisting orbits are only distinguished by their
initial conditions.

The “period doubling route to chaos” we saw above is common to a wide
variety of nonlinear systems and will be discussed in depth in section 2.8.

1.4.5 Chaotic Motions

Figure 1.13 shows the impact map of the strange attractor discovered at the
end of the period doubling route to chaos. This strange attractor looks almost
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Figure 1.13: Strange attractor in the bouncing ball system arising at the end
of a period doubling cascade. (Generated by the Bouncing Ball program.)

like a simple curve (segment of an upside-down parabola) with gaps. Parts
of this curve look chopped out or eaten away. However, on magnification,
this curve appears not so simple after all. Rather, it seems to resemble
an intricate web of points spread out on a narrow curved strip. Since this
chaotic solution is not periodic (and hence, never exactly repeats itself) it
must consist of an infinite collection of discrete points in the impact (velocity
vs. phase) space.

This strange set is generated by an orbit of the bouncing ball system, and
it is chaotic in that orbits in this set exhibit sensitive dependence on initial
conditions. This sensitive dependence on initial conditions is easy to see in
the bouncing ball system when we solve for the impact phases and velocities
for the exact model with the numerical procedure described in Appendix A.
First consider two slightly different trajectories that converge to the same
period one orbit. As shown in Table 1.2, these orbits initially differ in phase
by 0.00001. This phase difference increases a little over the next few impacts,
but by the eleventh impact the orbits are indistinguishable from each other,
and by the eighteenth impact they are indistinguishable from the period one
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orbit. Thus the difference between the two orbits decreases as the system
evolves.

An attracting periodic orbit has both long-term and short-term pre-
dictability. As the last example indicates, we can predict, from an initial
condition of limited resolution, where the ball will be after a few bounces
(short-term) and after many bounces (long-term).

The situation is dramatically different for motion on a strange attractor.
Chaotic motions may still possess short-term predictability, but they lack
long-term predictability. In Table 1.3 we show two different trajectories that
again differ in phase by 0.00001 at the zeroth impact. However, in the chaotic
case the difference increases at a remarkable rate with the evolution of the
system. That is, given a small difference in the initial conditions, the orbits
diverge rapidly. By the twelfth impact the error is greater than 0.001, by the
twentieth impact 0.01, and by the twenty-fourth impact the orbits show no
resemblance. Chaotic motion thus exhibits sensitive dependence on initial
conditions. Even if we increase our precision, we still cannot predict the
orbit’s future position exactly.

As a practical matter we have no exact long-term predictive power for
chaotic motions. It does not really help to double the resolution of our
initial measurement as this will just postpone the problem. The bouncing
ball system is both deterministic and unpredictable. Chaotic motions of the
bouncing ball system are unpredictable in the practical sense that initial
measurements are always of limited accuracy, and any initial measurement
error grows rapidly with the evolution of the system.

Strange attractors are common to a wide variety of nonlinear systems.
We will develop a way to name and dissect these critters in Chapters 4 and
5.

1.5 Attractors

An attracting set A in a trapping region D is defined as a nonempty closed
set formed from some open neighborhood,

A =
⋂
n≥0

fn(D). (1.39)

We mentioned before that for a dissipative bouncing ball system the trap-
ping region is contracting, so the open neighborhood typically consists of a
collection of smaller and smaller regions as it approaches the attracting set.
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Hit Phase Phase

0 0.12001 0.12002
1 0.119553 0.119563
2 0.123625 0.123613
3 0.119647 0.119657
4 0.122627 0.122620
5 0.120645 0.120650
6 0.121893 0.121890
7 0.121140 0.121142
8 0.121584 0.121583
9 0.121327 0.121328
10 0.121474 0.121473
11 0.121391 0.121391
12 0.121437 0.121437
13 0.121412 0.121412
14 0.121426 0.121426
15 0.121418 0.121418
16 0.121422 0.121422
17 0.121420 0.121420
18 0.121421 0.121421
19 0.121421 0.121421
20 0.121421 0.121421

Table 1.2: Convergence of two different initial conditions to a period one
orbit. The digits in bold are where the orbits differ. At the zeroth hit the
orbits differ in phase by 0.00001. Note that the difference between the orbits
decreases so that after 18 impacts both orbits are indistinguishable from the
period one orbit. The operating parameters are: A = 0.01 cm, frequency =
60 Hz, α = 0.5, and the initial ball velocity is 8.17001 cm/s. The impact
phase is presented as δ = (θ mod 2π)/(2π) so that it is normalized to be
between zero and one.
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Hit Phase Phase

0 0.12001 0.12002
1 0.119575 0.119585
2 0.203686 0.203667
3 0.044295 0.044330
4 0.245370 0.245382
5 0.979140 0.979114
6 0.163451 0.163401
7 0.151935 0.152045
8 0.133956 0.133762
9 0.170026 0.170343
10 0.106407 0.105836
11 0.210176 0.210911
12 0.034337 0.033041
13 0.240314 0.239475
14 0.989893 0.991636
15 0.183346 0.186362
16 0.108543 0.102037
17 0.202784 0.211096
18 0.048083 0.033369
19 0.245904 0.239552
20 0.977588 0.991442
21 0.160466 0.186034
22 0.158498 0.102743
23 0.122340 0.210230
24 0.188441 0.034893
25 0.073121 0.240520

Table 1.3: Divergence of initial conditions on a strange attractor illustrating
sensitive dependence on initial conditions. The parameter values are the
same as in Table 1.2 except for A = 0.012 cm. The bold digits show where
the impact phases differ. The orbits differ in phase by 0.00001 at the zeroth
hit, but by the twenty-third impact they differ at every digit.
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Figure 1.14: A periodic attractor and its transient.

An attractor is an attempt to define the asymptotic solution of a dynami-
cal system. It is that part of the solution that is left after the “transient” part
is thrown out. Consider Figure 1.14, which shows the approach of several
phase space trajectories of the bouncing ball system toward a period one cy-
cle. The orbits appear to consist of two parts: the transient—the initial part
of the orbit that is spiraling toward a closed curve—and the attractor—the
closed periodic orbit itself.

In the previous section we saw examples of several different types of at-
tractors. For small table amplitudes, the ball comes to rest on the table. For
these equilibrium solutions the attractor consists of a single point in the phase
space of the table’s reference frame. At higher table amplitudes periodic or-
bits can exist, in which case the attractor is a closed curve in phase space.
In a dissipative system this closed curve representing a periodic motion is
also known as a limit cycle. At still higher table amplitudes, a more compli-
cated set called a strange attractor can appear. The phase space plot of a
strange attractor is a complicated curve that never quite closes. After a long
time, this curve appears to sketch out a surface. Each type of attractor—a
point, closed curve, or strange attractor (something between a curve and a
surface)—represents a different type of motion for the system—equilibrium,
periodic, or chaotic.

Except for the equilibrium solutions, each of the attractors just described
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Figure 1.15: Basins of attraction in the bouncing ball system. (Generated
by the Bouncing Ball program.)

in the phase space has its corresponding representation in the impact map. In
general, the representation of the attractor in the impact map is a geometric
object of one dimension less than in phase space. For instance, a periodic
orbit is a closed curve in phase space, and this same period n orbit consists
of a collection of n points in the impact map. The impact map for a chaotic
orbit consists of an infinite collection of points.

For a nonlinear system, many attractors can coexist. This naturally raises
the question as to which orbits and collections of initial conditions go to which
attractors. For a given attractor, the domain of attraction, or basin of at-
traction, is the collection of all those initial conditions whose orbits approach
and always remain near that attractor. That is, it is the collection of all
orbits that are “captured” by an attractor. Like the attractors themselves,
the basins of attraction can be simple or complex [7].

Figure 1.15 shows a diagram of basins of attraction in the bouncing
ball system. The phase space is dominated by the black regions, which
indicate initial conditions that eventually become sticking solutions. The
white sinusoidal regions at the bottom of Figure 1.15 show unphysical initial
conditions—phases and velocities that the ball cannot obtain. The gray re-
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Figure 1.16: Bouncing ball bifurcation diagram. (Generated by the Bouncing
Ball program.)

gions represent initial conditions that approach a period one orbit. (See Plate
1 for a color diagram of basins of attraction in the bouncing ball system.)

1.6 Bifurcation Diagrams

A bifurcation diagram provides a nice summary for the transition between
different types of motion that can occur as one parameter of the system is
varied. A bifurcation diagram plots a system parameter on the horizontal
axis and a representation of an attractor on the vertical axis. For instance,
for the bouncing ball system, a bifurcation diagram can show the table’s
forcing amplitude on the horizontal axis and the asymptotic value of the
ball’s impact phase on the vertical axis, as illustrated in Figure 1.16. At a
bifurcation point, the attracting orbit undergoes a qualitative change. For
instance, the attractor literally splits in two (in the bifurcation diagram)
when the attractor changes from a period one orbit to a period two orbit.

This bouncing ball bifurcation diagram (Fig. 1.16) shows the classic pe-
riod doubling route to chaos. For table amplitudes between 0.01 cm and
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0.0106 cm a stable period one orbit exists; the ball impacts with the table at
a single phase. For amplitudes between 0.0106 cm and 0.0115 cm, a period
two orbit exists. The ball hits the table at two distinct phases. At higher
table amplitudes, the ball impacts at more and more phases. The ball hits
at an infinity of distinct points (phases) when the motion is chaotic.
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Problems

Problems for section 1.2.

1.1. For a period one orbit in the exact model show that

(a) vk = −v′k .

(b) vk = gT/2 .

(c) the impact phase is exactly given by

cos(θP1) =
gT 2

4πA

(
1− α
1 + α

)
. (1.40)

1.2. Assuming only that vk = −v′k,

(a) Show that the solution in Problem 1.1 can be generalized to an nth-order sym-
metric periodic (“equispaced”) orbit satisfying vk = ngT/2, for n = 1, 2, 3 . . . .

(b) Show that the impact phase is exactly given by

cos(θPn) =
ngT 2

4πA

(
1− α
1 + α

)
. (1.41)

(c) Draw pictures of a few of these orbits. Why are they called “equispaced”?

(d) Find parameter values at which a period one and period two (n = 1, 2) equis-
paced orbit can coexist.

1.3. If T = 0.01 s and α = 0.8, what is the smallest table amplitude for which a period
one orbit can exist (use Prob. 1.1(c))? For these parameters, estimate the maximum
height the ball bounces and express your answer in units of the average thickness of
a human hair. Describe how you arrived at this thickness.

1.4. Describe a numerical method for solving the exact bouncing ball map. How do you
determine when the ball gets stuck? How do you propose to find the zeros of the
phase map, equation (1.12)?

1.5. Derive equation (1.14) from equation (1.13).

Section 1.3.

1.6. Calculate (θn, νn) in equation (1.25) for n = 1, 2, 3, 4, 5 when α = 0.8, β = 1, and
(θ0, ν0) = (0.1, 1).

1.7. Confirm that the variables θ, ν, and β given by equations (1.22–1.24) are dimen-
sionless.

1.8. Verify the derivation of equation (1.25), the standard map.
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1.9. Calculate the inverse of the standard map (eq. (1.25)).

1.10. Write a computer program to iterate the model of the bouncing ball system given
by equation (1.25), the high bounce approximation.

Section 1.4.

1.11. (a) Calculate the stopping time (eq. (1.35)) for a first impact time τ0 = 1, and a
damping coefficient α = 0.5. Also calculate τ1, τ2, and τ3.

(b) Calculate τ0 and the stopping time for an initial velocity of 10 m/s (1000 cm/s)
and a damping coefficient of 0.5.

1.12. For the high bounce approximation (eq. (1.25)) show that when α < 1,

(a) |νj+1| ≤ α|νj |+ β.

(b) A trapping region is given by a strip bounded by±vmax, where vmax = β/(1−α).
(Note: The reader may assume, as the book does at the end of section 1.4.1, that
the vi cannot approach vmax asymptotically, and that once inside the strip, the orbit
cannot leave.)

1.13. Calculate θunstuck (eq. (1.37)) for A = 0.1 cm and T = 0.01 s. What is the speed
and acceleration of the table at this phase? Is the table on its way up or down?
Are there table parameters for which the ball can become unstuck when the table
is moving up? Are there table parameters for which the ball can become unstuck
when the table is moving down?

1.14. Show that the average table velocity between impacts equals the average ball velocity
between impacts.

1.15. These problems relate to the trapping region discussion in section 1.4.1.

(a) Prove that vi cannot approach the vmax given by equation (1.29) asymptotically.
(Hint: It is acceptable to increase vmax by some small ε > 0.)

(b) Prove that, for the trapping region D given by equation (1.31), once the orbit
enters D, it can never escape D.

(c) Use the trapping region D in the impact map to find a trapping region in phase
space. Hint: Use the maximum outgoing velocity (vmax) to calculate a minimum
incoming velocity and a maximum height.

(d) The trapping region found in the text is not unique; in fact, it is fairly “loose.”
Try to obtain a smaller, tighter trapping region.

1.16. Derive equation (1.33).

Section 1.5.

1.17. How many period one orbits can exist according to Problem 1.1(c), and how many
of these period one orbits are attractors?
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Section 1.6.

1.18. Write a computer program to generate a bifurcation diagram for the bouncing ball
system.



Chapter 2

Quadratic Map

2.1 Introduction

A ball bouncing on an oscillating table gives rise to complicated phenomena
which appear to defy our comprehension and analysis. The motions in the
bouncing ball system are truly complex. However, part of the problem is that
we do not, as yet, have the right language with which to discuss nonlinear
phenomena. We thus need to develop a vocabulary for nonlinear dynamics.

A good first step in developing any scientific vocabulary is the detailed
analysis of some simple examples. In this chapter we will begin by exploring
the quadratic map. In linear dynamics, the corresponding example used for
building a scientific vocabulary is the simple harmonic oscillator (see Figure
2.1). As its name implies, the harmonic oscillator is a simple model which
illustrates many key notions useful in the study of linear systems. The image
of a mass on a spring is usually not far from one’s mind even when dealing
with the most abstract problems in linear physics.

The similarities among linear systems are easy to identify because of
the extensive development of linear theory over the past century. Casual
inspection of nonlinear systems suggests little similarity. Careful inspection,
though, reveals many common features. Our original intuition is misleading
because it is steeped in linear theory. Nonlinear systems possess as many
similarities as differences. However, the vocabulary of linear dynamics is
inadequate to name these common structures. Thus, our task is to discover
the common elements of nonlinear systems and to analyze their structure.

A simple model of a nonlinear system is given by the difference equation

53
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Figure 2.1: Simple harmonic oscillator.

known as a quadratic map,

xn+1 = λxn − λx2
n,

= λxn(1− xn). (2.1)

For instance, if we set the value λ = 2 and initial condition x0 = 1/4 in the
quadratic map we find that

x0 = 1/4,

x1 = 3/8,

x2 = 15/32,

etc.,

and in this case the value xn appears to be approaching 1/2.
Phenomena illustrated in the quadratic map arise in a wide variety of

nonlinear systems. The quadratic map is also known as the logistic map,
and it was studied as early as 1845 by P. F. Verhulst as a model for popu-
lation growth. Verhulst was led to this difference equation by the following
reasoning. Suppose in any given year, indexed by the subscript n, that the
(normalized) population is xn. Then to find the population in the next year
(xn+1) it seems reasonable to assume that the number of new births will be
proportional to the current population, xn, and the remaining inhabitable
space, 1 − xn. The product of these two factors and λ gives the quadratic
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map, where λ is some parameter that depends on the fertility rate, the initial
living area, the average disease rate, and so on.

Given the quadratic map as our model for population dynamics, it would
now seem like an easy problem to predict the future population. Will it grow,
decline, or vary in a cyclic pattern? As we will see, the answer to this question
is easy to discover for some values of λ, but not for others. The dynamics
are difficult to predict because, in addition to exhibiting cyclic behavior, it
is also possible for the population to vary in a chaotic manner.

In the context of physical systems, the study of the quadratic map was
first advocated by E. N. Lorenz in 1964 [1]. At the time, Lorenz was looking
at the convection of air in certain models of weather prediction. Lorenz was
led to the quadratic map by the following reasoning, which also applies to
the bouncing ball system as well as to Lorenz’s original model (or, for that
matter, to any highly dissipative system). Consider a time series that comes
from the measurement of a variable in some physical system,

{x0, x1, x2, x3, . . . , xi, . . . , xn−1, xn . . .}. (2.2)

For instance, in the bouncing ball system this time series could consist of
the sequence of impact phases, so that x0 = θ0, x1 = θ1, x2 = θ2, and so
on. We require that this time series arise from motion on an attractor. To
meet this requirement, we throw out any measurements that are part of the
initial transient motion. In addition, we assume no foreknowledge of how to
model the process giving rise to this time series. Given our ignorance, it then
seems natural to try to predict the n + 1st element of the time series from
the previous nth value. Formally, we are seeking a function, f , such that

xn+1 = f(xn). (2.3)

In the bouncing ball example this idea suggests that the next impact phase
would be a function of the previous impact phase; that is, θn+1 = f(θn).

If such a simple relation exists, then it should be easy to see by plotting
yn = xn+1 on the vertical axis and xn on the horizontal axis. Formally, we
are taking our original time series, equation (2.2), and creating an embedded
time series consisting of the ordered pairs, (x, y) = (xn, xn+1),

{(x0, x1), (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, xn+1), . . .}. (2.4)

The idea of embedding a time series will be central to the experimental
study of nonlinear systems discussed in section 3.8.2. In Figure 2.2 we show
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Figure 2.2: Embedded time series of chaotic motion in the bouncing ball
system. (Generated by the Bouncing Ball program.)

an embedded time series of the impact phases for chaotic motions in the
bouncing ball system. The points for this embedded time series appear to lie
close to a region that resembles an upside-down parabola. The exact details
of the curve depend, of course, on the specific parameter values, but as a first
approximation the quadratic map provides a reasonable fit to this curve (see
Figure 2.3). Note that the curve’s maximum amplitude (located at the point
x = 1/2) rises as the parameter λ increases. We think of the parameter λ in
the quadratic map as representing some parameter in our process; λ could be
analogous to the table’s forcing amplitude in the bouncing ball system. Such
single-humped maps often arise when studying highly dissipative nonlinear
systems. Of course, more complicated many-humped maps can and do occur;
however, the single-humped map is the simplest, and is therefore a good place
to start in developing our new vocabulary.
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Figure 2.3: The quadratic function. (Generated by the Quadratic Map pro-
gram.)

2.2 Iteration and Differentiation

In the previous section we introduced the equation

f(x) = λx(1− x), (2.5)

known as the quadratic map. We write fλ(x) when we want to make the
dependence of f on the parameter λ explicit.

In this section we review two mathematical tools we will need for the rest
of the chapter: iteration and differentiation. We think of a map f : xn −→
xn+1 as generating a sequence of points. With the seed x0, define xn = fn(x0)
and consider the sequence x0, x1, x2, x3, . . ., as an orbit of the map. That is,
the orbit is the sequence of points

x0, x1 = f(x0), x2 = f 2(x0), x3 = f 3(x0), . . . ,

where the nth iterate of x0 is found by functional composition n times,

f 2 = f ◦ f,
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f 3 = f ◦ f ◦ f,

fn =

n︷ ︸︸ ︷
f ◦ f ◦ · · · f ◦ f .

When determining the stability of an orbit we will need to calculate the
derivative of these composite functions (see section 2.5). The derivative of a
composite function evaluated at a point x = x0 is written as

(fn)′(x0) =

(
d

dx
fn(x)

)
|x=x0 . (2.6)

The left-hand side of equation (2.6) is a shorthand form for the right-hand
side that tells us to do the following when calculating the derivative. First,
construct the nth composite function of f , call it fn. Second, compute the
derivative of fn. And third, as the bar notation (|x=x0) tells us, evaluate this
derivative at x = x0. For instance, if f(x) = x2, n = 2, and x0 = 3, then

(f 2)′(3) =

(
d

dx
f 2(x)

)
|x=3,

=
d

dx
(f ◦ f)(x) =

d

dx
(f(x2)) =

d

dx
(x4),

= 4x3|x=3 = 108.

Notice that we suppressed the bar notation during the intermediate steps.
This is common practice when the meaning is clear from context. You may
sometimes see the even shorter notation for evaluating the derivative at a
point x0 as

fn
′
(x0) =

(
d

dx
fn(x)

)
|x=x0 , (2.7)

which is sufficiently terse to be legitimately confusing.
An examination of the dynamics of the quadratic map provides an ex-

cellent introduction to the rich behavior that can exist in nonlinear systems.
To find the itinerary of an individual orbit all we need is a pocket calculator
or a computer program something like the following C program.1

1A nice, brief introduction to the C programming language sufficient for most of the
programs in this book is Chapter 1: A tutorial introduction, of B. W. Kernighan and D.
M. Ritchie, The C Programming Language (Prentice-Hall: Englewood Cliffs, NJ, 1978),
pp. 5–31.
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/* quadratic.c: calculate an orbit for the quadratic map

input: l x0

output: 1 x1

2 x2

3 x3

etc.

∗/
#include <stdio.h>

main()

{
int n;

float lambda, x zero, x n;

printf("Enter: lambda x zero\n"); scanf("%f %f", &lambda, &x zero);

x n = x zero;

for(n = 1; n <= 100; ++n) {
x n = lambda * x n * (1 - x n); /∗ the quadratic map ∗/
printf("%d %f\n", n, x n);

}
}

2.3 Graphical Method

In addition to doing a calculation, there is a graphical procedure for finding
the itinerary of an orbit. This graphical method is illustrated in Figure 2.4 for
the same parameter value and initial condition used in the previous example
and is based on the following observation. To find xn+1 from xn we note that
xn+1 = f(xn); graphically, to get f(xn) we start at xn on the horizontal axis
and move vertically until we hit the graph y = f(x). Now this current value
of y must be transferred from the vertical axis back to the horizontal axis so
that it can be used as the next seed for the quadratic map. The simplest way
to transfer the y axis to the x axis is by folding the x–y plane through the
diagonal line y = x since points on the vertical axis are identical to points on
the horizontal axis on this line. This insight suggests the following graphical
recipe for finding the orbit for some initial condition x0:

1. Start at x0 on the horizontal axis.

2. Move vertically up until you hit the graph f(x).

3. Move horizontally until you hit the diagonal line y = x.
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Figure 2.4: Graphical method for iterating the quadratic map. (Generated
by the Quadratic Map program.)

4. Move vertically—up or down—until you hit the graph f(x).

5. Repeat steps 3 and 4 to generate new points.

For the example in Figure 2.4 it is clear that the orbit is converging to the
point 1/2. This same graphical technique is also illustrated in Figure 2.5 for
the more complicated orbit that arises when λ = 3.8.

We can also ask again about the fate of a whole collection of initial con-
ditions, instead of just a single orbit. In particular we can consider the
transformation of all initial conditions on the unit interval,

I = {x|x ∈ [0, 1]} = [0, 1], (2.8)

subject to the quadratic map, equation (2.5). As shown in Figure 2.6, the
quadratic map for λ = 4 can be viewed as transforming the unit interval
in two steps. The first step is a stretch, which takes the interval to twice
its length, fstretch : [0, 1] −→ [0, 2]. The second step is a fold , which takes
the lower half of the interval to the whole unit interval, and the upper half
of the interval also to the whole unit interval with its direction reversed,
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Figure 2.5: Graphical iteration of the quadratic map for a chaotic orbit.
(Generated by the Quadratic Map program.)

stretch

fold

1

0 1/2 1

Figure 2.6: Stretching and folding in the quadratic map (λ = 4).
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Figure 2.7: Rubber sheet model of stretching and folding in the quadratic
map.

ffold : [0, 1] −→ [0, 1] and [1, 2] −→ [1, 0]. These two operations of stretching
and folding are the key geometric constructions leading to the complex be-
havior found in nonlinear systems. The stretching operation tends to quickly
separate nearby points, while the folding operation ensures that all points
will remain bounded in some region of phase space.

Another way to visualize this stretching and folding process is presented
in Figure 2.7. Imagine taking a rubber sheet and dividing it into two sections
by slicing it down the middle. The sheet separates into two branches at the
gap (the upper part of the sheet where the slice begins); the left branch is flat,
while the right branch has a half-twist in it. These two branches are rejoined,
or glued together again, at the branch line seen at the bottom of the diagram.
Notice that the left branch passes behind the right branch. Next, imagine
that there is a simple rule, indicated by the wide arrows in the diagram, that
smoothly carries points at the top of the sheet to points at the bottom. In
particular, the unit interval at the top of the sheet gets stretched and folded
so that it ends up as the bent line segment indicated at the bottom of the
sheet. At this point Figure 2.7 is just a visual aid illustrating how stretching
and folding can occur in a dynamical system. However, observe that the
resulting folded line segment resembles a horseshoe. These horseshoes were
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x 0 x xx 0

m > 1

m < 1

(a) (b)
f (x) f (x)

Figure 2.8: Graphical iteration of the linear map.

first identified and analyzed as recurring elements in nonlinear systems by the
mathematician Steve Smale. We will say much more about these horseshoes,
and make more extensive use of such diagrams, in section 4.8 and Chapter 5
when we try to unravel the topological organization of strange sets.

2.4 Fixed Points

A simple linear map f : R −→ R of the real line R to itself is given by
f(x) = mx. Unlike the quadratic map, this linear map can have stretching,
but no folding. The graphical analysis shown in Figure 2.8 quickly convinces
us that for x0 > 0 only three possible asymptotic states exist, namely:

limn→∞ xn = +∞, if m > 1,
limn→∞ xn = 0, if m < 1, and
xn+1 = xn, for m = 1.

The period one points of a map (points that map to themselves after one
iteration) are also called fixed points. If m < 1, then the origin is an attracting
fixed point or sink since nearby points tend to 0 (see Figure 2.8(a)). If
m > 1, then the origin is still a fixed point. However, because points near
the origin always tend away from it, the origin is called a repelling fixed point
or source (see Figure 2.8(b)). Lastly, if m = 1, then all initial conditions lead
immediately to a period one orbit defined by y = x. All the periodic orbits
that lie on this line have neutral stability.

The story for the more complicated function f(x) = x2 is not much
different. For this parabolic map a simple graphical analysis shows that as
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x 0 x xx 0

m > 1

m < 1

(a) (b)
f (x) f (x)

Figure 2.9: The local stability of a fixed point is determined by the slope of
f at x∗.

n→∞,
fn(x)→∞, if |x| > 1,
fn(x)→ 0, if |x| < 1,
fn(1) = 1, for all n,
fn(−1) = 1, if n ≥ 1.

In this case all initial conditions tend to either ∞ or 0, except for the point
x = 1, which is a repelling fixed point since all nearby orbits move away
from 1. The special initial condition x0 = −1 is said to be eventually fixed
because, although it is not a fixed point itself, it goes exactly to a fixed point
in a finite number of iterations. The sticking solutions of the bouncing ball
system are examples of orbits that could be called eventually periodic since
they arrive at a periodic orbit in a finite time.

Graphical analysis also allows us to see why certain fixed points are locally
attracting and others repelling. As Figure 2.9 illustrates, the local stability of
a fixed point is determined by the slope of the curve passing through the fixed
point. If the absolute value of the slope is less than one—or equivalently, if
the absolute value of the derivative at the fixed point is less than one—then
the fixed point is locally attracting. Alternatively, if the absolute value of
the derivative at the fixed point is greater then one, then the fixed point is
repelling.

An orbit of a map is periodic if it repeats itself after a finite number of
iterations. For instance, a point on a period two orbit has the property that
f 2(x0) = x0, and a period three point satisfies f 3(x0) = x0, that is, it repeats
itself after three iterations. In general a period n point repeats itself after n
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iterations and is a solution to the equation

fn(x0) = x0. (2.9)

In other words, a period n point is a fixed point of the nth composite function
of f. Accordingly, the stability of this fixed point and of the corresponding
period n orbit is determined by the derivative of fn(x0).

Our discussion about the fixed points of a map is summarized in the
following two definitions concerning fixed points, periodic points, and their
stability [2]. A more rigorous account of periodic orbits and their stability
in presented in section 4.5.

Definition. Let f : R −→ R. The point x0 is a fixed point for f if f(x0) =
x0. The point x0 is a periodic point of period n for f if fn(x0) = x0 but
f i(x0) 6= x0 for 0 < i < n. The point x0 is eventually periodic if fm(x0) =
fm+n(x0), but x0 is not itself periodic.

Definition. A periodic point x0 of period n is attracting if |(fn)′(x0)| < 1.
The prime denotes differentiation with respect to x. The periodic point x0

is repelling if |(fn)′(x0)| > 1. The point x0 is neutral if |(fn)′(x0)| = 1.

We have just shown that the dynamics of the linear map and the parabolic
map are easy to understand. By combining these two maps we arrive at the
quadratic map, which exhibits complex dynamics. The quadratic map is
then, in a way, the simplest map exhibiting nontrivial nonlinear behavior.

2.5 Periodic Orbits

From our definition of a period n point, namely,

fn(x0) = x0,

we see that finding a period n orbit for the quadratic map requires finding
the zeros for a polynomial of order 2n. For instance, the period one orbits
are given by the roots of

f(x) = λx(1− x) = x, (2.10)

which is a polynomial of order 2. The period two orbits are found by evalu-
ating

f 2(x) = f(f(x))
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= f [λx(1− x)]

= λ[λx(1− x)] (1− [λx(1− x)]) = x, (2.11)

which is a polynomial of order 4. Similarly, the period three orbits are given
by solving a polynomial of order 8, and so on. Unfortunately, except for
small n, solving such high-order polynomials is beyond the means of both
mortals and machines.

Furthermore, our definition for the stability of an orbit says that once
we find a point of a period n orbit, call it x∗, we next need to evaluate the
derivative of our polynomial at that point. For instance, the stability of a
period one orbit is determined by evaluating

f ′(x∗) =
d

dx
λx(1− x)|x=x∗ = λ(1− 2x∗). (2.12)

Similarly, the stability of a period two orbit is determined from the equation

(f 2)′(x∗) =
d

dx
λ2x(1− x)(1− λx+ λx2)|x=x∗

= λ2(1− 2x∗)(1− 2λx∗ + 2λx∗2). (2.13)

Again, these stability polynomials quickly become too cumbersome to ana-
lyze as n increases.

Any periodic orbit of period n will have n points in its orbit. We will
generally label this collection of points by the subscript i = 0, 1, 2, . . . , n− 1,
so that

x∗ = {x∗0, x∗1, x∗2, . . . , xi, . . . , x∗n−2, x
∗
n−1}, (2.14)

where i labels an individual point of the orbit. The boldface notation indi-
cates that x∗ is an n-tuple of real numbers. Another complication will arise:
in some cases it is useful to write our indexing subscript in some base other
than ten. For instance, it is useful to work in base two when studying one-
humped maps. In general, it is convenient to work in base n + 1 where n is
the number of critical points of the map. It will be advantageous to label the
orbits in the quadratic map according to some binary scheme.

Lastly, the question arises: which element of the periodic orbit do we
use in evaluating the stability of an orbit? In Problem 2.13 we show that
all periodic points in a periodic orbit give the same value for the stability
function, (fn)′ [3]. So we can use any point in the periodic sequence. This
fact is good to keep in mind when evaluating the stability of an orbit.



2.5. PERIODIC ORBITS 67

2.5.1 Graphical Method

Although the algebra is hopeless, the geometric interpretation for the location
of periodic orbits is straightforward. As we see in Figure 2.10(a), the location
of the period one orbits is given by the intersection of the graphs y = f(x)
and y = x. The latter equation is simply a straight line passing through
the origin with slope +1. In the case of the quadratic map, fλ is an inverted
parabola also passing through the origin. These two graphs can intersect at
two distinct points, giving rise to two distinct period one orbits. One of these
orbits is always at the origin and the other’s exact location depends on the
height of the quadratic map, that is, the specific value of λ in the quadratic
map.

To find the location of the period two orbit we need to plot y = x and
f 2(x). The graph shown in Figure 2.10(b) shows three points of intersection
in addition to the origin. The middle point (the open circle) is the period one
orbit found above. The two remaining intersection points are the two points
belonging to a single period two orbit. A dashed line indicates where these
period two points sit on the original quadratic map (the two dark circles), and
the simple graphical construction of section 2.3 should convince the reader
that this is, in fact, a period two orbit.

The story for higher-order orbits is the same (see Fig. 2.11(a) and (b)).
The graph of the third iterate, y = f 3(x), shows eight points of intersection
with the straight line. Not all eight intersection points are elements of a
period three orbit. Two of these points are just the pair of period one orbits.
The remaining six points consist of a pair of period three orbits. The graph
for the period four orbits shows sixteen points of intersection. Again, not
all the intersection points are part of a period four orbit. Two intersection
points are from the pair of period one orbits, and two are from the period two
orbit. That leaves twelve remaining points of intersection, each of which is
part of some period four orbit. Since there are twelve remaining points, there
must be three (12 points / 4 points per orbit) distinct period four orbits.

The number of intersection points of fnλ depends on λ. If 1 < λ < 3 and
n ≥ 2, there are only two intersection points: the two distinct period one
orbits. In dramatic contrast, if λ > 4, then it is easy to show that there will
be 2n intersection points, and counting arguments like those just illustrated
allow us to determine how many of these intersection points are new periodic
points of period n [4]. One fundamental question is: how can a system
as simple as the quadratic map change from having only two to having an
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Figure 2.10: First and second iterates of the quadratic map (λ = 3.98).
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Figure 2.11: Third and fourth iterates of the quadratic map (λ = 3.98).
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infinite number of periodic orbits? Like many aspects of the quadratic map,
the answers are surprising. Before we tackle this problem, let’s resume our
analysis of the period one and period two orbits.

2.5.2 Period One Orbits

Solving equation (2.10) for x we find two period one solutions,2

x∗0 = 0 (2.15)

and

x∗1 = 1− 1

λ
. (2.16)

The first period one orbit, labeled x∗0, always remains at the origin, while the
location of the second period one orbit, x∗1, depends on λ. From equation
(2.12), the stability of each of these orbits is determined from

f ′(x∗0) = λ (2.17)

and
f ′(x∗1) = λ[1− 2(1− 1/λ)] = 2− λ. (2.18)

Clearly, if 0 < λ < 1 then |f ′(x∗0)| < 1 and |f ′(x∗1)| > 1, so the period one
orbit x∗0 is stable and x∗1 is unstable. At λ = 1 these two orbits collide and
exchange stability so that for 1 < λ < 3, x∗0 is unstable and x∗1 is stable. For
λ > 3, both orbits are unstable.

2.5.3 Period Two Orbit

The location of the period two orbit is found from equation (2.11),

x∗10 =
1

2λ

(
1 + λ+

√
λ2 − 2λ− 3

)
(2.19)

2The subscript n to x∗n is labeling two distinct periodic orbits. This is potentially
confusing notation since we previously reserved this subscript to label different points in
the same periodic orbit. In practice this notation will not be ambiguous since this label
will be a binary index, the length of which determines the period of the orbit. Different
cyclic permutations of this binary index will correspond to different points on the same
orbit. A noncyclic permutation must then be a point on a distinct period n orbit. The
rules for this binary labeling scheme are spelled out in section 2.12.
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Figure 2.12: Stability of period two orbit.

and

x∗01 =
1

2λ

(
1 + λ−

√
λ2 − 2λ− 3

)
. (2.20)

These two points belong to the period two orbit. We label the left point
x∗01 and the right point x∗10. Note that the location of the period two orbit
produces complex numbers for λ < 3. This indicates that the period two
orbit exists only for λ ≥ 3, which is obvious geometrically since y = f 2

λ(x)
begins a new intersection with the straight line y = x at λ = 3.

The stability of this period two orbit is determined by rewriting equation
(2.13) as

(f 2)′(x∗) = λ2(1− 2x∗10)(1− 2x∗01), (2.21)

where we used equations (2.19) and (2.20) for x∗10 and x∗01. A plot of the
stability for the period two orbit is presented in Figure 2.12. A close exami-
nation of this figure shows that, for 3 < λ < 3.45, the absolute value of the
stability function is less than one; that is, the period two orbit is stable. For
λ > 3.45, the period two orbit is unstable.

The range in λ for which the period two orbit is stable can actually be
obtained analytically. The period two orbit is stable as long as

−1 < (f 2)′(x∗) < +1. (2.22)

The period two orbit first becomes stable when (f 2)′(x∗) = +1 which occurs
at λ = 3, and it loses stability at (f 2)′(x∗) = −1 which the reader can verify
takes place at λ = 1 +

√
6 ≈ 3.449 (see Prob. 2.17).
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Figure 2.13: Orbit stability diagram.

2.5.4 Stability Diagram

The location and stability of the two period one orbits and the single period
two orbit are summarized in the orbit stability diagram shown in Figure 2.13.
The vertical axis shows the location of the periodic orbit x∗n as a function
of the parameter λ. Stable orbits are denoted by solid lines, unstable orbits
by dashed lines. Two “bifurcation points” are evident in the diagram. The
first occurs when the two period one orbits collide and exchange stability at
λ = 1. The second occurs with the birth of a stable period two orbit from a
stable period one orbit at λ = 3.

2.6 Bifurcation Diagram

To explore the dynamics of the quadratic map further, we can choose an
initial condition x0 and a parameter value λ, and then iterate the map using
the program in section 2.2 to see where the orbit goes. We would notice a
few general results if we play this game long enough.

First, if λ ≥ 1 and x0 6∈ [0, 1], then the graphical analysis of section
2.5.1 shows us that all points not in the unit interval will run off to infinity.
Further, if 0 < λ < 1, then the same type of graphical analysis shows that
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the dynamics of the quadratic map are simple: there is only one attracting
fixed point and one repelling fixed point. These fixed points are the period
one orbits calculated in the previous section.

Second, the initial condition we pick is usually not important in deter-
mining the attractor, although the value of λ is very important. We seem
to end up with the same attractor no matter what x0 ∈ (0, 1) we pick.3

The quadratic map usually has one, and only one, attractor, whereas most
nonlinear systems can have more than one attractor [5]. The bouncing ball
system, for example, can have two or more coexisting attractors.

Third, as we will show in section 2.11, almost all initial conditions run
off to infinity for all λ > 4. There are no attractors in this case.

Therefore, when studying the quadratic map, it will usually suffice to pick
a single initial condition from the unit interval. If fn(x0) ever leaves the unit
interval, then it will run off to infinity and never return (provided λ ≥ 1).
Further, when studying attractors we can limit our attention to values of
λ ∈ [1, 4]. If 0 < λ < 1 then the only attractor is a stable fixed point at zero,
and if λ > 4 there are no attractors.4

For all these reasons, a bifurcation diagram is a particularly powerful
method for studying the attractors in the quadratic map. Recall that a
bifurcation diagram is a plot of an asymptotic solution on the vertical axis
and a control parameter on the horizontal axis. To construct a bifurcation
diagram for the quadratic map only requires some simple modifications of
our previous program for iterating the quadratic map. As seen below, the
new algorithm consists of the following steps:

1. Set λ = 1, and x0 = 0.1 (almost any x0 will do);

2. Iterate the quadratic map 200 times to remove the transient solution,
and then print λ and xn for the next 200 points, which are presumably
part of the attractor;

3. Increment λ by a small amount, and set x0 to the last value of xn;

4. Repeat steps 2 and 3 until λ = 4.

3Some initial conditions do not converge to the attractor. For instance, any x belonging
to an unstable periodic orbit will not converge to the attractor. Unstable orbits are, by
definition, not attractors, so that almost any orbit near an unstable periodic orbit will
diverge from it and head toward some attractor.

4Technically, the phase space of the quadratic map, R, can be compactified thereby
making the point at infinity a valid attractor.
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A C program implementing this algorithm is as follows.

/* bifquad.c: calculate bifurcation diagram for the quadratic map.

input: (none)

output: l1 x200

l1 x201

etc.,

l2 x200

l2 x201

etc.

∗/
#include <stdio.h>

main()

{
int n;

float lambda, x n;

x n = 0.1;

for(lambda = 1; lambda <= 4; lambda += 0.01) {
for(n = 0; n <= 400; ++n) {

x n = lambda * x n * (1 - x n);

if(n > 199)

printf("%f %f\n", lambda, x n);

}
}

}

When plotted in Figure 2.14 (for 3.4 ≤ λ ≤ 4), the output of our simple
program produces a bifurcation diagram of stunning complexity. Above the
diagram we provide comments on the type of attractor observed, and on the
horizontal axis significant parameter values are indicated. This bifurcation
diagram shows many qualitative similarities to bifurcation diagrams from
the bouncing ball system (compare to Figure 1.16). Both exhibit the period
doubling route to chaos. For the quadratic map an infinite number of period
doublings occur for 1 < λ < 3.57. Both also show periodic windows (white
bands) within the chaotic regions. For the quadratic map a period three
window begins at λ ≈ 3.83 and a period five window begins at λ ≈ 3.74.
Looking closely at the periodic windows we see that each branch of these
periodic windows also undergoes a period doubling cascade.

Bifurcation diagrams showing only attracting solutions can be somewhat
misleading. Much of the structure in the bifurcation diagram can only be
understood by keeping track of both the stable attracting solutions and the
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Figure 2.14: Bifurcation diagram for the quadratic map.

unstable repelling solutions, as we did in constructing the orbit stability
diagram (Figure 2.13). Just as there are stable periodic orbits and chaotic
attractors, there are also unstable periodic orbits and chaotic repellers. In
Figure 2.13, for instance, we indicate the existence of an unstable period one
orbit by the dashed line beginning at the first period doubling bifurcation.
As we show in section 2.7.2, this unstable period one orbit is simply the
continuation of the stable period one orbit that exists before this period
doubling bifurcation (see Figures 2.14 and 2.22).

2.7 Local Bifurcation Theory

Poincaré used the term bifurcation to describe the “splitting” of asymptotic
states of a dynamical system. Figure 2.14 shows a bifurcation diagram for the
quadratic map (see Plate 2 for a color version of a quadratic map bifurcation
diagram). As we examine Figure 2.14, we see that several different types of
changes can occur. We would like to analyze and classify these bifurcations.
At a bifurcation value, the qualitative nature of the solution changes. It can
change to, or from, an equilibrium, periodic, or chaotic state. It can change
from one type of periodic state to another, or from one type of chaotic state
to another.
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For instance, in the bouncing ball system we are initially in an equilibrium
state, with the ball moving in unison with the table. As we turn up the table
amplitude we first find sticking solutions. As we increase the amplitude
further, we find a critical parameter value at which the ball switches from
the sticking behavior to bouncing in a period one orbit. Such a change
from an equilibrium state to a periodic state is an example of a saddle-node
bifurcation. As we further turn up the table amplitude, we find that there
is a second critical table amplitude at which the ball switches from a period
one to a period two orbit. The analogous period doubling bifurcation in
the quadratic map occurs at λ = 3. Both the saddle-node and the period
doubling bifurcations are examples of local bifurcations. At their birth (or
death) all the orbits participating are localized in phase space; that is, they
all start out close together. Global bifurcations can also occur, although
typically these are more difficult to analyze since they can give birth to an
infinite number of periodic orbits. In this section we analyze three simple
types of local bifurcations that commonly occur in nonlinear systems. These
are the saddle-node, period doubling, and transcritical bifurcations [6].

2.7.1 Saddle-node

In a saddle-node bifurcation a pair of periodic orbits are created “out of
nothing.” One of the periodic orbits is always unstable (the saddle), while
the other periodic orbit is always stable (the node). The basic bifurcation
diagram for a saddle-node bifurcation looks like that shown in Figure 2.15.
The saddle-node bifurcation is fundamental to the study of nonlinear systems
since it is one of the most basic processes by which periodic orbits are created.

A saddle-node bifurcation is also referred to as a tangent bifurcation be-
cause of the mechanism by which the orbits are born. Consider the nth
composite of some mapping function fλ which is near to a tangency with the
line y = x. Let λsn be the value at which a saddle-node bifurcation occurs.
Notice in Figure 2.16 that fnλ is tangent to the line y = x at λsn. For λ < λsn,
no period n orbits exist in this neighborhood, but for λ > λsn two orbits are
born. The local stability of a point of a map is determined by (fnλ )′. Since
fnλ (x) is tangent to y = x at a bifurcation, it follows that at λsn,5

(fnλsn)′(x∗) = +1. (2.23)

5See reference [5] for more details.
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Figure 2.15: Saddle-node bifurcation diagram.

Figure 2.16: Tangency mechanism for a saddle-node bifurcation.
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Figure 2.17: A pair of period three orbits created by a tangent bifurcation
in the quadratic map (shown with the unstable period one orbits).

Tangent bifurcations abound in the quadratic map. For instance, a pair
of period three orbits are created by a tangent bifurcation in the quadratic
map when λ = 1 +

√
8 ≈ 3.828. As illustrated in Figure 2.17 for λ > 3.83,

there are eight points of intersection. Two of the intersection points belong
to the period one orbits, while the remaining six make up a pair of period
three orbits. Near to tangency, the absolute value of the slope at three of
these points is greater than one—this is the unstable period three orbit.
The remaining three points form the stable periodic orbit. The birth of this
stable period three orbit is clearly visible as the period three window in our
numerically constructed bifurcation diagram of the quadratic map, Figure
2.14. In fact, all the odd-period orbits of the quadratic map are created by
some sort of tangent bifurcation.

2.7.2 Period Doubling

Period doubling bifurcations are evident when we consider an even number
of compositions of the quadratic map. In Figure 2.18 we show the second
iteration of the quadratic map near a tangency. Below the period doubling
bifurcation, a single stable period one orbit exists. As λ is increased, the pe-
riod one orbit becomes unstable, and a stable period two orbit is born. This
information is summarized in the bifurcation diagram presented in Figure
2.19. Let λpd be the parameter value at which the period doubling bifurca-
tion occurs. At this parameter value the period one and the nascent period
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Figure 2.18: Second iterate of the quadratic map near a tangency.

Figure 2.19: Period doubling (flip) bifurcation diagram.
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Figure 2.20: Tangency mechanism near a period doubling (flip) bifurcation.

two orbit coincide. As illustrated in Figure 2.18, f 2
λpd

(x∗) is tangent to y = x

so that (f 2
λpd

)′(x∗) = +1. However, (fnλpd)′(x∗) = −1; that is, at a period
doubling bifurcation the function determining the local stability of the peri-
odic orbit is always −1. Figure 2.20 shows f ′λ just after period doubling. In
general, for a period n to period 2n bifurcation, (f 2n

λpd
)′(x∗) = +1 and

(fnλpd)′(x∗) = −1. (2.24)

A period doubling bifurcation is also known as a flip bifurcation. In the
period one to period two bifurcation, the period two orbit flips from side to
side about its period one parent orbit. This is because f ′λpd(x∗) = −1 (see

Prob. 2.14). The first flip bifurcation in the quadratic map occurs at λ = 3
and was analyzed in sections 2.5.2–2.5.4, where we considered the location
and stability of the period one and period two orbits in the quadratic map.

2.7.3 Transcritical

The last bifurcation we illustrate with the quadratic map is a transcriti-
cal bifurcation, in which an unstable and stable periodic orbit collide and
exchange stability. A transcritical bifurcation occurs in the quadratic map
when λ = λtc = 1. As in a saddle-node bifurcation, f ′λtc = +1 at a transcrit-
ical bifurcation. However, a transcritical bifurcation also has an additional
constraint not found in a saddle-node bifurcation, namely,

fλtc(x
∗) = 0. (2.25)
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For the quadratic map this fixed point is just the period one orbit at the
origin, x∗0 = 0, found from equation (2.10).

A summary of these three types of bifurcations is presented in Figure
2.21. Other types of local bifurcations are possible; a more complete theory
for both maps and flows is given in reference [7].

2.8 Period Doubling Ad Infinitum

A view of the bifurcation diagram for the quadratic map for λ between 2.95
and 4.0 is presented in Figure 2.22. This diagram reveals not one, but rather
an infinite number of period doubling bifurcations. As λ is increased a period
two orbit becomes a period four orbit, and this in turn becomes a period eight
orbit, and so on. This sequence of period doubling bifurcations is known as
a period doubling cascade. This process appears to converge at a finite value
of λ around 3.57, beyond which a nonperiodic motion appears to exist. This
period doubling cascade often occurs in nonlinear systems. For instance, a
similar period doubling cascade occurs in the bouncing ball system (Figure
1.16). The period doubling route is one common way, but certainly not the
only way, by which a nonlinear system can progress from a simple behavior
(one or a few periodic orbits) to a complex behavior (chaotic motion and the
existence of an infinity of unstable periodic orbits).

In 1976, Feigenbaum began to wonder about this period doubling cascade.
He started playing some numerical games with the quadratic map using his
HP65 hand-held calculator. His wondering soon led to a remarkable dis-
covery. At the time, Feigenbaum knew that this period doubling cascade
occurred in one-dimensional maps of the unit interval. He also had some ev-
idence that it occurred in simple systems of nonlinear differential equations
that model, for instance, the motion of a forced pendulum. In addition to
looking at the qualitative similarities between these systems, he began to ask
if there might be some quantitative similarity—that is, some numbers that
might be the same in all these different systems exhibiting period doubling.
If these numbers could be found, they would be “universal” in the sense that
they would not depend on the specific details of the system.

Feigenbaum was inspired in his search, in part, by a very successful theory
of universal numbers for second-order phase transitions in physics.6 A phase

6Feigenbaum introduced the renormalization group approach of critical phenomena to
the study of nonlinear dynamical systems. Additional early contributions to these ideas
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Figure 2.22: Bifurcation diagram showing period doubling in the quadratic
map.

transition takes place in a system when a change of state occurs. During the
1970s it was discovered that there were quantitative measurements charac-
terizing phase transitions that did not depend on the details of the substance
used. Moreover, these universal numbers in the theory of phase transitions
were successfully measured in countless experiments throughout the world.
Feigenbaum wondered if there might be some similar universality theory for
dissipative nonlinear systems [8].

By definition, such universal numbers are dimensionless; the specific me-
chanical details of the system must be scaled out of the problem. Feigenbaum
began his search for universal numbers by examining the period doubling cas-
cade in the quadratic map. He recorded, with the help of his calculator, the
values of λ at which the first few period doubling bifurcations occur. We

came from Cvitanović, and also Collet, Coullet, Eckmann, Lanford, and Tresser. The
geometric convergence of the quadratic map was noted as early as 1958 by Myrberg (see
C. Mira, Chaotic dynamics (World Scientific: New Jersey, 1987)), and also by Grossmann
and Thomae in 1977.
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λ1 = 3.0 λ5 = 3.568759 . . .
λ2 = 3.449490 . . . λ6 = 3.569692 . . .
λ3 = 3.544090 . . . λ7 = 3.569891 . . .
λ4 = 3.564407 . . . λ8 = 3.569934 . . .

Table 2.1: Period doubling bifurcation values for the quadratic map.

have listed the first eight values (orbits up to period 28) in Table 2.1. While
staring at this sequence of bifurcation points, Feigenbaum was immediately
struck by the rapid convergence of this series. Indeed, he recognized that
the convergence appears to follow that of a geometric series , similar to the
one we saw in equation (1.35) when we studied the sticking solutions of the
bouncing ball.

Let λn be the value of the nth period doubling bifurcation, and define
λ∞ as limn→∞ λn. Based on his inspiration, Feigenbaum guessed that this
sequence obeys a geometric convergence,7; that is,

λ∞ − λn = c/δn (n→∞), (2.26)

where c is a constant, and δ is a constant greater than one. Using equation
(2.26) and a little algebra it follows that if we define δ by

δ = lim
n→∞

λn − λn−1

λn+1 − λn
, (2.27)

then δ is a dimensionless number characterizing the rate of convergence of
the period doubling cascade.

The three constants in this discussion have been calculated as

λ∞ = 3.5699456..., δ = 4.669202..., and c = 2.637.... (2.28)

The constant δ is now called “Feigenbaum’s delta,” because Feigenbaum
went on to show that this number is universal in that it arises in a wide
class of dissipative nonlinear systems that are close to the single-humped
map. This number has been measured in experiments with chicken hearts,

7For a review of geometric series see any introductory calculus text, such as C. Edwards
and D. Penny, Calculus and analytic geometry (Prentice-Hall: Englewood Cliffs, NJ, 1982),
p. 549.
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electronic circuits, lasers, chemical reactions, and liquids in their approach
to a turbulent state, as well as the bouncing ball system [9].

To experimentally estimate Feigenbaum’s delta all one needs to do is
measure the parameter values of the first few period doublings, and then
substitute these numbers into equation (2.27). The geometric convergence
of δ is a mixed blessing for the experimentalist. In practice it means that δn
converges very rapidly to δ∞, so that only the first few λn’s are needed to
get a good estimate of Feigenbaum’s delta. It also means that only the first
few δn’s can be experimentally measured with any accuracy, since the higher
δn’s bunch up too quickly to δ∞. To continue with more technical details of
this story, see Rasband’s account of renormalization theory for the quadratic
map [6].

Feigenbaum’s result is remarkable in two respects. Mathematically, he
discovered a simple universal property occurring in a wide class of dynamical
systems. Feigenbaum’s discovery is so simple and fundamental that it could
have been made in 1930, or in 1830 for that matter. Still, he had some
help from his calculator. It took a lot of numerical work to develop the
intuition that led Feigenbaum to his discovery, and it seems unlikely that the
computational work needed would have occurred without help from some
sort of computational device such as a calculator or computer. Physically,
Feigenbaum’s result is remarkable because it points the way toward a theory
of nonlinear systems in which complicated differential equations, which even
the fastest computers cannot solve, are replaced by simple models—such
as the quadratic map—which capture the essence of a nonlinear problem,
including its solution. The latter part of this story is still ongoing, and there
are surely other gems to be discovered with some inspiration, perspiration,
and maybe even a workstation.

2.9 Sarkovskii’s Theorem

In the previous section we saw that for 3 < λ < 3.57 an infinite number of
periodic orbits with period 2n are born in the quadratic map. In a period
doubling cascade we know the sequence in which these periodic orbits are
born. A period one orbit is born first, followed by a period two orbit, a period
four orbit, a period eight orbit, and so on. For higher values of λ, additional
periodic orbits come into existence. For instance, a period three orbit is born
when λ = 1 +

√
8 ≈ 3.828, as we showed in section 2.7.1. In this section,
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we will explicitly show that all possible periodic orbits exist for λ ≥ 4. One
of the goals of bifurcation theory is to understand the different mechanisms
for the birth and death of these periodic orbits. Pinning down all the details
of an individual problem is usually very difficult, often impossible. However,
there is one qualitative result due to Sarkovskii of great beauty that applies
to any continuous mapping of the real line to itself.

The positive integers are usually listed in increasing order 1, 2, 3, 4, . . . .
However, let us consider an alternative enumeration that reflects the order
in which a sequence of period n orbits is created. For instance, we might list
the sequence of integers of the form 2n as

2n . · · · . 24 . 23 . 22 . 21 . 20,

where the symbol . means “implies.” In the quadratic map system this
ordering says that the existence of a period 2n orbit implies the existence
of all periodic orbits of period 2i for i < n. We saw this ordering in the
period doubling cascade. A period eight orbit thus implies the existence of
both period four and period two orbits. This ordering diagram says nothing
about the stability of any of these orbits, nor does it tell us how many periodic
orbits there are of any given period.

Consider the ordering of all the integers given by

3 . 5 . 7 . 9 . . . . . 2 · 3 . 2 · 5 . 2 · 7 . 2 · 9 . . . .
.2n · 3 . 2n · 5 . 2n · 7 . 2n · 9 . . . .

.2n . . . . . 16 . 8 . 4 . 2 . 1, (2.29)

with n→∞. Sarkovskii’s theorem says that the ordering found in equation
(2.29) holds, in the sense of the 2n ordering above, for any continuous map
of the real line R to itself—the existence of a period i orbit implies the
existence of all periodic orbits of period j where j follows i in the ordering.
Sarkovskii’s theorem is remarkable for its lack of hypotheses (it assumes only
that f is continuous). It is of great help in understanding the structure of
one-dimensional maps.

In particular, this ordering holds for the quadratic map. For instance, the
existence of a period seven orbit implies the existence of all periodic orbits
except a period five and a period three orbit. And the existence of a single
period three orbit implies the existence of periodic orbits of all possible pe-
riods for the one-dimensional map. Sarkovskii’s theorem forces the existence
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of period doubling cascades in one-dimensional maps. It is also the basis
of the famous statement of Li and Yorke that “period three implies chaos,”
where chaos loosely means the existence of all possible periodic orbits.8 An
elementary proof of Sarkovskii’s theorem, as well as a fuller mathematical
treatment of maps as dynamical systems, is given by Devaney in his book
An Introduction to Chaotic Dynamical Systems [10].

Sarkovskii’s theorem holds only for mappings of the real line to itself.
It does not hold in the bouncing ball system because it is a map in two
dimensions. It does not hold for mappings of the circle, S1, to itself. Still,
Sarkovskii’s theorem is a lovely result, and it does point the way to what
might be called “qualitative universality,” that is, general statements, usually
topological in nature, that are expected to hold for a large class of dynamical
systems.

2.10 Sensitive Dependence

In section 1.4.5 we saw how a measurement of finite precision in the bouncing
ball system has little predictive value in the long term. Such behavior is
typical of motion on a chaotic attractor. We called such behavior sensitive
dependence on initial conditions. For the special value λ = 4 in the quadratic
map we can analyze this behavior in some detail.

Consider the transformation xn = sin2(πθn) applied to the quadratic map
when λ = 4. Making use of the identity

sin 2α = 2 sinα cosα,

we find

xn+1 = 4xn(1− xn) =⇒
sin2(πθn+1) = 4 sin2(πθn)(1− sin2(πθn))

= 4 sin2(πθn) cos2(πθn)

= (2 sin(πθn) cos(πθn))2

8In section 4.6.2 we show there exists a close connection between the existence of an
infinity of periodic orbits and the existence of a chaotic invariant set, not necessarily an
attractor. The term “chaos” in nonlinear dynamics is due to Li and Yorke, although the
current usage differs somewhat from their original definition (see T. Y. Li and J. A. Yorke,
Period three implies chaos, Am. Math. Monthly 82, 985 (1975)).
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= (sin(2πθn))2 =⇒
θn+1 = 2θn mod 1. (2.30)

This last linear difference equation has the explicit solution

θn = 2nθ0 mod 1. (2.31)

Sensitive dependence on initial conditions is easy to see in this example
when we express the initial condition as a binary number,

θ0 =
b0

2
+
b1

4
+
b2

8
+ · · · =

∞∑
i=0

bi
2i+1

, bi ∈ {0, 1}. (2.32)

Now the action of equation (2.31) on an initial condition θ0 is a shift map. At
each iteration we multiply the previous iterate by two (10 in binary), which
is a left shift, and then apply the mod function, which erases the integer part.
For example, if θ0 = 0.10110101 . . . in binary, then

θ0 = 0.10110101 . . .

θ1 = (10 · 0.10110101 . . .) mod 1

= 0.0110101 . . . (shift left and drop the integer part)

θ2 = 0.110101 . . .

θ3 = 0.10101 . . .

θ4 = 0.0101 . . .
...

and we see the precision of our initial measurement evaporating before our
eyes.

We can even quantify the amount of sensitive dependence the system
exhibits, that is, the rate at which an initial error grows. Assuming that our
initial condition has some small error ε, the growth rate of the error is

fn(θ0)− fn(θ0 + ε) = 2nθ0 − 2n(θ0 + ε) = 2nε = εen(ln 2).

If we think of n as time, then the previous equation is of the form eat with
a = ln 2. In this example the error grows at a constant exponential rate of ln 2.
The exponential growth rate of an initial error is the defining characteristic
of motion on a chaotic attractor. This rate of growth is called the Lyapunov
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exponent. A strictly positive Lyapunov exponent, such as we just found, is
an indicator of chaotic motion. The Lyapunov exponent is never strictly
positive for a stable periodic motion.9

2.11 Fully Developed Chaos

The global dynamics of the quadratic map are well understood for 0 < λ < 3,
namely, almost all orbits beginning on the unit interval are asymptotic to a
period one fixed point. We will next show that the orbit structure is also
well understood for λ > 4. This is known as the hyperbolic regime. This
parameter regime is “fully developed” in the sense that all of the possible
periodic orbits exist and they are all unstable.10 No chaotic attractor exists
in this parameter regime, but rather a chaotic repeller. Almost all initial
conditions eventually leave, or are repelled from, the unit interval. However,
a small set remains. This remaining invariant set is an example of a fractal.

The analysis found in this book is based substantially on sections 1.5 to
1.8 of Devaney’s An Introduction to Chaotic Dynamical Systems [10]. This
section is more advanced mathematically than previous sections. The reader
should consult Devaney’s book for a complete treatment. Section 2.12 con-
tains a more pragmatic description of the symbolic dynamics of the quadratic
map and can be read independently of the current section.

2.11.1 Hyperbolic Invariant Sets

We begin with some definitions.

Definition. A set or region Γ is said to be invariant under the map f if for
any x0 ∈ Γ we have fn(x0) ∈ Γ for all n.

The simplest example of an invariant set is the collection of points forming
a periodic orbit. But, as we will see shortly, there are more complex examples,
such as strange invariant sets, which are candidates for chaotic attractors or
repellers.

9For a well-illustrated exploration of the Lyapunov exponent in the quadratic map
system see A. K. Dewdney, Leaping into Lyapunov space, Sci. Am. 265 (3), pp. 178–180
(1991).

10Technically, the system is “structurally stable.” See section 1.9 of Devaney’s book for
more details. Hyperbolicity and structural stability usually go hand-in-hand.
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Definition. For mappings of R −→ R, a set Γ ⊂ R is a repelling (resp.,
attracting) hyperbolic set for f if Γ is closed, bounded, and invariant under f
and there exists an N > 0 such that |(fn)′(x)| > 1 (resp., < 1) for all n ≥ N
and all x ∈ Γ [10].

This definition says that none of the derivatives of points in the invariant
set are exactly equal to one. A simple example of a hyperbolic invariant set
is a periodic orbit that is either repelling or attracting, but not neutral. In
higher dimensions a similar definition of hyperbolicity holds, namely, all the
points in the invariant set are saddles.

The existence of both a simple periodic regime and a complicated fully
developed chaotic (yet well understood) hyperbolic regime turns out to be
quite common in low-dimensional nonlinear systems. In Chapter 5 we will
show how information about the hyperbolic regime, which we can often ana-
lyze in detail using symbolic dynamics, can be exploited to determine useful
physical information about a nonlinear system.

In examining the dynamics of the quadratic map for λ > 4 we proceed in
two steps: first, we examine the invariant set, and second, we describe how
orbits meander on this invariant set. The set itself is a fractal Cantor set
[11], and to describe the dynamics on this fractal set we employ the method
of symbolic dynamics.

Since f(1/2) > 1 for λ > 4 there exists an open interval centered at 1/2
with points that leave the unit interval after one iteration, never to return.
Call this open set A0 (see Figure 2.23). These are the points in A0 whose
image under f is greater than one. On the second iteration, more points
leave the unit interval. In fact, these are the points that get mapped to
A0 after the first iteration: A1 = {x ∈ I|f(x) ∈ A0}. Inductively, define
An = {x ∈ I|f i(x) ∈ I for i ≤ n but fn+1(x) 6∈ I}; that is, An consists of
all points that escape from I at the n + 1st iteration. Clearly, the invariant
limit set, call it Λ, consists of all the remaining points

Λ = I −
( ∞⋃
n=0

An

)
. (2.33)

What does Λ look like? First, note that An consists of 2n disjoint open
intervals, so Λn = I−(A0

⋃
....
⋃
An) is 2n+1 disjoint closed intervals. Second,

fn+1 monotonically maps each of these intervals onto I. The graph of fn+1

is a polynomial with 2n humps. The maximal sections of the humps are the
collection of intervals An that get mapped out of I, but more importantly
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A
0

Figure 2.23: Quadratic map for λ > 4. (Generated by the Quadratic Map
program.)

this polynomial intersects the y = x line 2n+1 times. Thus, Λn has 2n+1

periodic points in I.
The set Λ is a Cantor set if Λ is a closed, totally disconnected, perfect

subset. A set is disconnected if it contains no intervals; a set is perfect if every
point is a limit point. It is not too hard to show that the invariant set defined
by equation (2.33) is a Cantor set [10]. Thus, we see that the invariant limit
set arising from the quadratic map for λ > 4 is a fractal Cantor set with a
countable infinity of periodic orbits.

2.11.2 Symbolic Dynamics

Our next goal is to unravel the dynamics on Λ. In beginning this task
it is useful to think how the unit interval gets stretched and folded with
each iteration. The transformation of the unit interval under the first three
iterations for λ = 4 is illustrated in Figure 2.24. This diagram shows that the
essential ingredients that go into making a chaotic limit set are stretching
and folding. The technique of symbolic dynamics is a bookkeeping procedure
that allows us to systematically follow this stretching and folding process.
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Figure 2.24: Keeping track of the stretching and folding of the quadratic
map with symbolic dynamics.
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For one-dimensional maps the complete symbolic theory is also known as
kneading theory [10].

We begin by defining a symbol space for symbolic dynamics. Let Σ2 =
{s = (s0s1s2...)|sj = 0 or 1}. Σ2 is known as the sequence space on the
symbols 0 and 1. We sometimes use the symbols L (Left) and R (Right)
to denote the symbols 0 and 1 (see Figure 2.24). If we define the distance
between two sequences s and t by

d[s, t] =
∞∑
i=0

|si − ti|
2i

, (2.34)

then Σ2 is a metric space. The metric d[s, t] induces a topology on Σ2 so we
have a notion of open and closed sets in Σ2. For instance, if s = (0100101 . . .)
and t = (001011 . . .), then the metric d[s, t] = 1/2 + 1/4 + 1/32 + · · · .

A dynamic on the space Σ2 is given by the shift map σ : Σ2 −→ Σ2

defined by σ(s0s1s2...) = (s1s2s3...). That is, the shift map drops the first
entry and moves all the other symbols one place to the left. The shift map
is continuous. Briefly, for any ε > 0, pick n such that 1/2n < ε, and let
δ = 1/2n+1. Then the usual ε−δ proof goes through when we use the metric
given by equation (2.34) [10].

What do the orbits in Σ2 look like? Periodic points are identified with
exactly repeating sequences, s = (s0 . . . sn−1, s0 . . . sn−1, . . .). For instance,
there are two distinct period one orbits, given by (0000000 . . .) and (111111 . . .).
The period two orbit takes the form (01010101 . . .) and (10101010 . . .), and
one of the period three orbits looks like (001001001 . . .), (010010010 . . .), and
(100100100 . . .), and so on. Evidently, there are 2n periodic points of pe-
riod n, although some of these points are of a lower period. But there is
more. The periodic points are dense in Σ2; that is, any nonperiodic point
can be represented as the limit of some periodic sequence. Moreover, the
nonperiodic points greatly outnumber the periodic points.

What does this have to do with the quadratic map, or more exactly the
map fλ restricted to the invariant set Λ? We now show that it is the “same”
map, and thus to understand the orbit structure and dynamics of fλ on Λ we
need only understand the shift map, σ, on the space of two symbols, Σ2. We
can get a rough idea of the behavior of an orbit by keeping track of whether
it falls to the left (L or 0) or right (R or 1) at the nth iteration. See Figure
2.25 for a picture of this partition. That is, the symbols 0 and 1 tell us the
fold which the orbit lies on at the nth iteration.
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Accordingly, define the itinerary of x as the sequence S(x) = s0s1s2...
where sj = 0 if f jλ(x) < 1/2 and sj = 1 if f jλ(x) > 1/2. Thus, the itinerary of
x is an infinite sequence of 0s and 1s: it “lives” in Σ2. Further, we think of S
as a map from Λ to Σ2. If λ > 4, then it can be shown that S : Λ −→ Σ2 is
a homeomorphism (a map is a homeomorphism if it is a bijection and both
f and f−1 are continuous). This last result says that the two sets Λ and Σ2

are the same. To show the equivalence between the dynamics of fλ on Λ and
σ on Σ2, we need the following theorem, which is quoted from Devaney.

Theorem. If λ > 2 +
√

5, then S : Λ −→ Σ2 is a homeomorphism and
S ◦ fλ = σ ◦ S .

Proof. See section 1.7 in Devaney’s book [10]. This theorem holds for all
λ > 4, but the proof is more subtle.

As we show in the next section, the essential idea in this proof is to keep
track of the preimages of points not mapped out of the unit interval. The
symbolic dynamics of the invariant set gives us a way to uniquely name the
orbits in the quadratic map that do not run off to infinity. In particular, the
itinerary of an orbit allows us to name, and to find the relative location of,
all the periodic points in the quadratic map. Symbolic dynamics is powerful
because it is easy to keep track of the orbits in the symbol space. It is next
to impossible to do this using only the quadratic map since it would involve
solving polynomials of arbitrarily high order.

2.11.3 Topological Conjugacy

This last example suggests the following notion of equivalence of dynamical
systems, which was originally put forth by Smale [12] and is fundamental to
dynamical systems theory.

Definition. Let f : A −→ A and g : B −→ B be two maps. The functions f
and g are said to be topologically conjugate if there exists a homeomorphism
h : A −→ B such that h ◦ f = g ◦ h.

The homeomorphism is called a topological conjugacy, and is more com-
monly defined by simply stating that the following diagram commutes:

f

A −→ A
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h ↓ ↓ h
g

B −→ B

Using the theorem of the previous section, we know that if λ > 2 +
√

5
then fλ (the quadratic map) is topologically conjugate to σ (the shift map).
Topologically conjugate systems are the same system insofar as there is a
one-to-one correspondence between the orbits of each system. Sometimes
this is too restrictive and we only require that the mapping between orbits
be many-to-one. In this latter case we say the two dynamical systems are
semiconjugate.

In nonlinear dynamics, it is often advantageous to establish a conjugacy or
a semiconjugacy between the dynamical system in question and the dynamics
on some symbol space. The properties of the dynamical system are usually
easy to see in the symbol space and, by the conjugacy or semiconjugacy, these
properties must also exist in the original dynamical system. For instance, the
following properties are easy to show in Σ2 and must also hold in Λ, namely:

1. The cardinality of the set of periodic points (often written as Pern(fλ))
is 2n.

2. Per(fλ) is dense in Λ.

3. fλ has a dense orbit in Λ [10].

Although there is no universally accepted definition of chaos, most def-
initions incorporate some notion of sensitive dependence on initial condi-
tions. Our notions of topological conjugacy and symbolic dynamics give us
a promising way to analyze chaotic behavior in a specific dynamical system.

In the context of one-dimensional maps, we say that a map f : I −→ I
possesses sensitive dependence on initial conditions if there exists a δ > 0
such that, for any x ∈ I and any neighborhood N of x, there exist y ∈ N and
n ≥ 0 such that |fn(x) − fn(y)| > δ. This says that small errors due either
to measurement or round-off errors become magnified upon iteration—they
cannot be ignored.

Let S1 denote the unit circle. Here we will think of the members of S1

as being normalized to the range [0, 1). A simple example of a map that is
chaotic in the above sense is given by g : S1 −→ S1 defined by g(θ) = 2θ.
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As we saw in section 2.10, when θ is written in base two, g(θ) is simply a
shift map on the unit circle. In ergodic theory the above shift map is known
as a Bernoulli process. If we think of each symbol 0 as a Tail (T), and each
symbol 1 as a Head (H), then the above shift map is topologically conjugate
to a coin toss, our intuitive model of a random process. Each shift represents
a toss of the coin. We now show that the shift map is essentially the same as
the quadratic map for λ = 4; that is, the quadratic map (a fully deterministic
process) can be as random as a coin toss.

If f4(x) = 4x(1−x), then the limit set is the whole unit interval I = [0, 1]
since the maximum f4(1/2) = 1; that is, the map is strictly onto (the map is
measure-preserving and is roughly analogous to a Hamiltonian system that
conserves energy). To continue with the analysis, define h1 : S1 −→ [−1, 1]
by h1 = cos(θ). Also define q(x) = 2x2 − 1. Then

h1 ◦ g(θ) = cos(2θ)

= 2 cos2(θ)− 1

= q ◦ h1(θ)

so h1 conjugates g and q. Note, however, that h1 is two-to-one at most
points so that we only have a semiconjugacy. To go further, if we define
h2 : [−1, 1] −→ [0, 1] by h2(t) = 1

2
(1 − t), then f4 ◦ h2 = h2 ◦ q. Then

h3 = h2 ◦ h1 is a topological semiconjugacy between g and f4; we have
established the semiconjugacy between the chaotic linear circle map and the
quadratic map when λ = 4. The reader is invited to work through a few
examples to see how the orbits of the quadratic map, the linear circle map,
and a coin toss can all be mapped onto one another.

2.12 Symbolic Coordinates

In the previous section we showed that when λ > 4, the dynamics of the
quadratic map restricted to the invariant set Λ are “the same” as those given
by the shift map σ on the sequence space on two symbols, Σ2. We established
this correspondence by partitioning the unit interval into two halves about
the maximum point of the quadratic map, x = 1/2. The left half of the
unit interval is labeled 0 while the right half is labeled 1, as illustrated in
Figure 2.25. To any orbit of the quadratic map fn(x0) we assign a sequence
of symbols s = (s0s1s2 . . .)—for example, 101001...—called the itinerary, or
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symbolic future, of the orbit. Each si represents the half of the unit interval
in which the ith iteration of the map falls.

In part, the theorem of section 2.11.2 says that knowing an orbit’s initial
condition is exactly equivalent to knowing an orbit’s itinerary. Indeed, if we
imagine that the itinerary is simply an expression for some binary number,
then perhaps the correspondence is not so surprising. That is, the mapping
fnλ takes some initial coordinate number x0 and translates it to a binary
number β0 = β(s0, s1, . . .) constructed from the symbolic future, which can
be thought of as a “symbolic coordinate.”

From a practical point of view, the renaming scheme described by sym-
bolic dynamics is very useful in at least two ways:

1. Symbolic dynamics provides a good way to label all the periodic orbits.

2. The symbolic itinerary of an orbit provides the location of the orbit in
phase space to any desired degree of resolution.

We will explain these two points further and in the process show the corre-
spondence between β and x0.

In practical applications we shall be most concerned with keeping track
of the periodic orbits. Symbolic itineraries of periodic orbits are repeating
finite strings, which can be written in various forms, such as

(s0s1 . . . sn−1, s0s1 . . . sn−1, . . .) = (s0s1 . . . sn−1)∞ = s0s1 . . . sn−1.

To see the usefulness of the symbolic description, let us consider the following
problem: for λ > 4, find the approximate location of all the periodic orbits
in the quadratic map.

2.12.1 What’s in a name? Location.

As discussed in section 2.5, the exact location of a period n orbit is deter-
mined by the roots of the fixed point equation, fn(x) = x. This naive method
of locating the periodic points is impractical in general because it requires
finding the roots of an arbitrarily high-order polynomial. We now show that
the problem is easy to solve using symbolic dynamics if we ask not for the
exact location, but only for the location relative to all the other periodic
orbits.

If λ > 4, then there exists an interval centered about x = 1/2 for which
f(x) > 1. Call this interval A0 (see Figure 2.23). Clearly, no periodic orbit
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exists in A0 since all points in A0 leave the unit interval I at the first iteration,
and thereafter escape to −∞. As we argued in section 2.11.1, the periodic
points must be part of the invariant set, those points that are never mapped
into A0.

As shown in Figure 2.25, the points in the invariant set can be constructed
by considering the preimages of the unit interval found from the inverse map
f−1
λ . The first iteration of f−1

λ produces two disjoint intervals,

f−1
λ (I)

↙ ↘
I0 I1

which are labeled I0 (the left interval) and I1 (the right interval). As indi-
cated by the arrows in Figure 2.25, I0 preserves orientation, while I1 reverses
orientation. The orientation of the interval is simply determined by the slope
(derivative) of fλ(x),

f ′λ(x) > 0 if x < 1/2, preserves orientation;

f ′λ(x) < 0 if x > 1/2, reverses orientation.

We view f−1(I) as a first-level approximation to the invariant set Λ. In
particular, f−1(I) gives us a very rough idea as to the location of both period
one orbits, one of which is located somewhere in I0, while the other is located
somewhere in I1.

To further refine the location of these periodic orbits, consider the appli-
cation of f−1

λ to both I0 and I1,

f−1
λ (I0) f−1

λ (I1)
↙ ↘ ↙ ↘

I00 I01 I11 I10

The second iteration gives rise to four disjoint intervals. Two of these contain
the distinct period one orbits, and the remaining two intervals contain the
period two orbit,

I00 = I0

⋂
f−1
λ (I0),

I01 = I0

⋂
f−1
λ (I1),

I11 = I1

⋂
f−1
λ (I1),

I10 = I1

⋂
f−1
λ (I0).
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Figure 2.25: Symbolic coordinates and the alternating binary tree.
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In general we can define 2n disjoint intervals at the nth level of refinement
by

Is0s1...sn−1 = Is0
⋂
f−1
λ (Is1)

⋂
. . .
⋂
f
−(n−1)
λ (Isn−1). (2.35)

With each new refinement, we hone in closer and closer to the periodic orbits.
The one-to-one correspondence between x0 and s is easy to see geometri-

cally by observing that, as n→∞,⋂
n≥0

Is0s1...sn

forms an infinite intersection of nested nonempty closed intervals that con-
verges to a unique point in the unit interval.11 The invariant limit set is the
collection of all such limit points, and the periodic points are all those limit
points indexed by periodic symbolic strings.

2.12.2 Alternating Binary Tree

We must keep track of two pieces of information to find the location of the
orbits at the nth level: the relative location of the interval Is0s1...sn−1 and its
orientation. A very convenient way to encode both pieces of data is through
the construction of a binary tree that keeps track of all the intervals generated
by the inverse function, f−1

λ . The quadratic map gives rise to the “alternating
binary tree” illustrated in Figure 2.25(b) [13].

The nth level of the alternating binary tree has 2n nodes, which are
labeled from left to right by the sequence

nth level :

2n︷ ︸︸ ︷
0 1 1 0 0 1 1 . . . 0 0 1 1 0 0 1 1 0,

This sequence starts at the left with a zero. It is followed by a pair of ones,
then a pair of zeros, and so on until 2n digits are written down. To form the
alternating binary tree, we construct the above list of 0s and 1s from level
one to level n and then draw in the pair of lines from each i− 1st level node
to the adjacent nodes at the ith level.

11A partition of phase space that generates a one-to-one correspondence between points
in the limit set and points in the original phase space is known in ergodic theory as a
generating partition. Physicists loosely call such a generating partition a “good partition”
of phase space.
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N B s0s1s2

x position binary x position symbolic name

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 2.2: Symbolic coordinate for n = 3 from the alternating binary tree.

Now, to find the symbolic name for the interval at the nth level, Is0s1...sn−1 ,
we start at the topmost node, s0, and follow the path down the alternating
binary tree to the nth level, reading off the appropriate symbol name at each
level along the way. By construction, we see that the symbolic name read off
at the nth level of the tree mimics the location of the interval containing a
period n orbit.

More formally, we identify the set of repeating sequences of period n in
Σ2 with the set of finite strings s0s1 . . . sn−1. Let β(s0, s1, . . . , sn−1) denote
the fraction between 0 and (2n − 1)/2n giving the order, from left to right,
generated by the alternating binary tree. Further, let N(s0, s1, . . . , sn−1)
denote the integer position between 0 and 2n−1 and let B denote N in binary
form. It is not too difficult to show that B(s0, s1, . . . , sn−1) = b0b1 . . . bn−1,
where bi = 0 or 1, and

β(s0, s1, . . . , sn−1) =
b0

2
+
b1

4
+ . . .+

bn−1

2n
(2.36)

N(s0, s1, . . . , sn−1) = b0 · 2n−1 + b1 · 2n−2 + . . .+ bn−1 · 20 (2.37)

bi =
i∑

j=0

sj mod 2. (2.38)

An application of the ordering relation can be read directly off of Figure
2.25(b) for n = 3 and is presented in Table 2.2. As expected, the left-most
orbit is the string 0, which corresponds to the period one orbit at the origin,
x0. Less obvious is the position of the other period one orbit, x1, which
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occupies the fifth position at the third level.
The itinerary of a periodic orbit is generated by a shift on the repeating

string (s0s1 . . . sn−1)∞:

σ(s0s1 . . . sn−1) = (s1s2 . . . sn−1s0). (2.39)

In this case, the shift is equivalent to a cyclic permutation of the symbolic
string. For instance, there are two period three orbits shown in Table 2.2;
their itineraries and positions are

s0s1s2 : 001 −→ 010 −→ 100
N : 1 −→ 3 −→ 7

and
s0s1s2 : 011 −→ 110 −→ 101

N : 2 −→ 4 −→ 6.

So the itinerary of a periodic orbit is generated by cyclic permutations of the
symbolic name.

2.12.3 Topological Entropy

To name a periodic orbit, we need only choose one of its cyclic permutations.
The number of distinct periodic orbits grows rapidly with the length of the
period. The symbolic names for all periodic orbits up to period eight are
presented in Table 2.3. A simple indicator of the complexity of a dynamical
system is its topological entropy. In the one-dimensional setting, the topolog-
ical entropy, which we denote by h, is a measure of the growth of the number
of periodic cycles as a function of the symbol string length (period),

h = lim
n→∞

lnNn

n
, (2.40)

where Nn is the number of distinct periodic orbits of length n. For instance,
for the fully developed quadratic map, Nn is of order 2n, so

h = ln 2 ≈ 0.6931 . . . .

The topological entropy is zero in the quadratic map for any value of λ
below the accumulation point of the first period doubling cascade because
Nn is of order 2n in this regime. The topological entropy is a continuous,
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0 01011 0000011 0101011 00010011 00011111
1 01111 0000101 0011111 00010101 00101111
01 000001 0001001 0101111 00011001 00110111
001 000011 0000111 0110111 00100101 00111011
011 000101 0001011 0111111 00001111 00111101
0001 000111 0001101 00000001 00010111 01010111
0011 001011 0010011 00000011 00011011 01011011
0111 001101 0010101 00000101 00011101 00111111
00001 001111 0001111 00001001 00100111 01011111
00011 010111 0010111 00000111 00101011 01101111
00101 011111 0011011 00001011 00101101 01111111
00111 0000001 0011101 00001101 00110101

Table 2.3: Symbolic names for all periodic orbits up to period eight occurring
in the quadratic map for λ > 4. All names related by a cyclic permutation
are equivalent.

monotonically increasing function between these two parameter values. The
topological entropy increases as periodic orbits are born by different bifur-
cation mechanisms. A strictly positive value for the topological entropy is
sometimes taken as an indicator for the amount of “topological chaos.”

In addition to its theoretical importance, symbolic dynamics will also be
useful experimentally. It will help us to locate and organize the periodic
orbit structure arising in real experiments. In Chapter 5 we will show how
periodic orbits can be extracted and identified from experimental data. We
will further describe how to construct a periodic orbit’s symbolic name di-
rectly from experiments and how to compare this with the symbolic name
found from a model, such as the quadratic map. Reference [14] describes an
additional refinement of symbolic dynamics called kneading theory, which is
useful for analyzing nonhyperbolic parameter regions, such as occur in the
quadratic map for 1 < λ < 4.

Notice that the ordering relation described by the alternating binary tree
between the periodic orbits does not change for any λ > 4. A simple ob-
servation, which will nevertheless be very important from an experimental
viewpoint, is the following: this ordering relation, which is easy to calculate
in the hyperbolic regime, is often maintained in the nonhyperbolic regime.
This is the case, for instance, in the quadratic map for all λ > 1. This ob-
servation is useful experimentally because it will give us a way to name and
locate periodic orbits in an experimental system at parameter values where
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a nonhyperbolic strange attractor exists. That is, we can name and identify
periodic orbits in a hyperbolic regime, where the system can be analyzed an-
alytically, and then carry over the symbolic name for the periodic orbit from
the hyperbolic regime to the nonhyperbolic regime, where the system is more
difficult to study rigorously. Symbolic dynamics and periodic orbits will be
our “breach through which we may attempt to penetrate an area hitherto
deemed inaccessible” [15].

The reader might notice that our symbolic description of the quadratic
map used very little that was specific to this map. The same description
holds, in fact, for any single-humped (unimodal) map of the interval. Indeed,
the topological techniques we described here in terms of binary trees extend
naturally to k symbols on k-ary trees when a map with many humps is
encountered.

This concludes our introduction to the quadratic map. There are still
many mysteries in this simple map that we have not yet begun to explore,
such as the organization of the periodic window structure, but at least we
can now continue our journey into nonlinear lands with words and pictures
to describe what we might see [16].
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Usage of Mathematica

In this section, we illustrate how Mathematica12 can be used for research or
course work in nonlinear dynamics. Mathematica is a complete system for do-
ing symbolic, graphical, and numerical manipulations on symbols and data,
and is commonly available on a wide range of machines from microcomputers
(386s and Macs) to mainframes and supercomputers.

Mathematica is strong in two- and three-dimensional graphics, and, where
appropriate, we would encourage its use in a nonlinear dynamics course.
It can serve at least three important functions: (1) a means of generating
complex graphical representations of data from experiments or simulations;
(2) a method for double-checking complex algebraic manipulations first done
by hand; and (3) a general system for writing both numerical and symbolic
routines for the analysis of nonlinear equations.

What follows is text from a typical Mathematica session, typeset for legi-
bility, used to produce some of the graphics and to double-check some of the
algebraic results presented in this chapter. Of course, a real Mathematica
session would not be so heavily commented.
(* This is a Mathematica comment statement. Mathematica ignores

everything between star parentheses. *)

(* To try out this Mathematica session yourself, type everything in

bold that is not enclosed in the comment statements. The following

line is Mathematica ’s answer typed in italic. Mathematica’s output

from graphical commands are not printed here, but are left for the

reader to discover. *)

(* This notebook is written on a Macintosh. 7/22/90 nbt. *)

(* In this notebook we will analytically solve for the period one and

period two orbits in the quadratic map and plot their locations as a

function of the control parameter, lambda. *)

(* First we define the quadratic function with the Mathematica

Function[{x,y, ...}, f(x,y, ...)] command, which takes two

12Mathematica is a trademark of Wolfram Research Inc. For a brief introduction to
Mathematica see S. Wolfram, Mathematica, a system for doing mathematics by computer
(Addison-Wesley: New York, 1988), pp. 1–23.
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arguments, the first of which is a list of variables, and the second

of which is the function. The basic data type in Mathematica

is a list, and all lists are enclosed between braces,

{x1, x2, x3, ...}. Note that all arguments and functions in

Mathematica are enclosed in square brackets f[], which differs from

the standard mathematical notation of parentheses f(). This is, in

part, because square brackets are easier to reach on the keyboard.

Also, note that in defining a variable one must always put a space

around it, so xy is equal to a single variable named "xy", while

x y with a space between is equal to two variables, x and y. *)

(* To evaluate a Mathematica expression tap the enter key, not the

return key. Now to our first Mathematica command: *)

f = Function[{lambda, x}, lambda x (1 - x)]

Function[{lambda, x}, lambda x (1 − x)]

(* Mathematica should respond by saying Out[1], which tells us that

Mathematica successfully processed the first command and has put the

result in the variable Out[1], as well as the variable we created, f.

To evaluate the quadratic map, we now can feed f two arguments,

the first of which is lambda, and the second of which is x. *)

f[4, 1/2]

1

(* Mathematica should respond with the function Out[2], which

contains the quadratic map evaluated at lambda = 4 and x = 1/2. To

evaluate a list of values for x we could let the x variable be a

list, i.e., a series of numbers enclosed in braces {x1, x2, x3, ...}.
To try this command, type: *)

f[4, {0, 0.25, 0.5, 0.75, 1}]

{0, 0.75, 1., 0.75, 0}

(* To plot the quadratic map we use the Mathematica plot command,

Plot[f, {x, xmin, xmax}]. For instance a plot of the quadratic map

for lambda = 4 is given by: *)
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Plot[f[4,x], {x, 0, 1}]

(* It is as easy as pie to take a composite function in Mathematica ,

just type f[f[x]], so to plot f(f(x)) for the quadratic map we

simply type: *)

Plot[f[4,f[4,x]], {x, 0, 1}]

(* Now let’s find the locations of the period one orbits, given by

the roots of f(x) = x. To find the roots, we use the Mathematica

command Solve[eqns, vars]. Notice that we are going to rename the

parameter "lambda" to "a" just to save some space when printing the

answer. The double equals "==" in Mathematica is equivalent to the

single equal "=" of mathematics. *)

Solve[f[a, x1] == x1, x1]

{{x1 —> 1 − a−1}, {x1 —> 0}}

(* As expected, Mathematica finds two roots. Let’s make a function

out of the first root so that we can plot it later using Plot. To do

this we need the following sequence of somewhat cryptic commands: *)

r1 = %[[1]]

{x1 —> 1 − a−1}

(* The roots are saved in a list of two items. To pull out the

first item we used the % command, a Mathematica variable that always

holds the value of the last expression. In this case it holds the

list of two roots, and the double square bracket notation %[[1]]

tells Mathematica we want the first item in the list of two items.

Now we must pull out the last part of the expression, 1 - 1/a, with

the replacement command Replace[expr, rules]: *)

x1 = Replace[x1, r1]

1 − a−1

(* To plot the location of the period one orbit we just use the Plot
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command again. *)

Plot[x1, {a, 0.9, 4}]

(* To find the location of the period two orbit,

we solve for f(f(x)) = x. *)

Solve[f[a,f[a, x2]] == x2, x2]

{{x2 —> 0}, {x2 —> 1 − a−1},
{x2 —> (1 + ((−1 − a−1 )2 − (4 (1 + a−1 ))/a)1/2 + a−1 )/2},
{x2 —> (1 − ((−1 − a−1 )2 − (4 (1 + a−1 ))/a)1/2 + a−1 )/2}}

(* We find four roots, as expected. Before proceeding further, it’s

a good idea to try and simplify the algebra for the last two new

roots by applying the Simplify command to the last expression. *)

rt = Simplify[%]

{{x2 —> 0}, {x2 —> 1 − a−1},
{x2 —> (1 + (1 − 3/a2 − 2/a)1/2 + a−1 )/2},
{x2 —> (1 − (1 − 3/a2 − 2/a)1/2 + a−1 )/2}}

(* And we can now pull out the positive and negative roots of the

period two orbit. *)

x2plus = Replace[x2, rt[[3]]]

x2minus = Replace[x2, rt[[4]]]

(1 − (1 − 3/a2 − 2/a)1/2 + a−1 )/2

(* As a last step, we can plot the location of the period one orbit

and both branches of the period two orbit by making a list of

functions to be plotted. *)

Plot[{x1, x2plus, x2minus}, {a, 1, 4}]

(* This is how we originally plotted the orbit stability diagram

in the text. Mathematica can go on to find higher-order periodic

orbits by numerically finding the roots of the nth composite of f,

if no exact solution exists. *)
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[9] See the introduction of P. Cvitanović, ed., Universality in Chaos (Adam Hidgler Ltd:
Bristol, 1984).

[10] R. L. Devaney, An introduction to chaotic dynamical systems, second edition (Addison-
Wesley: New York, 1989). Section 1.10 covers Sarkovskii’s Theorem and section 1.18
covers kneading theory. Another elementary proof of Sarkovskii’s Theorem can be
found in H. Kaplan, A cartoon-assisted proof of Sarkovskii’s Theorem, Am. J. Phys.
55, 1023–1032 (1987).

[11] K. Falconer, Fractal geometry (John Wiley & Sons: New York, 1990).

[12] S. Smale, The mathematics of time. Essays on dynamical systems, economic pro-
cesses, and related topics (Springer-Verlag: New York, 1980).
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Problems

Problems for section 2.1.

2.1. For the quadratic map (eq. (2.1)), show that the interval [1−λ/4, λ/4] is a trapping
region for all x in the unit interval and all λ ∈ (2, 4].

2.2. Use the transformation

x = (λ/4− 1/2)y + 1/2, µ = λ(λ/4− 1/2)

to show that the quadratic map (eq. (2.1)) can be written as

yn+1 = 1− µy2n, y ∈ [−1,+1], µ ∈ (0, 2], (2.41)

or (using a different x-transformation) as

zn+1 = µ− z2n, z ∈ [−µ,+µ], µ ∈ (0, 2]. (2.42)

Specify the ranges to which x and λ are restricted under these transformations.

2.3. Read the Tellus article by Lorenz mentioned in reference [1].

Section 2.2.

2.4. Write a program to calculate the iterates of the quadratic map.

Section 2.3.

2.5. For f(x) = 4x(1 − x) and x0 = 0.25, calculate f6(x0) by the graphical method
described in section 2.3.

2.6. Show by graphical analysis that if x0 6∈ [0, 1] and λ > 1 in the quadratic map, then
as n→∞, fn(x0)→ −∞. Further, show that if 0 < λ < 1, then the fixed point at
the origin is an attractor.

Section 2.4.

2.7. Find all the attractors and basins of attraction for the map f(x) = mx2 where m is
a constant.

2.8. The tent map (see sections 2.1–2.2 of Rasband, reference [6]) is defined by

∆µ = µ(1− 2|x− 1

2
|) = 2µ

{
x if 0 ≤ x ≤ 1/2,
1− x if 1/2 ≤ x ≤ 1.

(a) Sketch the graph of the tent map for µ = 3/4. Why is it called the tent map?
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(b) Show that the fixed points for the tent map are

x∗0 = 0 and, for µ > 1/2, x∗1 = 2µ/(1 + 2µ).

(c) Show that x∗1 is always repelling and that x∗0 is attracting when µ ∈ (0, 1/2).

(d) For a one-dimensional map the Lyapunov exponent is defined by

λ(x0) = lim
n→∞

1

n
ln

∣∣∣∣∣ ddxfn(x)

∣∣∣∣
x=x0

∣∣∣∣∣ . (2.43)

Show that for µ = 1, the Lyapunov exponent for the tent map is λ = ln 2. Hint: For
the tent map use the chain rule of differentiation to show that

λ(x0) = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)| . (2.44)

2.9. Determine the local stability of orbits with 0 < f ′(x∗) < 1 and 1 < f ′(x∗) < ∞
using graphical analysis as in Figure 2.9.

Section 2.5.

2.10. Determine the parameter value(s) for which the quadratic map intersects the line
y = x just once.

2.11. Consider a period two orbit of a one-dimensional map,

f2(x∗s) = f(f(x∗s)) = x∗s.

(a) Use the chain rule for differentiation to show that (f2)′(x∗01) = (f2)′(x∗10).

(b) Show that the period two orbit is stable if |f ′(x∗01) f ′(x∗10)| < 1, and unstable if
|f ′(x∗01) f ′(x∗10)| > 1.

2.12. For λ = 4, use Mathematica to find the locations of both period three orbits in the
quadratic map.

2.13. Consider a p-cycle of a one-dimensional map. If this p-cycle is periodic then it is a
fixed point of fp. Let x0, x1, . . . , xp−1 represent one orbit of period p. Show that
this periodic orbit is stable if

p−1∏
j=0

|f ′(xj)| < 1.

Hint: Show by the chain rule for differentiation that for any orbit (not necessarily
periodic),

dfp

dx

∣∣∣∣
x=x0

= f ′(x0)f ′(x1) · · · f ′(xp−1). (2.45)

Now assume the orbit is periodic. Then for any two points of a period p orbit, xi
and xj , note that (fp)′(xi) = (fp)′(xj).
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2.14. Consider a seed near a period two orbit, x0 = x∗+ε, with slope near to f ′(x∗) = −1.
Show by graphical analysis that fn(x0) “flips” back and forth between the two points
on the period two orbit. Show by graphical construction that this period two orbit
is stable if |(f2)′(x0)| < 1, and unstable if |(f2)′(x0)| > 1.

2.15. For λ ≥ 4, show that the quadratic map fnλ (x) intersects the y = x line 2n times,
but only some of these intersection points belong to new periodic orbits of period n.
For n = 1 to 10, build a table showing the number of different orbits of fλ of period
n.

2.16. Prove (see Prob. 2.15) that for prime n, (2n − 2)/n is an integer (this result is a
special case of the Simple Theorem of Fermat).

2.17. (a) Derive the equation of the graph shown in Figure 2.12.

(b) Verify that the two intersection points shown in the figure occur at 3 and 1+
√

6.

2.18. Equation (2.21) follows directly from equation (2.12) and the chain rule discussion
in Problem 2.13. Derive it using only equations (2.13), (2.19), and (2.20).

Section 2.6.

2.19. Write a program to generate a plot of the bifurcation diagram for the quadratic
map.

Section 2.7.

2.20. Show that the period two orbit in the quadratic map loses stability at λ = 1 +
√

6;
i.e., (f2)′(x∗) = −1 at this value of λ.

2.21. Show that the “equispaced” orbits of the bouncing ball system (see Prob. 1.2) are
born in a saddle-node bifurcation. Note that equation (1.41) gives two impact phases
for each n. For n = 1 and for n = 2 in equation (1.41), which orbit is a saddle near
birth, and which orbit is a node? What is the impact phase of the saddle? What is
the impact phase of the node?

2.22. Use Mathematica (or another computer program) to show that a pair of period three
orbits are born in the quadratic map by a tangent bifurcation at λ = 1 +

√
8.

2.23. Show that the absolute value of the slope of fn evaluated at all points of a period
n orbit have the same value at a bifurcation point.

2.24. In Figure 2.17, the two sets of triangles (“open”—white interior and “closed”—black
interior) represent two different period three orbits. Show that the open triangles
represent an unstable orbit.

Section 2.8.

2.25. Using Table 2.1 and equations (2.26 and 2.27), estimate δ, c, and λ∞.
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2.26. Use the bifurcation diagram of the quadratic map (Fig. 2.22) and a ruler to measure
the first few period doubling bifurcation values, λn. It may be helpful to use a
photocopying machine to expand the figure before doing the measurements. Based
on these measurements, estimate “Feigenbaum’s delta” with equation (2.27). Do
the same thing for the bifurcation diagram for the bouncing ball system found in
Figure 1.16. How do these two values compare?

Section 2.9.

2.27. Find a one-dimensional circle map g : S1 → S1 for which Sarkovskii’s ordering does
not hold. Hint: Find a map that has no period one solutions by using a discontinuous
map.

2.28. Consider the periodic orbits of periods 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Order these
points according to Sarkovskii’s ordering, equation (2.29). Show that Sarkovskii’s
ordering uniquely orders all the positive integers.

Section 2.11.

2.29. For λ > 4, determine the interval A0, as shown in Figure 2.23, as a function of λ.
Verify that points in this interval leave the unit interval and never return.

2.30. (a) Using the metric of equation (2.34), calculate the distance between the two
period two points, 01 and 10.

(b) Create a table showing the distances between all six period three points: 001, 010, 100, 011, 101,
and 110.

2.31. Establish an isomorphism between the unit interval and the sequence space Σ2 of
section 2.11.2. Hint: See Devaney [10], section 1.6.

2.32. (a) Define f : R→ R by f(x) = mx+ b and define g : R→ R by g(x) = mx+ nb,
where m, b, and n ∈ R. Show that f and g are topologically conjugate.

(b) Define f : S1 → S1 by f(x) = x+π/2. Define g : [0, 1]→ [0, 1] by g(x) = 1−x.
Show that f and g are topologically semiconjugate.

(c) Find a set of functions f , g, and h that satisfies the definition of topological
conjugacy.

Section 2.12.

2.33. Construct the binary tree up to the fourth level where the nth level is defined by
the rule

nth level :

2n︷ ︸︸ ︷
0 1 0 1 0 1 0 . . . 1 0 1 0 1 0 1 0 1 .
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(a) Construct the sixteen symbolic coordinates s0s1s2s3 at the fourth level of this
binary tree, and show that the ordering from left to right at the nth level is given
by

N(s0, s1, . . . , sn−1) = s0 · 2n−1 + s1 · 2n−2 + · · ·+ sn−1 · 20. (2.46)

Why is it called the “binary tree”?

(b) Show that the fractional ordering β is given by

β(s0, s1, . . . , sn−1) =
s0
2

+
s1
4

+ · · ·+ sn−1
2n

. (2.47)

(c) Give an example of a one-dimensional map (not necessarily continuous) on the
unit interval giving rise to the binary tree.

2.34. Construct the alternating binary tree up to the fourth level and calculate the sym-
bolic coordinate and position of each of the sixteen points (24). Present this infor-
mation in a table.

2.35. Show that the order on the x-axis of two points x0 and y0 in the quadratic map
with λ = 4 is determined by their itineraries {ak} and {bk} as follows: suppose
a1 = b1, a2 = b2, . . . , ak = bk, and that ak+1 = 0 and bk+1 = 1 (i.e., the itineraries
of each initial condition are identical up to the kth iteration, and differ for the first
time at the k+1st iteration). Then

x0 < y0 ⇐⇒
k∑
i=1

ai mod 2 = 0. (2.48)

Hint: See Appendix A of reference [13] and theorem 18.10 on page 145 of Devaney,
reference [10].
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Chapter 3

String

3.1 Introduction

Like a jump rope, a string tends to swing in an ellipse, a fact well known to
children. When holding both ends of a rope or string, it is difficult to shake it
so that motion is confined to a single transverse plane. Instead of remaining
confined to planar oscillations, strings appear to prefer elliptical or whirling
motions like those found when playing jump rope. Borrowing terminology
from optics, we would say that a string prefers circular polarization to planar
polarization. In addition to whirling, other phenomena are easily observed in
forced strings including bifurcations between planar and nonplanar periodic
motions, transitions to chaotic motions, sudden jumps between different pe-
riodic motions, hysteresis, and periodic and aperiodic cycling between large
and small vibrations.

In this chapter we will begin to explore the dynamics of an elastic string
by examining a single-mode model for string vibrations. In the process,
several new types of nonlinear phenomena will be discovered, including a
new type of attractor, the torus, arising from quasiperiodic motions, and a
new route to chaos, via torus doubling. We will also show how power spectra
and Poincaré sections are used in experiments to identify different types of
nonlinear attractors. In this way we will continue building the vocabulary
used in studying nonlinear phenomena [1].

In addition to its intrinsic interest, understanding the dynamics of a string
can also be important for musicians, instrument makers, and acoustical engi-
neers. For instance, nonlinearity leads to the modulation and complex tonal
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structure of sounds from a cello or guitar. Whirling motions account for the
rattling heard when a string is strongly plucked [2]. Linear theory provides
the basic outline for the science of the production of musical sounds; its real
richness, though, comes from nonlinear elements.

When a string vibrates, the length of the string must fluctuate. These
fluctuations can be along the direction of the string, longitudinal vibrations,
or up and down, vibrations transverse to the string. The longitudinal oscil-
lations occur at about twice the frequency of the transverse vibrations. The
modulation of a string’s length is the essential source of a string’s nonlinearity
and its rich dynamical behavior. The coupling between the transverse and
longitudinal motions is an example of a parametric oscillation. An oscillation
is said to be parametric when some parameter of a system is modulated, in
this case the string’s length. Linear theory predicts that a string’s free trans-
verse oscillation frequency is independent of the string’s vibration amplitude.
Experimental measurements, on the other hand, show that the resonance fre-
quency depends on the amplitude. Thus the linear theory has a restricted
range of applicability.

Think of a guitar string. A string under a greater tension has a higher
pitch (fundamental frequency). Whenever a string vibrates it gets stretched a
little more, so its pitch increases slightly as its vibration amplitude increases.

We begin this chapter by describing the experimental apparatus we’ve
used to study the string (section 3.2). In section 3.3 we model our experiment
mathematically. Sections 3.4 to 3.6 examine a special case of string behavior,
planar motion, which gives rise to the Duffing equation. Section 3.7 looks at
the more general case, nonplanar motion. Finally, in section 3.8 we present
experimental techniques used by nonlinear dynamicists. These experimental
methods are illustrated in the string experiment.

3.2 Experimental Apparatus

An experimental apparatus to study the vibrations of a string can be con-
structed by mounting a wire between two heavy brass anchors [3]. As shown
in Figure (3.1), a screw is used to adjust the position of the anchors, and
hence the tension in the wire (string). An alternating sinusoidal current
passed through the wire excites vibrations; this current is usually supplied
directly from a function generator. An electromagnet, or large permanent
magnet, is placed at the wire’s midpoint. The interaction between this mag-
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screw

wire
N

S

Figure 3.1: Schematic of the apparatus used to study the vibrations of a wire
(string).

netic field and the magnetic field generated by the wire’s alternating current
causes a periodic force to be applied at the wire’s midpoint.1 If a nonmag-
netic wire is used, such as tungsten, then both planar and nonplanar whirling
motions are easy to observe. On the other hand, if a magnetic wire is used,
such as steel, then the motion always remains restricted to a single plane [4].
The use of a magnetic wire introduces an asymmetry into the system that
causes the damping rate to depend strongly on the direction of oscillation.

A similar asymmetry is seen in the decay rates of violin, guitar, and piano
strings. In these musical instruments the string runs over a bridge, which
helps to hold the string in place. The bridge damps the motion of the string;
however, the damping force applied by the bridge is different in the horizontal
and vertical directions [5]. The clamps holding the string in our apparatus
are designed to be symmetric, and it is easy to check experimentally that the
decay rates in different directions (in the absence of a magnetic field) show
no significant variation. Our experimental apparatus can be thought of as
the inverse of that found in an electric guitar. There, a magnetic coil is used
to detect the motion of a string. In our apparatus, an alternating magnetic
field is used to excite motions in a wire.

The horizontal and vertical string displacements are monitored with a pair
of inexpensive slotted optical sensors consisting of an LED (light-emitting

1From the Lorentz force law, a wire carrying a current I, in a magnetic field of strength
B, is acted on by a magnetic force Fmag =

∫
(I ×B)dl. If the current I in the wire varies

sinusoidally, then so does the force on the wire. See D. J. Griffiths, An introduction to
electrodynamics (Prentice-Hall: Englewood Cliffs, NJ, 1981), pp. 174–181.
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Figure 3.2: Module used to detect string displacements. (Adapted from
Hanson [6].)

diode) and a phototransistor in a U-shaped plastic housing [6]. Two optical
detectors, one for the horizontal motion and one for the vertical motion, are
mounted together in a holder that is fastened to a micropositioner allowing
exact placement of the detectors relative to the string. The detectors are
typically positioned near the string mounts. This is because the detector’s
sensitivity is restricted to a small-amplitude range, and the string displace-
ment is minimal close to the string mounts. As shown in Figure 3.2, the
string is positioned to obstruct the light from the LED and hence casts a
shadow on the surface of the phototransistor. For a small range of the string
displacements, the size of this shadow is linearly proportional to the position
of the string, and hence also to the output voltage from the photodetector.
This voltage is then monitored on an oscilloscope, digitized with a micro-
computer, or further processed electronically to construct an experimental
Poincaré section as described in section 3.8.1.

Care must be taken to isolate the rig mechanically and acoustically. In
our case, we mounted the apparatus on a floating optical table. We also con-
structed a plastic cover to provide acoustical isolation. The string apparatus
is small and easily fits on a desktop. Typical experimental parameters are
listed in Table 3.1.

Most of our theoretical analysis will be concerned with single-mode oscil-
lations of a string. If we pluck the string near its center, it tends to oscillate
in a sinusoidal manner with most of its energy at some primary frequency
called the fundamental. A similar plucking effect can be achieved by exciting
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Parameter Typical experimental value

Length 80 mm
Mass per unit length 0.59 g/m
Diameter 0.2 mm
Primary resonance 1 kHz
Range of hysteresis 300 Hz
Magnetic field strength 0.2 T
Current 0–2 A
Maximum displacement 3 mm
Damping 0.067

Table 3.1: Parameters for the string apparatus.

wire vibrations with the current and the stationary magnetic field. To pluck
the string, we switch off the current after we get a large-amplitude string
vibration going. The fundamental frequency is recognizable by us as the
characteristic pitch we hear when the string is plucked. A large-amplitude
(resonant) response is expected when the forcing frequency applied to a string
is near to this fundamental. This is the primary resonance of the string, and
it is defined by the linear theory as

ω0 =
π

l

(
T

µ

)1/2

, (3.1)

where µ = m/l is the mass per unit length and T is the tension in the string.2

The primary assumption of the linear theory is that the equilibrium length
of the string, l, remains unchanged as the string vibrates, that is, l(t) = l,
where l(t) is the instantaneous length. In other words, the linear theory
assumes that there are no longitudinal oscillations. In developing a simple
nonlinear model for the vibrations of a string we must begin to take into
account these longitudinal oscillations and the dependence of the string’s
length on the vibration amplitude.

2For a review of the linear theory for the vibrations of a stretched string see A. P.
French, Vibrations and waves (W. W. Norton: New York, 1971), pp. 161-170.
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Figure 3.3: Single-mode model for nonlinear string vibrations. String vibra-
tions are assumed to be in the fundamental mode and are measured in the
transverse x–y plane by the polar coordinates (r, θ). (a) Equilibrium length;
(b) relaxed length.

3.3 Single-Mode Model

A model of a string oscillating in its fundamental mode is presented in Fig-
ure 3.3 and consists of a single mass fastened to the central axis by a pair
of linearly elastic springs [7]. Although the springs provide a linear restoring
force, the resulting force toward the origin is nonlinear because of the geo-
metric configuration. The ends of the massless springs are fixed a distance l
apart where the relaxed length of the spring is l0 and the spring constant is
k. In the center a mass is attached that is free to make oscillations in the x–y
plane centered at the origin. The motion in the two transverse directions,
x and y, is coupled directly, and also indirectly, via the longitudinal motion
of the spring. Both of these coupling mechanisms are nonlinear. The multi-
mode extension of this single-mode model would consist of n masses hooked
together by n+ 1 springs.

The restoring force on the mass shown in Figure 3.3 is

F = −2kr

(
1− l0√

l2 + 4r2

)
, (3.2)

where the position of the mass is given by polar coordinates (r, θ) of the
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transverse plane (see Prob. 3.8). Expanding the right-hand side of equation
(3.2) in a Taylor series (2r < l), we find that

F = −2kr(l − l0)(
r

l
)− 4kl0[(

r

l
)3 − 3(

r

l
)5 + · · ·].

The force can be written as
F = mr̈,

so

mr̈ ≈ −2k(l − l0)
(
r

l

) [
1 +

2l0
(l − l0)

(
r

l

)2
]
. (3.3)

Note the cubic restoring force. Also note that nonlinearity dominates when
l ≈ l0. That is, the nonlinear effects are accentuated when the string’s tension
is low.

Define

ω2
0 =

2k

m

(l − l0)

l
(3.4)

and

K =
2l0

l2(l − l0)
. (3.5)

Then from equation (3.3) we get, because of symmetry in the angular coor-
dinate, the vector equation for r = (x(t), y(t)),

r̈ + ω2
0r(1 +Kr2) = 0, (3.6)

which is the equation of motion for a two-dimensional conservative cubic
oscillator.3 The behavior of equation (3.6) depends critically upon the ratio
(l0/l). If l0 < l, the coefficient of the nonlinear term, K, is positive, the
equilibrium point at r = 0 is stable, and we have a model for a string vibrating
primarily in its fundamental mode. On the other hand, if l0 > l, then
K is negative, the origin is an unstable equilibrium point, and two stable
equilibrium points exist at approximately r = ±l. This latter case models
the motions of a single-mode elastic beam [8]. For our purpose we will mostly
be concerned with the case l0 < l, or K > 0.

In general, we will want to consider damping and forcing, so equation
(3.6) is modified to read

r̈ + λṙ + ω2
0(1 +Kr2)r = f(t), (3.7)

3The term r2 in equation (3.6) is a typical physicist’s notation meaning the dot product
of the vector, r2 = (r · r)2 = x2 + y2 = r2.
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where f(t) is a periodic forcing term and λ is the damping coefficient. Usually,
the forcing term is just a sinusoidal function applied in one radial direction, so
that it takes the form f(t) = (A cos(ωt), 0). For simplicity, we have assumed
that the energy losses are linearly proportional to the radial velocity of the
string, ṙ. We also assumed that the ends of the string are symmetrically
fixed, so that λ is a scalar. In general, the damping rate depends on the
radial direction, so the damping term is a vector function. This is the case,
for instance, when a string is strung over a bridge that breaks the symmetry
of the damping term.

Equation (3.7) was also derived by Gough [2] and Elliot [9], both of whom
related ω0 and K to actual string parameters that arise in experiments. For
instance, Gough showed that the natural frequency is given by

ω0 =
cπ

l
(3.8)

and the strength of the nonlinearity is

K =
1

εl
(
π

2
)2, (3.9)

where ε is the longitudinal extension of a string of equilibrium length l, ω0 is
the low-amplitude angular frequency of free vibration, and c is the transverse
wave velocity. Again, we see that the nonlinearity parameter, K, increases
as the longitudinal extension, ε, approaches zero. That is, the nonlinearity is
enhanced when the longitudinal extension—and hence the tension—is small.
Nonlinear effects are also amplified when the overall string length is short-
ened, and they are easily observable in common musical instruments. For
a viola D-string with a vibration amplitude of 1 mm, typical values of the
string parameters showing nonlinear effects are: l = 27.5 cm, ω0 = 60 Hz,
ε = 0.079 mm, K = 0.128 mm−2 [2].

Equation (3.7) constitutes our single-mode model for nonlinear string
vibrations and is the central result of this section. For some calculations it
will be advantageous to write equation (3.7) in a dimensionless form. To this
end consider the transformation

τ = ω0t, s =
r

l0
, (3.10)

which gives
s′′ + αs′ + [1 + βs2]s = g(γτ), (3.11)
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where the prime denotes differentiation with respect to τ and

α ≡ λ

ω0

, β ≡ Kl20, g ≡ f

l0ω2
0

, and γ ≡ ω

ω0

. (3.12)

Before we begin a systematic investigation of the single-mode model it
is useful to consider the unforced linear problem, f(t) = (0, 0). If the non-
linearity parameter K is zero, then equation (3.7) is simply a two-degree of
freedom linear harmonic oscillator with damping that admits solutions of the
form

r = (X0 cosω0t, Y0 sinω0t)e
−λt/2 , (3.13)

where X0 and Y0 are the initial amplitudes in the x and y directions. Equa-
tion (3.13) is a solution of (3.7) if we discard second-order terms in λ. In the
conservative limit (λ = 0), the orbits are ellipses centered about the z-axis.
As we show in section 3.7, one effect of the nonlinearity is to cause these el-
liptical orbits to precess. The trajectories of these precessing orbits resemble
Lissajous figures, and these precessing orbits will be one of our first examples
of quasiperiodic motion on a torus attractor.

3.4 Planar Vibrations: Duffing Equation

An external magnetic field surrounding a magnetic wire restricts the forced
vibrations of a wire to a single plane. Alternatively, we could fasten the ends
of the wire in such a way as to constrain the motion to planar oscillations.
In either case, the nonlinear equation of motion governing the single-mode
planar vibrations of a string is the Duffing equation,

ẍ+ λẋ+ ω2
0x(1 +Kx2) = A cos(ωt), (3.14)

where equation (3.14) is calculated from equation (3.7) by assuming that the
string’s motion is confined to the x–z plane in Figure 3.3. The forcing term
in equation (3.7) is assumed to be a periodic excitation of the form

f(t) = A cos(ωt), (3.15)

where the constant A is the forcing amplitude and ω is the forcing frequency.
The literature studying the Duffing equation is extensive, and it is well known
that the solutions to equation (3.14) are already complicated enough to ex-
hibit multiple periodic solutions, quasiperiodic orbits, and chaos. A good
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Figure 3.4: Equilibrium states of a beam under a compressive load.

guide to the nonchaotic properties of the Duffing equation is the book by
Nayfeh and Mook [10]. Highly recommended as a pioneering work in non-
linear dynamics is the book by Hayashi, which deals almost exclusively with
the Duffing equation [11].

3.4.1 Equilibrium States

The first step in analyzing any nonlinear system is the identification of its
equilibrium states. The equilibrium states are the stationary points of the
system, that is, where the system comes to rest. For a system of differential
equations, the equilibrium states are calculated by setting all the time deriva-
tives equal to zero in the unforced system. Setting ẍ = 0, ẋ = 0, and A = 0
in equation (3.14), we immediately find that the location of the equilibrium
solutions is given by

ω2
0x(1 +Kx2) = 0, (3.16)

which, in general, has three solutions:

x0 = 0, and x+ = +

√
−1

K
, x− = −

√
−1

K
. (3.17)

Clearly, there is only one real solution if K > 0, x0, since the other two
solutions, x±, are imaginary in this case. If K < 0, then there are three real
solutions.

To understand the stability of the stationary points it is useful to recall
the physical model that goes with equation (3.14). If l < l0, then K < 0 (see
eqs. (3.4 and 3.5)) and the Duffing equation (3.14) is a simple model for a
beam under a compressive load. As illustrated in Figure 3.4, the solutions x±
correspond to the two asymmetric stable beam configurations. The position
x0 corresponds to the symmetric unstable beam configuration—a small tap
on the beam would immediately send it to one of the x± configurations. If
l > l0, then K > 0 and the Duffing equation is a simple model of a string or
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x0

Figure 3.5: Equilibrium state of a wire under tension.

wire under tension, so there is only one symmetric stable configuration, x0

(Fig. 3.5).

3.4.2 Unforced Phase Plane

Conservative Case

After identifying the equilibrium states, our next step is to understand the
trajectories in phase space in a few limiting cases. In the unforced, conser-
vative limit, a complete account of the orbit structure is given by integrating
the equations of motion by using the chain rule in the form

ẍ = v̇ =
d

dt
v(x) =

dv

dx

dx

dt

= v
dv

dx
. (3.18)

Applying this identity to equation (3.14) with λ = 0 and A = 0 yields

v
dv

dx
= −ω2

0x(1 +Kx2), (3.19)

which can be integrated to give

1

2
v2 = h− ω2

0

(
x2

2
+K

x4

4

)
, (3.20)

where h is the constant of integration.
The term on the left-hand side of equation (3.20) is proportional to the

kinetic energy, while the term on the right-hand side,

V (x) = ω2
0

(
x2

2
+K

x4

4

)
, (3.21)

is proportional to the potential energy. Therefore, the constant h is pro-
portional to the total energy of the system, as illustrated in Figure 3.6(a).
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Figure 3.6: Potential and phase space for a single-mode string (a,c,e) and
beam (b,d,f).
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The phase space is a plot of the position x and the velocity v of all the
orbits in the system. In this case, the phase space is a phase plane, and in
the unforced conservative limit we find

v = ±
√

2[h− V (x)]1/2

= ±
√

2

[
h− ω2

0

(
x2

2
+K

x4

4

)]1/2

. (3.22)

The last equation allows us to explicitly construct the integral curves (a plot
of v(t) vs. x(t)) in the phase plane. Each integral curve is labeled by a value
of h, and the qualitative features of the phase plane depend critically on the
signs of ω2

0 and K.
If l > l0, then both ω2

0 and K are positive. A plot of equation (3.22) for
several values of h is given in Figure 3.6(c). If h = h0, then the integral curve
consists of a single point called a center. When h > h0, the orbits are closed,
bounded, simply connected curves about the center. Each curve corresponds
to a distinct periodic motion of the system. Going back to the string model
again, we see that the center corresponds to the symmetric equilibrium state
of the string, while the integral curves about the center correspond to finite-
amplitude periodic oscillations about this equilibrium point.

If l < l0, then K is negative. The phase plane has three stationary
points. This parameter regime models a compressed beam. The left and
right stationary points, x±, are centers, but the unstable point at x = 0,
labeled S in Figure 3.6(b), is a saddle point because it corresponds to a local
maximum of V (x).

Curves that pass through a saddle point are very important and are called
separatrices. In Figure 3.6(d) we see that there are two integral curves ap-
proaching the saddle point S and two integral curves departing from S. These
separatrices “separate” the phase plane into two distinct regions. Each inte-
gral curve inside the separatrices goes around one center, and hence corre-
sponds to an asymmetric periodic oscillation about either the left or the right
center, but not both. The integral curves outside the separatrices go around
all three stationary points and correspond to large-amplitude symmetric pe-
riodic orbits (Figure 3.6(d)). Thus, the separatrices act like barriers in phase
space separating motions that are qualitatively different.
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Dissipative Case

If damping is included in the system, then the phase plane changes to that
shown in Figure 3.6(e). For the string, damping destroys all the periodic
orbits, and all the motions are damped oscillations that converge to the point
attractor at the origin. That is, if we pluck a string, the sound fades away.
The string vibrates with a smaller and smaller amplitude until it comes to
rest. Moreover, the basin of attraction for the point attractor is the entire
phase plane. This particular point attractor is an example of a sink.

The phase plane for the oscillations of a damped beam is a bit more
involved, as shown in Figure 3.6(f). The center points at x± become point
attractors, while the stationary point at x0 is a saddle. There are two separate
basins of attraction, one for each point attractor (sink). The shaded region
shows all the integral curves that head toward the right sink. Again we
see the important role played by separatrices, since they separate the basins
of attraction of the left and right attracting points. In the context of a
dissipative system, the separatrix naturally divides into two parts: the inset
consisting of all integral curves that approach the saddle point S, and the
outset consisting of all points departing from S. Formally, the outset of S can
be defined as all points that approach S as time runs backwards. That is, we
simply reverse all the arrows in Figure 3.6(f).

The qualitative analysis of a dynamical system can usually be divided into
two tasks: first, identify all the attractors and repellers of the system, and
second, analyze their respective insets and outsets. Attractors and repellers
are limit sets. Insets, outsets, and limit sets are all examples of invariant sets
(see section 4.3.1). Thus, much of dynamical systems theory is concerned
not simply with the analysis of attractors, but rather with the analysis of
invariant sets of all kinds, attractors, repellers, insets, and outsets. For the
unforced, damped beam the task is relatively easy. There are two attracting
points and one saddle point. The inset and outset of the saddle point spiral
around the two attracting points and completely determine the structure of
the basins of attraction (see Figure 3.6(f)).

3.4.3 Extended Phase Space

To continue with the analysis of planar string vibrations, we now turn our
attention to the forced Duffing equation in dimensionless variables (from eqs.
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(3.11 and 3.14)),

x′′ + αx′ + (1 + βx2)x = F cos(γτ), (3.23)

where F is the forcing amplitude and γ is the normalized forcing frequency.
It is often useful to rewrite an nth-order differential equation as a system

of first-order equations, and to recall the geometric interpretation of a differ-
ential equation as a vector field. To this end, consider the change of variable
v = x′, so that

x′ = v,
v′ = aut(x, v) + g(γτ),

}
(x, v) ∈ R2 (3.24)

where aut(x, v) = −[αv+(1+βx2)x] is the autonomous, or time-independent,
term of v′ and g(γτ) = F cos(γτ) is the time-dependent term of v′. The
phase space for the forced Duffing equation is topologically a plane, since
each dependent variable is just a copy of R, and the phase space is formally
constructed from the Cartesian product of these two sets, R×R = R2.

A vector field is obtained when to each point on the phase plane we assign
a vector whose coordinate values are equal to the differential system evaluated
at that point. The vector field for the unforced, undamped Duffing equation
is shown in Figure 3.7(a). This vector field is static (time-independent). In
contrast, the forced Duffing equation has a time-dependent vector field since
the value of the vector field at (x, v) at τ is

(x′, v′) = (v, aut(x, v) + F cos(γτ)).

In Figure 3.7(b) we show what the integral curves look like when plotted in
the extended phase space, which is obtained by introducing a third variable,

z = γτ. (3.25)

With this variable the differential system can be rewritten as

x′ = v,
v′ = aut(x, v) + g(z),
z′ = γ.

 (x, v, z) ∈ R3 (3.26)

By increasing the number of dependent variables by one, we can formally
change the forced (time-dependent) system into an autonomous (time-independent)
system.
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Figure 3.7: Extended phase space for the Duffing oscillator.

Moreover, since the vector field is a periodic function in z, it is sensible
to introduce the further transformation

θ = γτ mod 2π, (3.27)

thereby making the third variable topologically a circle, S1. With this trans-
formation the forced Duffing equation becomes

x′ = v,
v′ = −[αv + (1 + βx2)x] + F cos(θ),
θ′ = γ.

 (x, v, θ) ∈ R2 × S1 (3.28)

One last reduction is possible in the topology of the phase space of the Duffing
equation. It is usually possible to find a trapping region that topologically
is a disk, a circular subset D ⊂ R2. In this last instance, the topology of the
phase space for the Duffing equation is simply D × S1, or a solid torus (see
Figure 3.7(c)).
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Figure 3.8: Phase space for the Duffing oscillator as a solid torus.

3.4.4 Global Cross Section

The global solution to a system of differential equations (the collection of all
integral curves) is also known as a flow. A flow is a one-parameter family of
diffeomorphisms of the phase space to itself (see section 4.2).

To visualize the flow in the Duffing equation, imagine the extended phase
space as the solid torus illustrated in Figure 3.8. Each initial condition in
the disk D, at θ = 0, must return to D when θ = 2π, because D is a trapping
region and the variable θ is 2π-periodic. That is, the region D flows back to
itself. An initial point in D labeled (x0, v0, θ0 = 0) is carried by its integral
curve back to some new point labeled (x1, v1, θ1 = 2π) also in D. The Duffing
equation satisfies the fundamental uniqueness and existence theorems in the
theory of ordinary differential equations [12]. Hence, each initial point in D
gets carried to a unique point back in D and no two integral curves can ever
intersect in D × S1.

As originally observed by Poincaré, this unique dependence with respect
to initial conditions, along with the existence of some region in phase space
that is recurrent, allows one to naturally associate a map to any flow. The
map he described is now called the Poincaré map. For the Duffing equation
this map is constructed from the flow as follows. Define a global cross section
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Σθ0 of the vector field (eq. (3.28)) by

Σθ0 = {(x, v, θ) ∈ D × S1 | θ = θ0 ∈ [0, 2π)}. (3.29)

Next, define the Poincaré map of Σθ0 as

Pθ0 : Σθ0 −→ Σθ0 , x0 7→ x1, v0 7→ v1, (3.30)

where (x1, v1) is the next intersection with Σθ0 of the integral curve emanating
from (x0, v0). For the Duffing equation the Poincaré map is also known as
a stroboscopic map since it samples, or strobes, the flow at a fixed time
interval.

The dynamics of the Poincaré map are often easier to study than the
dynamics in the original flow. By constructing the Poincaré map we reduce
the dimension of the problem from three to two. This dimension reduction is
important both for conceptual clarity as well as for graphical representations
(both numerical and experimental) of the dynamics. For instance, a periodic
orbit is a closed curve in the flow. The corresponding periodic orbit in the
map is a collection of points in the map, so the fixed point theory for maps
is easier to handle than the corresponding periodic orbit theory for flows.

The construction of a map from a flow via a cross section is generally
unique. However, constructing a flow from a map is generally not unique.
Such a construction is called a suspension of the map. Studies of maps and
flows are intimately related—but they are not identical. For instance, a fixed
point of a flow (an equilibrium point of the differential system) has no natural
analog in the map setting.

A complete account of Poincaré maps along with a thorough case study
of the Poincaré map for the harmonic oscillator is presented by Wiggins [13].

3.5 Resonance and Hysteresis

We now turn our attention to resonance in the Duffing oscillator. The notion
of a resonance is a physical concept with no exact mathematical definition.
Physically, a resonance is a large-amplitude response, or output, of a system
that is subject to a fixed-amplitude input. The concept of a resonance is
best described experimentally, and resonances are easy to see in the string
apparatus described in section 3.2 by constructing a sort of experimental
bifurcation diagram for forced string vibrations.
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Figure 3.9: Response curve for a harmonic oscillator.

Imagine that the string apparatus is running with a small excitation am-
plitude (the amount of current in the wire is small) and a low forcing fre-
quency (the frequency of the alternating current in the wire is much less
than the natural frequency of free wire vibrations). To construct a resonance
diagram we need to measure the response of the system, by measuring the
maximum amplitude of the string vibrations as a function of the forcing fre-
quency. To do this we slowly increase (scan through) the forcing frequency
while recording the response of the string with the optical detectors. The
results of this experiment depend on the forcing amplitude as well as where
the frequency scan begins and ends. Decreasing frequency scans can produce
different results from increasing frequency scans.

3.5.1 Linear Resonance

For a very small forcing amplitude the string responds with a linear reso-
nance, such as that illustrated in Figure 3.9. According to linear theory, the
response of the string is maximum when γ = ω/ω0 = 1. In other words, it is
maximum when the forcing frequency ω exactly equals the natural frequency
ω0. A primary (or main) resonance exists when the natural frequency and the
excitation frequency are close. The resonance diagram (Fig. 3.9) is called a
linear response because it can be obtained by solving the periodically forced,
linearly damped harmonic oscillator,

x′′ + αx′ + x = F cos(γτ), (3.31)
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which has a general solution of the form

x(τ) = x0e−ατ/2 cos[(1− α2)τ + θ0] +

F [(1− γ2)2 + α2γ2]−1/2 cos(γτ + δ). (3.32)

The constants x0 and θ0 are initial conditions. Equation (3.32) is a solution
to equation (3.31) if we discard higher-order terms in α. The maximum
amplitude of x, as a function of the driving frequency γ, is found from the
asymptotic solution of equation (3.32),

lim
τ→∞

x(τ) ≈ F cos(γτ + δ)

[(1− γ2)2 + α2γ2]1/2
, (3.33)

which produces the linear response diagram shown in Figure 3.9, since

a(γ) = xmax(γ) = max
[

lim
τ→∞

x(τ)
]

=
F

[(1− γ2)2 + α2γ2]1/2
. (3.34)

After the transient solution dies out, the steady-state response has the same
frequency as the forcing term, but it is phase shifted by an amount δ that
depends on α, γ, and F . As with all damped linear systems, the steady-state
response is independent of the initial conditions so that we can speak of the
solution.

In the linear solution, motions of significant amplitude occur when F is
large or when γ ≈ 1. Under these circumstances the nonlinear term in equa-
tion (3.28) cannot be neglected. Thus, even for planar motion, a nonlinear
model of string vibrations may be required when a resonance occurs or where
the excitation amplitude is large.

3.5.2 Nonlinear Resonance

A nonlinear resonance curve is produced when the frequency is scanned with
a moderate forcing amplitude, F . Figure 3.10 shows the results of both a
backward and a forward scan, which can be constructed from a numerical
solution of the Duffing oscillator, equation (3.28) (see Appendix C on Ode
[14] for a description of the numerical methods). The two scans are identical
except in the region marked by γl < γ < γu. Here, the forward scan produces
the upper branch of the response curve. This upper branch makes a sudden
jump to the lower branch at the frequency γu. Similarly, the backward (de-
creasing) scan makes a sudden jump to the upper branch at γl. In the region



3.5. RESONANCE AND HYSTERESIS 137

a

1
γγ γl u

Figure 3.10: Schematic of the response curve for a cubic oscillator.
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Figure 3.11: Nonlinear resonance curve showing secondary resonances in
addition to the main resonance.

γl < γ < γu, at least two stable periodic orbits coexist. The sudden jump
between these two orbits is indicated by the upward and downward arrows
at γl and γu. This phenomenon is known as hysteresis.

The nonlinear response curve also reveals several other intriguing features.
For instance, the maximum response amplitude no longer occurs at γ = 1,
but is shifted forward to the value γu. This is expected in the string because,
as the string’s vibration amplitude increases, its length increases, and this
increase in length (and tension) is accompanied by a shift in the natural
frequency of free oscillations.

Several secondary resonances are evident in Figure 3.11. These secondary
resonances are the bumps in the amplitude resonance curve that occur away
from the main resonance.

The main resonance and the secondary resonances are associated with
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Figure 3.12: Amplitude-modulated, quasiperiodic motions on a torus.

periodic orbits in the system. The main resonance occurs near γ = 1 when
the forcing amplitude is small and corresponds to the period one orbits in the
system, those orbits whose period equals the forcing period. The secondary
resonances are located near some rational fraction of the main resonance and
are associated with periodic motions whose period is a rational fraction of
γ. These periodic orbits (denoted by x̄) can often be approximated to first
order by a sinusoidal function of the form

x̄m,n(τ) ≈ A cos(
m

n
τ + δ), (3.35)

where A is the amplitude of the periodic orbit, (m/n) is its frequency, and
δ is the phase shift. These periodic motions are classified by the integers m
and n as follows (m 6= 1, n 6= 1):

γ = ω/ω0 = m, an ultraharmonic,
γ = ω/ω0 = 1/n, a subharmonic,
γ = ω/ω0 = m/n, an ultrasubharmonic.

Equation (3.35) is used as the starting point for the method of harmonic
balance, a pragmatic technique that takes a trigonometric series as the basis
for an approximate solution to the periodic orbits of a nonlinear system (see
Prob. 3.12) [11]. It is also possible to have solutions to differential equations
involving frequencies that are not rationally related. Such orbits resemble
amplitude-modulated motions and are generally known as quasiperiodic mo-
tions (see Figure 3.12). A more complete account of nonlinear resonance
theory is found in Nayfeh and Mook [10]. Parlitz and Lauterborn also pro-
vide several details about the nonlinear resonance structure of the Duffing
oscillator [15].
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3.5.3 Response Curve

In this section we focus on understanding the hysteresis found at the main
resonance of the Duffing oscillator because hysteresis at the main resonance
and at some secondary resonances is easy to observe experimentally. The
results in this section can also be derived by the method of harmonic balance
by taking m = n = 1 in equation (3.35); however, we will use a more general
method that is computationally a little simpler.

We generally expect that in a nonlinear system the maximum response
frequency will be detuned from its natural frequency. An estimate for this
detuning in the undamped, free cubic oscillator,

x′′ + (1 + βx2)x = 0, (3.36)

is obtained by studying this equation by the method of slowly varying am-
plitude [16]. Write4

x(τ) =
1

2
[A(τ)eiγτ + A∗(τ)e−iγτ ] (3.37)

and substitute equation (3.37) into equation (3.36) while assuming A(τ)
varies slowly in the sense that |A′′| << γ2A. Then equation (3.36) is ap-
proximated by

(2iγ)A′ + (1− γ2 +
3β

4
|A|2)A = 0, (3.38)

where we ignore all terms not at the driving frequency. Equation (3.38) has
a steady-state solution in A, denoted by a ∈ R. In this case,

γ2 = 1 +
3β

4
|a|2, (3.39)

since A′ = 0, and [17]
x̄(τ) = a cos(γτ) . (3.40)

To first order, the strength of the nonlinearity increases the normalized fre-
quency by an amount depending on the amplitude of oscillation and the
nonlinearity parameter. This approximate value for a Duffing oscillator is

4If we write A(τ) = a(τ) + ib(τ), and A∗(τ) = a(τ) − ib(τ), then it is easy to show
from Euler’s identity that x(τ) = a(τ) cos(γτ) − b(τ) sin(γτ). Thus, the use of complex
numbers is not essential in this calculation; it is merely a trick that simplifies some of the
manipulations with the sinusoidal functions.
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consistent with the results found in Appendix B where exact solutions for a
cubic oscillator are presented.

Hysteresis is discovered when we apply the slowly varying amplitude ap-
proximation to the forced, damped Duffing equation,

x′′ + αx′ + [1 + βx2]x = F cos(γτ). (3.41)

Substituting equation (3.37) into equation (3.41), and again keeping only the
terms at the first harmonic, we arrive at the complex amplitude equation

(α + 2iγ)A′ +

(
1− γ2 + iαγ +

3β

4
|A|2

)
A = F, (3.42)

which in steady-state (A′ = 0) becomes(
1− γ2 + iαγ +

3β

4
|Ā|2

)
Ā = F. (3.43)

To find the set of real equations for the steady state, write the complex
amplitude in the form

Ā = ae−iδ , (3.44)

where both a and δ are real constants. Then equation (3.43) separates into
two real equations,

αγa = F sin δ (3.45)

and

(1− γ2 +
3β

4
a2)a = F cos δ, (3.46)

which collectively determine both the phase and the amplitude of the re-
sponse. Squaring both equations (3.45) and (3.46) and then adding the
results, we obtain a cubic equation in a2,

[(αγ)2 + (1− γ2 +
3β

4
a2)2]a2 = F 2, (3.47)

illustrated in Figure 3.10, which is known as the response curve. In this
approximation the steady-state response is given by

x̄ = a cos(γτ − δ), (3.48)

where a is the maximum amplitude of the harmonic response determined
from equation (3.47) and δ is the phase shift determined from equations
(3.45 and 3.46).
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3.5.4 Hysteresis

The response curve shown in Figure 3.10 is a plot of a versus γ calculated
from equation (3.47), the nonlinear phase–amplitude relation. This curve
shows that the string can exhibit hysteresis near a primary resonance; a slow
scan of the variable γ (the so-called quasistatic approximation) results in a
sudden jump between the two stable solutions indicated by the solid lines
in Figure 3.10. The jump from the upper branch to the lower branch takes
place at γu. The jump from the lower branch to the upper branch takes place
at γl.

In the parameter regime γl < γ < γu, the response curve reveals the
coexistence of three periodic orbits at the same frequency, but with different
amplitudes. All these orbits are possible solutions to equation (3.47) for the
values of a indicated in the diagram. All three orbits are harmonic responses
(or period one orbits) since their frequency equals the forcing frequency. The
middle solution, indicated by the dashed line in Figure 3.10, is an unstable
periodic orbit.

3.5.5 Basins of Attraction

In a linear system with damping, the attracting periodic orbit is independent
of the initial conditions. In contrast, the existence of two or more stable
periodic orbits for the same parameter values in a nonlinear system indicates
that the initial conditions play a critical role in determining the system’s
overall response. These attracting periodic orbits are called limit cycles, and
their global stability is determined by constructing their basins of attraction.
A very nice three-dimensional picture of the basins of attraction for the two
stable periodic orbits found in the Duffing oscillator is presented by Abraham
and Shaw [18]. However, this picture of the basins of attraction within the
three-dimensional flow is very intricate. An equivalent picture of the basins
of attraction constructed with a two-dimensional cross section and a Poincaré
map is easier to understand.

A schematic for the basins of attraction in a Duffing oscillator with three
coexisting orbits is portrayed in Figure 3.13. The cross section shows two
stable orbits, P1 and P3, and one unstable orbit, P2. In the region surrounding
the inset of P2, a small change in the initial conditions can produce a large
change in the response of the system since initial conditions in this region can
go to either attracting periodic orbit. The unstable periodic orbit indicated
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Figure 3.13: Schematic of the basins of attraction in the Duffing oscillator.
(Adapted from Hayashi [11].)

by P2 is a saddle fixed point in the Poincaré map, and the stable periodic
orbits are sinks in the Poincaré map.

The inset of the saddle is the collection of all points that approach P2.
This inset divides the Poincaré map into two distinct regions: the initial
conditions that approach P1 and the initial conditions that approach P3.
That is, the inset to the saddle determines the boundary separating the two
basins of attraction. Again, we see the importance of keeping track of the
unstable solutions, as well as the stable solutions, when analyzing a nonlinear
system. Figure 3.14(a) should be compared to—but not confused with—
Figure 3.6(e), the phase plane for the unforced, damped Duffing oscillator.
In the Poincaré map each fixed point represents an entire periodic orbit, not
just an equilibrium point of the flow as in Figure 3.6. More importantly, in
the Poincaré map, the inset to the saddle point at P2 is not a trajectory of
the flow. Rather, it is the collection of all initial conditions that converge
to P2. The approach of a single orbit toward P2 is a sequence of discrete
points, indicated by the crosses (×) in Figure 3.13. In general, the inset and
the outset of the saddle represent an infinite continuum of distinct orbits, all
of which share a common property: namely, they arrive at or depart from a
periodic point of the map.
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Figure 3.14: Schematic of a homoclinic tangle in the Duffing oscillator.

3.6 Homoclinic Tangles

Figure 3.13 shows the Poincaré map for the flow arising in the Duffing oscil-
lator in a parameter region where hysteresis exists. We see that the inset to
P2 consists of two different curves. Similarly, the outset of P2 also consists
of two different curves. One branch of the outset approaches P1, while the
other branch approaches P3. The inset and the outset of the saddle are not
trajectories in the flow, so they can intersect without violating a fundamental
theorem of ordinary differential equations, the unique dependence of an orbit
with respect to initial conditions.

It is possible to find parameter values so that the inset and the outset
of the saddle point at P2 do indeed cross. A self-intersection of the inset
of a saddle with its outset is illustrated in Figure 3.14(b) and, as originally
observed by Poincaré, it always gives rise to wild oscillations about the saddle
(see section 4.6.2).

Such a self-intersection of the inset of a saddle with its outset is called a
homoclinic intersection, and it is a fundamental mechanism by which chaos
is created in a nonlinear dynamical system. The reason is roughly the follow-
ing. Consider a point at a crossing of the inset and the outset indicated by
the point I in Figure 3.14(b). By definition, this point is part of an orbit that
approaches the saddle by both its inset and its outset; that is, it is doubly
asymptotic. Consider the next intersection point of I with the cross section,
P 1(I). This point must lie on the inset at a point closer to the saddle. Next,
the second iterate of I under the Poincaré map, P 2(I), must be even closer
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to the saddle. Similarly, the preimage of I approaches the saddle along the
outset of the saddle. The outset and inset get bunched up near the saddle,
creating an image known as a homoclinic tangle. Homoclinic tangles beat
at the heart of chaos because, in the region of a homoclinic tangle, initial
conditions are subject to a violent stretching and folding process, the two
essential ingredients for chaos. A marvelous pictorial description of homo-
clinic tangles along with an explanation as to their importance in dynamical
systems is presented by Abraham and Shaw [18].

Homoclinic tangles are often associated with the existence of strange sets
in a system. Indeed, it is thought that in many instances a strange attractor
is nothing but the closure5 of the outset of some saddle when this outset is
bunched up in a homoclinic tangle. Figure 3.15(a) shows the cross section
for a strange attractor of the Duffing oscillator. Figure 3.15(b) shows the
cross section of the outset of the period one saddle in this strange set for the
exact same parameter values. The resemblance between these two structures
is striking. Indeed, developing methods to dissect homoclinic tangles will be
central to the study of chaos in low-dimensional nonlinear systems. In fact,
one could call it the problem of low-dimensional chaos.

3.7 Nonplanar Motions

Additional dynamical possibilities arise when we consider nonplanar string
vibrations. These vibrations are also easy to excite with the string apparatus
described in section 3.2. When a nonmagnetic wire is used, out-of-plane mo-
tions are observed which are sometimes called ballooning or whirling motions.
These nonplanar vibrations arise even when the excitation is only planar.

Indeed, ballooning motions are hard to avoid. Imagine scanning the forc-
ing frequency of the string apparatus through a resonance. The response of
the string increases as the resonance frequency is approached, and the follow-
ing behavior is typically observed. Well below the resonance frequency, the
string responds with a planar, periodic oscillation (Fig. 3.16(a)). As the forc-
ing frequency is increased, the amplitude of the response also grows until the
string “pops out of the plane” and begins to move in a nonplanar, elliptical,
periodic pattern (Fig. 3.16(b)). That is, the string undergoes a bifurcation
from a planar to a nonplanar oscillation. At a still higher frequency the el-

5The closure of a set X is the smallest closed set that is a superset of X.
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Figure 3.15: Comparison of a strange attractor and the outset of a period
one saddle in the Duffing oscillator.
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Figure 3.16: Planar periodic, elliptical (nonplanar) periodic, and precessing
(quasiperiodic) motions of a string.

liptical periodic orbit becomes unstable and begins to precess, as illustrated
in Figure 3.16(c).

We will present a more complete qualitative account of these whirling
motions in section 3.7.2, which is based on the recent work of Johnson and
Bajaj [19], Miles [20], and O’Reilly [21]. Now, though, we turn our attention
to the whirling motion that occurs when no forcing is present.

3.7.1 Free Whirling

If we pluck a string hard and look closely, we typically see the string whirling
around in an elliptical pattern with a diminishing amplitude. Some under-
standing of these motions is obtained by considering the free planar oscilla-
tions of a string modeled by the two-dimensional equation

r̈ + λṙ + ω2
0(1 +Kr2)r = 0, (3.49)

which is equation (3.7) with no forcing term. We noted in section 3.3 that
the linear approximation to equation (3.7) results in elliptical motion (eq.
(3.13)). We shall use this observation to calculate an approximate solution
to equation (3.49) using a procedure put forth by Gough [2]; similar results
were obtained by Elliot [9].

Transform the problem of nonlinear free vibrations to a reference frame
rotating with an angular frequency Ω, with Ω to be determined. In this
rotating frame, equation (3.49) becomes

ü + λu̇ + 2Ω× u̇ + λΩ× u− Ω2u + ω2
0(1 +Ku2)u = 0, (3.50)
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where u is the new radial displacement vector, subjected to the addition of
Coriolis and centrifugal accelerations. Let us now look for a solution of the
form

u(t) = [x(t), y(t)] =

e−λt/2[X1 cos ω̃t+X3 cos 3ω̃t, Y1 sin ω̃t+ Y3 sin 3ω̃t], (3.51)

where X3 and Y3 are small compared to X1 and Y1. Looking at the x co-
ordinate only, when we substitute equation (3.51) into equation (3.50) and
discard appropriate higher-order terms, we get

(ω2
0 − Ω2 − ω̃2)X1 cos ω̃t+ (ω2

0 − Ω2 − 9ω̃2)X3 cos 3ω̃t−
2Ωω̃Y1 cos ω̃t+ ω2

0K(X2
1 cos2 ω̃t+ Y 2

1 sin2 ω̃t)e−λtX1 cos ω̃t = 0;

a similar relation holds for the y coordinate. On equating sinusoidal terms
of the same frequency we—after considerable algebra—discover

ω̃2 = ω2
0

[
1 +

3K

4
(X2

1 + Y 2
1 )e−λt

]
− Ω2, (3.52)

ω̃Ω

ω2
0

=
−K

4
X1Y1e−λt, (3.53)

and
X3

X1

=
Y3

Y1

=
(
K

4

)
ω2

0(X2
1 − Y 2

1 )e−λt

(9ω̃2 − ω2
0 + Ω2)

. (3.54)

If there is no damping (λ = 0), then this approximate solution is periodic
in the rotating reference frame and is slightly distorted from an elliptical
orbit. The angular frequency ω̃ is detuned from ω0 by an amount proportional
to the mean-square radius X2

1 +Y 2
1 . In the original stationary reference frame,

equation (3.53) shows us that the orbit precesses at a rate Ω proportional
to the orbital area πX1Y1. The angular frequency ω̃ in equations (3.52) to
(3.54) is measured in the rotating reference frame. It is related to the angular
frequency in the stationary reference frame ω by

ω2 = (ω̃ + Ω)2 = ω2
0

{
1 +

K

4
[3(X2

1 + Y 2
1 )− 2X1Y1]e−λt

}
. (3.55)

Thus, in the stationary reference frame, the undamped motion is quasiperi-
odic unless ω̃ and Ω are accidentally commensurate, in which case the orbit is
periodic. The damped oscillations are also elliptical in character and precess
at a rate Ω. In both cases, the detuning given by equation (3.55) is due to
two sources: the nonlinear planar motion detuning plus a detuning resulting
from the precessional frequency.
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3.7.2 Response Curve

The case of whirling motions subject to a planar excitation is described by
the equation

r̈ + λṙ + ω2
0(1 +Kr2)r = (A cosωt, 0), (3.56)

where the phase space is four-dimensional: (x, vx, y, vy) ∈ R4. The ex-
tended phase space, when we add the forcing variable, is five-dimen-sional:
(x, vx, y, vy, θ) ∈ R4 × S1.

Equation (3.56) can be analyzed for periodic motions by a combination of
averaging and algebraic techniques not unlike the harmonic balance method.
Because our text is an experimental introduction to nonlinear dynamics, we
present here a qualitative description of the results of this analysis. For
further details see references [19], [20], and [21].

As mentioned in the introduction to this section, an experimental fre-
quency scan that passes through a main resonance can result in the following
sequence of motions:
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Figure 3.17: Response curve for planar and nonplanar motion. (Adapted
from Johnson and Bajaj [19].)

planar periodic −→ nonplanar periodic −→
planar periodic,
quasiperiodic
(precessing elliptical orbit),
chaotic


−→ jump to small-amplitude planar motions.

The basic features of these experimental observations agree with those pre-
dicted by equation (3.56), and are summarized in the response curve shown
in Figure 3.17.

In the parameter range γl < γ < γu, the response curve indicates the
coexistence of three planar periodic motions and one nonplanar periodic or-
bit. In this parameter regime, the planar periodic orbit becomes unstable;
the string “pops out of the plane” and begins to execute a whirling motion.
At some parameter value γq, the nonplanar periodic motion itself becomes
unstable and the system may do any number of things depending on the
exact system parameters and initial conditions. For instance, it may hop to
the small-amplitude planar periodic orbit. Or the ballooning orbit itself may
become unstable and begin to precess (quasiperiodic motion). In addition,
chaotic motions can sometimes be observed in this parameter range. These
various dynamical possibilities are illustrated schematically in Figure 3.17.
We repeat, the motion observed depends on the exact system parameters and
the initial conditions, because there can be many coexisting attractors with
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complicated basins of attraction in this region. In particular, the chaotic mo-
tions are difficult to isolate (and observe experimentally) without a thorough
understanding of the system.

3.7.3 Torus Attractor

To construct a cross section for nonplanar periodic motion we could imagine
a plot of the position of the center of the string, and the forcing phase,
(x, y, θ) ∈ R2×S1 (Fig. 3.18). A map can be associated to an orbit in R2×S1

by recording the position of the orbit once each forcing period. Although this
map is not a true Poincaré map, it is easy to obtain experimentally and will
be useful in explaining the notion of a torus attractor (see section 3.8.1).6

An elliptical periodic orbit in the flow is represented in this cross section
by a discrete set of points that lie on a closed curve. This curve is topologi-
cally a circle, S1 (Fig. 3.18(b)). Similarly, a precessing ellipse (quasiperiodic
motion) can generate an infinite number of points; these points fill out this
circle (Fig. 3.18(c)).

In the extended space (x, y, θ), this quasiperiodic motion represents a
dense winding of a torus as shown in Figure 3.18(d). Topologically, a torus is
a space constructed from the Cartesian product of two circles, T 2 = S1×S1.
In general, an n torus is constructed from n copies of a circle,

T n =

n︷ ︸︸ ︷
S1 × S1 · · · × S1,

and a torus attractor naturally arises whenever quasiperiodic motion is en-
countered in a dissipative dynamical system.7 The torus is an attractor
because it is an invariant set and an attracting limit set. This is illustrated
in Figure 3.19, which shows how orbits are attracted to a torus. A graph of
a quasiperiodic orbit on a torus attractor is an amplitude-modulated time
series (Fig. 3.12).

6A proper cross section would be a manifold transverse to the flow in R4 × S1, i.e., a
four manifold such as Σ = {(x, vx, y, vy, θ) | θ = 0}. The torus attractor arises from a Hopf
bifurcation—a bifurcation from a fixed point to an invariant curve. In a cross section, the
limit cycle is represented by a fixed point. At the transition to quasiperiodic motion, this
fixed point loses stability and gives birth to an invariant circle, which is a cross section of
the torus in the flow.

7The attracting torus for nonplanar string vibrations is actually a four torus, T 4.
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Figure 3.18: Experimental cross section for the nonplanar string vibrations.

3.7.4 Circle Map

We found that the single-humped map of the interval, fλ : I −→ I, was
a good model for some aspects of the dynamics of the bouncing ball sys-
tem. Similarly, insight about motion near a torus attractor can be gained by
studying a circle map,

g : S1 −→ S1,

where the mapping g most often studied is a two-parameter map of the form

θn+1 = g(θn) = θn + Ω− K

2π
sin(2πθn), θn ∈ [0, 1). (3.57)

This map has a linear term θn, a constant bias term Ω, and a nonlinear term
whose strength is determined by the constant K.

The frequency of the circle map is monitored by the winding number

W = lim
n→∞

gnΩ,K(θ)− θ
n

. (3.58)
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Σ

Figure 3.19: Torus attractor.

If the nonlinear term K equals zero, then W = Ω. The winding number
measures the average increase in the angle θ per unit time (Fig. 3.20). An
orbit of the circle map is periodic if, after q iterations, θn+q = θn + p, for
integers p and q. The winding number for a periodic orbit is W = p/q. A
quasiperiodic orbit has an irrational winding number [22]. Circle maps have
a devilish dynamical structure, which is explored in reference [22].

3.7.5 Torus Doubling

A nonlinear system can make a transition from quasiperiodic motion directly
to chaos. This is known as the quasiperiodic route to chaos. It is of great
practical and historical importance since it was one of the first proposed
mechanisms leading to the formation of a strange attractor [23].

There are, in fact, many routes to chaos even from a humble T 2 torus
attractor. For instance, when the T 2 attractor loses stability, a stable higher-
dimensional torus attractor sometimes forms. Another possibility in the
string system is the formation of a doubled torus, illustrated schematically in
Figure 3.21. In the torus doubling route to chaos, our original torus (which
is a closed curve in cross section) appears to split into two circles at the
torus doubling bifurcation point [24]. The torus doubling route to chaos is
reminiscent of the period doubling route to chaos. However, it differs in at
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Figure 3.20: The winding number measures the average increase in the angle
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Figure 3.21: Schematic of a torus doubling bifurcation.
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least two significant ways. First, in most experimental systems, there are
only a finite number of torus doublings before the onset of chaotic motion.
In fact, no more than two torus doublings have ever been observed in the
string experiment. Second, the torus doubling route to chaos is a higher-
dimensional phenomenon, requiring at least a four-dimensional flow, or a
three-dimensional map. It is not observed in one-dimensional maps, unlike
the period doubling route to chaos.

Now that we have reviewed some of the more salient dynamical features
of a string’s motions, let’s turn our attention to assembling the tools required
to view these motions in a real string experiment.

3.8 Experimental Techniques

The dynamics of a forced string raises experimental challenges common to
a variety of nonlinear systems. In this section we describe a few of the
experimental diagnostics that help with the visualization and identification
of different attractors, such as:

equilibrium points

limit cycles (periodic orbits)

invariant tori (quasiperiodic orbits)

strange attractors (chaotic orbits)

The main tools used in the real-time identification of an attractor are Fourier
power spectra and real-time Poincaré maps. In addition, the correlation
dimension calculated from an experimental time series helps to confirm the
existence of a strange attractor, as well as providing a measure of its fractal
structure.

The terms “strange attractor” and “chaotic attractor” are not always
interchangeable. Specifically, a strange attractor is an attractor that is a
fractal. That is, the term strange refers to a static geometric property of the
attractor. The term chaotic attractor refers to an attractor whose motions
exhibit sensitive dependence on initial conditions. That is, the term chaotic
refers to the dynamics on the attractor. We mention this distinction because
it is possible for an attractor to be strange (a fractal), but not chaotic (exhibit
sensitive dependence on initial conditions) [25]. Experimental methods are
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available for quantifying both the geometric structure of an attractor (fractal
dimensions) and the dynamic properties of orbits on an attractor (Lyapunov
exponents).

3.8.1 Experimental Cross Section

Variables measured directly in the string apparatus include the forcing phase,
θ(t), and the displacement amplitudes of the string, x(t) and y(t). The phase
is measured directly from the function generator that provides the sinusoidal
current to the wire. The string displacement is measured from the optical
detectors that record the horizontal and vertical displacement at a fixed point
along the wire. In addition, the wire’s velocity can be measured by sending
the amplitude displacement signal through a differentiator, a circuit that
takes the analog derivative of an input signal.

Many approaches are possible for constructing an experimental Poincaré
section. The particular approach taken depends on both the type of system
and the equipment at hand. Here, we assume that the lab is stocked with
a dual-trace storage oscilloscope and some basic electronic components. A
different approach might be taken, for instance, if we have access to a digital
oscilloscope either in the form of a commercial instrument or a plug-in board
to a microcomputer.

Planar Cross Section

We will record the Poincaré section on the storage oscilloscope. Our first step
is to adjust the optical detectors so that the axis for a purely planar vibration
is well aligned with one of the optical detectors. Next, the signal from this
optical detector is sent to one of the input channels of the oscilloscope. The
other channel is used to record the velocity, via the differentiator, of this
same signal. Lastly, the time-base on the oscilloscope must be set to X-Y
mode, thereby allowing both the horizontal and vertical oscilloscope sweeps
to be controlled by the external signals.

The result, as shown schematically in the oscilloscope in Figure 3.22, is
an experimental rendering of the phase space trajectory for a string. To con-
struct a Poincaré map, we need to sample this trajectory once each forcing
period. That is, instead of recording the entire trajectory, we only want to
record a sequence of points on this trajectory. This can be accomplished by
turning the oscilloscope’s beam intensity on for a brief moment once each
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Figure 3.22: Schematic for the construction of an experimental Poincaré map
for the string apparatus.

forcing period. This is easy to do because on the back of most oscilloscopes
is an analog input line labeled “z” that controls the oscilloscope’s beam in-
tensity. Finally, we need a triggering circuit that takes as input the sinusoidal
forcing signal and generates as output a clock pulse, which is used to briefly
turn on the oscilloscope’s beam once each forcing period.

Triggering Circuit

A simple triggering circuit can be constructed from a monostable vibrator and
a Schmitt trigger. Here, though, we describe a slightly more sophisticated
approach based on a phase-locked loop (PLL). The phase-locked loop circuit
has the advantage that it allows us to trigger more than once each forcing
period. This feature will be useful when we come to digitizing a signal because
the phase-locked loop circuit can be used to trigger a digitizer an integer
number k times each forcing period, thereby giving us k samples of the
trajectory each cycle.

A good account of all things electronic, including phase-locked loops, is
presented in the book by Horowitz and Hill, The art of electronics. For our
purposes, a phase-locked loop chip contains a phase detector, an amplifier,
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Figure 3.23: Triggering circuit used to construct a Poincaré map in the string
apparatus. (Courtesy of K. Adams and T. C. A. Molteno.)

and a voltage-controlled oscillator (VCO), in one package. A PLL, when used
in conjunction with a stage counter, generates a clock signal (or triggering
pulse) that is ideal for constructing a Poincaré section. A schematic of the
triggering circuit used with the string apparatus is presented in Figure 3.23,
and is constructed from two off-the-shelf chips: a CMOS 4046 PLL and
a 4040 stage counter. This circuit, with small adjustments, is useful for
generating a triggering signal in any forced system. The counter is set to one
for a Poincaré section; that is, it generates one pulse each period. It can be
readjusted to produce k pulses per period when digitizing.

Nonplanar Cross Section

To generate an experimental cross section for nonplanar motions we replace
the vx(t) input to the oscilloscope with the output y(t) from the second dis-
placement detector. The resulting plot on the oscilloscope is proportional to
the actual horizontal and vertical displacement of the string, thus providing
us with a magnified view of the string’s whirling.
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3.8.2 Embedding

In the string system there is no difficulty in specifying and measuring the
major system variables. Usually, though, we are not so lucky. Imagine an
experimental dynamical system as a black box that generates a time series,
x(t). In practice, we may know little about the process inside the black box.
Therefore, the experimental construction of a phase space trajectory, or a
Poincaré map, seems very problematic.

One approach to this problem—the experimental reconstruction of a
phase space trajectory—is as follows. We start out by assuming that the time
series is produced by a deterministic dynamical system that can be modeled
by some nth-order ordinary differential equation. For this particular example
we assume that the system is modeled by a third-order differential system,
as is the case for planar string vibrations. Then a given trajectory of the
system is uniquely specified by the value of the time series and its first and
second derivatives at time t0 = 0:

x(t0), ẋ(t0), ẍ(t0).

This suggests that in reconstructing the phase space we can begin with our
measured time series, and then use x(t) to calculate two new phase space
variables y(x(t)) and z(x(t)) defined by

y(t) =
d

dt
x(t),

z(t) =
d

dt
y(t).

In estimating the pointwise derivatives of x(t) in an experiment we can
proceed in at least two ways: first, we can process the original signal through
a differentiator, and then record (digitize) the original signal along with the
differentiated signals; or second, we could digitize the signal, and then com-
pute the derivatives numerically. While both techniques are feasible, each is
fraught with experimental difficulties because differentiation is an inherently
noisy process. This is because approximating a derivative often involves tak-
ing the difference of two numbers that are close in value. To see this, consider
the numerical derivative of a digitized time series {x(ti)} defined by

yi =
xi − xi−1

ti − ti−1

. (3.59)
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For instance, let xi−1 = 1.0 ± 0.1, xi = 1.1 ± 0.1, and ti − ti−1 = 1. Then
yi = 0.1±0.2; that is, the value of the first derivative is already buried in the
noise, and the problem just gets worse when taking higher-order derivatives.

However, let’s look at equation (3.59) again. If the sampling time is
evenly spaced, then ti − ti−1 is constant, so

yi ∝ xi − xi−1.

That is, almost all the information about the derivative is contained in a
variable constructed by taking the difference of two points in the original time
series {x(ti)}. This idea can be generalized as follows. Instead of defining the
new variables for the reconstructed phase space in terms of the derivatives,
we can recover almost all of the same information about an orbit from the
embedded variables defined by [26]:

yi = xi−r, (3.60)

zi = xi−s, s 6= r, (3.61)

where r and s are integers. Each new embedded variable is defined by taking
a time delay of the original time series. Clearly, any number of embedded
variables can be created in this way, and this method can be used to recon-
struct a phase space of dimension far greater than three.

There are many technical issues associated with the construction of an
embedded phase space. An in-depth discussion of these issues can be found
in reference [1]. The first concern is determining a good choice for the delay
times, r and s. One rule of thumb is to take r to be small, say 3 or 4. In
fact, we could define the second variable as

vi = xi − xi−r, (3.62)

and think of it as a velocity variable. The second embedding time should
be much larger than r, but not too large. To be more specific, consider the
planar oscillations of a string again. In this example a natural cycle time is
given by the period of the forcing term. A good choice for s is some sizable
fraction of the cycle time. For instance, let’s say our digitizer is set to sample
the signal 64 times each period. Then a sensible choice for r might be 4, and
for s might be 16, or one-quarter of the forcing period. Figure 3.24 shows
a plot of a chaotic trajectory in the Duffing oscillator in both the original
phase space and the phase space reconstructed from the embedding variables.
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Figure 3.24: Trajectory of the Duffing oscillator in (a) phase space and (b)
the embedded phase space with delay time τ = 0.8.

The similarity of the two representations lends support to the claim that a
trajectory in the embedded phase space provides a faithful representation of
the dynamics.

Constructing a real-time two-dimensional embedded phase space is straight-
forward. An embedded signal is obtained by sending the original signal
through a delay line. The current signal and the delayed signal are sent to
the oscilloscope, thereby giving us a real-time representation of the phase
space dynamics from our black box.

3.8.3 Power Spectrum

A signal from a nonlinear process is a function of time which we will call F (t)
in this section. It is possible to develop signatures for periodic, quasiperi-
odic, and chaotic signals by analyzing the periodic properties of F (t). These
signatures, which are based on Fourier analysis, are valuable experimental
aids in identifying different types of attractors.

Fourier Series

To analyze the periodic properties of F (t) it is useful to uncover a functional
representation of the signal in terms of the orthogonal functions cos(2πt/L)
and sin(2πt/L) of period L. To determine the Fourier series for F (t) we
must find the constants ak and bk so that the following identity holds [27]:

F (t) =
a0

2
+ a1 cos

2π

L
t+ b1 sin

2π

L
t
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F (t  )

Figure 3.25: Digitized time series.

+ a2 cos
2π

L
2t+ b2 sin

2π

L
2t+ · · · . (3.63)

Fourier showed that the constants ak and bk in equation (3.63) are computed
from F (t) by means of the integral formulas

ak =
2

L

∫ L

0
F (t) cos

(
2π

L
kt
)
dt k = 0, 1, 2, 3, . . . (3.64)

and

bk =
2

L

∫ L

0
F (t) sin

(
2π

L
kt
)
dt k = 1, 2, 3, 4, . . . . (3.65)

Finite Fourier Series

In equations (3.63–3.65) we are assuming that F (t) is a continuous function of
t. Equations (3.64) and (3.65) dictate that to calculate the kth constants, ak
and bk in the Fourier series (eq. (3.63)), we substitute F (t) into the previous
equations and integrate. In experiments with digitized data, the signal we
actually work with is an equally spaced discrete set of points, F (tp), measured
at the set of times {tp} (Fig. 3.25). Therefore, we need to develop a discrete
analog to the Fourier series, the finite Fourier series.

Let us consider an even number of points per period, 2N . Then the 2N
sample points are measured at

0,
L

2N
,

2L

2N
, . . . ,

(2N − 1)L

2N
,

or more succinctly,

tp =
pL

2N
, p = 0, 1, 2, . . . , 2N − 1. (3.66)
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The finite Fourier series for a function sampled at F (tp) is

F (t) =
A0

2
+

N−1∑
k=1

(
Ak cos

2π

L
kt+Bk sin

2π

L
kt
)

+
AN
2

cos
2π

L
Nt, (3.67)

where

Ak =
1

N

2N−1∑
p=0

F (tp) cos
2π

L
ktp, k = 0, 1, . . . , N (3.68)

and

Bk =
1

N

2N−1∑
p=0

F (tp) sin
2π

L
ktp, k = 1, 2, . . . , N − 1. (3.69)

In the above formulas, we assumed that the function is sampled at 2N
points, that the value at the point 2N + 1 is L, and that the endpoints 0 and
L satisfy the periodic boundary condition,

F (0) = F (L).

If the latter assumption does not hold, the convention is to average the values
at the endpoints so that the value at F (0) is taken to be

F (0) + F (L)

2
.

In this case the formulas for the coefficients are

Ak =
1

N

F (0)

2
+

2N−1∑
p=1

F (tp) cos
2π

L
ktp +

F (L)

2

 (3.70)

and

Bk =
1

N

2N−1∑
p=1

F (tp) sin
2π

L
ktp. (3.71)

Equations (3.68 and 3.69) can be viewed as a transform or mapping.
That is, given a set of numbers F (tp), these relations generate two new sets
of numbers, A(k) and B(k). It is easy to program this transform. The code
to calculate the discrete Fourier transform of F (tp) involves a double loop
(see eqs. (3.68 and 3.69)): the inner loop cycles through the index k, and
the outer loop covers the index p. Each loop has order N steps, so the
total number of computations is of order N2. The discrete Fourier transform
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is, therefore, quite slow for large N (say N > 500) (see Appendix D for
programs to calculate discrete Fourier transforms). Fortunately, there exists
an alternative method for calculating the Fourier transform called the fast
Fourier transform or FFT. The FFT is an N lnN computation, which is much
faster than the discrete Fourier for large data sets. A detailed explanation
of the FFT along with C code examples is found in Numerical Recipes [28].

Power Spectrum

The amplitude coefficients Ak and Bk give us a measure of how well the signal
fits the kth sinusoidal term. A plot of Ak versus k or Bk versus k is called a
frequency spectrum. The power spectrum amplitude is defined by

Hk =
1

2

(
A2
k +B2

k

)
. (3.72)

A plot of Hk versus k is called the power spectrum. This graphical represen-
tation tells us how much of a given frequency is in the original signal.

Experimental power spectra can be obtained in at least three ways: (i)
obtain a spectrum analyzer or signal analyzer, which is a commercial instru-
ment dedicated to displaying real-time power spectra;8 (ii) obtain a signal
analyzer card for a microcomputer (this is usually less expensive than option
(i)); or (iii) digitize your data and write an FFT for your computer (this
option is the cheapest). Having successfully procured spectra capabilities,
we now move on to describing how to use them.

Spectral Signatures

The spectral signatures for periodic, quasiperiodic, and chaotic motion are
illustrated in Figure 3.26. The power spectrum of a period one orbit is dom-
inated by one central peak, call it ω1. The power spectrum of a period two
orbit also has a sharp peak at ω1, and additional peaks at the subharmonic
ω/2 and the ultrasubharmonic 3ω/2. These new spectral peaks are the “side-
bands” about the primary frequency that come into existence through, say,

8All things are fair in love, war, and experimental physics. Methods to obtain a spec-
trum analyzer may include: (a) locating and “nationalizing” a spectrum analyzer from a
nearby laboratory, or (b) locating and appropriating a spectrum analyzer on grounds of
“national security.” Another option is to use an older model spectrum analyzer, such as
a Tektronix 1L5 spectrum analyzer which plugs into an older model Tek scope.
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Time Series Power Spectrum
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Figure 3.26: Time series and power spectra: (a) periodic (period one), (b)
periodic (period two), (c) quasiperiodic, (d) chaotic.
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a period doubling bifurcation of the period one orbit. More generally, the
power spectrum of a period n orbit consists of a collection of discrete peaks
showing the primary frequency and its overtones. In periodic motion, all the
peaks are rationally related to the primary peak (resonance).

Quasiperiodic motion is characterized by the coexistence of two incom-
mensurate frequencies. Thus, the power spectrum for a quasiperiodic motion
is made up from at least two primary peaks, ω1 and ω2, which are not ratio-
nally related. Additionally, each of the primary peaks can have a complicated
overtone spectrum. The mixing of the overtone spectra from ω1 and ω2 usu-
ally allows one to distinguish periodic motion from quasiperiodic motion. A
quick examination of the time series, or the Poincaré section, can also help
to distinguish periodic motion from quasiperiodic motion.

The power spectrum of a chaotic motion is easy to distinguish from peri-
odic or quasiperiodic motion. Chaotic motion has a broad-band power spec-
trum with a rich spectral structure. The broad-band nature of the chaotic
power spectrum indicates the existence of a continuum of frequencies. A
purely random or noisy process also has a broad-band power spectrum, so
we need to develop methods to distinguish noise from chaos. In addition
to its broad-band feature, a chaotic power spectrum can also have many
broad peaks at the nonlinear resonances of the system. These nonlinear res-
onances are directly related to the unstable periodic orbits embedded within
the chaotic attractor. So the power spectrum of a chaotic attractor does
provide some limited information concerning the dynamics of the system,
namely, the existence of unstable periodic orbits (nonlinear resonances) that
strongly influence the recurrence properties of the chaotic orbit.

Additionally, in the periodic and quasiperiodic regimes, new humps and
peaks can appear in a power spectrum whenever the system is near a bi-
furcation point. These spectral features are called transient precursors of
a bifurcation. A detailed theory of these precursors with many practical
applications has been developed by Wiesenfeld and co-workers [29].

3.8.4 Attractor Identification

So far we have discussed four measurements that allow us to visualize and
identify the attractor coming from a nonlinear process:

time series

power spectra
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phase space portrait, or reconstructed phase space

experimental Poincaré sections

All these qualitative techniques can be set up with instruments that are
commonly available in any laboratory.

To get a time series we hook up the output signal from the nonlinear
process to an input channel of the oscilloscope and use the time base of the
scope to generate the temporal dimension of the plot. To obtain a power
spectrum, we use a spectrum analyzer or digitize the data and use an FFT.
An experimental phase space portrait can be plotted on an oscilloscope either
by recording two system variables directly, such as (x, y) or (x, ẋ), or from the
delayed variable (x(t), x(t−τ)), where τ is the delay time. Lastly, in a forced
system, the Poincaré section is obtained from the phase space trajectory by
strobing it once each forcing period using the “z” blanking on the back of
the oscilloscope.

Now to identify an attractor, we monitor these four diagnostic tools as
we vary a system parameter. A bifurcation point is easy to identify by using
these tools, and the existence of a particular bifurcation sequence, say a
sequence of period doubling bifurcations, is a strong indicator for the possible
existence of chaotic motion.

The use of these diagnostic tools is illustrated schematically in Figure
3.27 for the period doubling route to chaos. For the parameter values λ1, λ2,
and λ3, an examination of any one of these diagnostics is sufficient to identify
the existence of a periodic motion, as well as its period. For λ > λc, these
four diagnostics, as well as the fact that the strange Poincaré section arose
from a sequence of bifurcations from a periodic state, support the claim that
the motion is chaotic.

In particular, the Poincaré section is useful for distinguishing low-dimensional
chaos from noise. The chaotic Poincaré section illustrated in Figure 3.27 re-
sembles the familiar one-humped map studied in Chapter 2. In contrast,
the Poincaré map for a noisy signal from a stochastic process fills the whole
oscilloscope screen with a random collection of dots (see Fig. 3.28). Thus
motion on a strange attractor has a strong spatial correlation not present in
a purely random signal. In the next section we will quantify this observation
by introducing the correlation dimension, a measure that allows us to distin-
guish whether the signal is coming from a low-dimensional strange attractor
or from noise.
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Figure 3.27: Period doubling route to chaos: (a) period one, (b) period two,
(c) period four, and (d) chaotic. (Adapted from Tredicce and Abraham [1].)
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Figure 3.28: Poincaré maps from periodic, quasiperiodic, chaotic, and noisy
(random) processes.
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Figure 3.29: Quasiperiodic route to chaos: (a) equilibrium, (b) periodic, (c)
quasiperiodic, and (d) chaotic. (Adapted from Tredicce and Abraham [1].)
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The quasiperiodic route to chaos is illustrated in Figure 3.29. In this case,
the phase portrait for a quasiperiodic motion would resemble a Lissajous
pattern, which may be hard to distinguish from a slowly evolving chaotic
orbit. The Poincaré map, on the other hand, is useful in distinguishing
between these two cases. The sequence of dots forming the Poincaré map in
the quasiperiodic regime lie on a closed curve that is easy to distinguish from
the spread of points in the Poincaré map for a strange attractor.

3.8.5 Correlation Dimension

One difference between a chaotic signal from a strange attractor and a signal
from a noisy random process is that points on the chaotic attractor are spa-
tially organized. One measure of this spatial organization is the correlation
integral,

C(ε) = lim
n→∞

1

n2
× [number of pairs i, j whose distance |yi − yj| < ε],

where n is the total number of points in the time series. This correlation func-
tion can be written more formally by making use of the Heaviside function
H(z),

C(ε) = lim
n→∞

1

n2

n∑
i,j=1

H(ε− |yi − yj|), (3.73)

where H(z) = 1 for positive z, and 0 otherwise. Typically, the vector yi used
in the correlation integral is a point in the embedded phase space constructed
from a single time series according to

yi = (xi, xi+r, xi+2r, . . . , xi+(m−1)r), i = 1, 2, . . . . (3.74)

For a limited range of ε it is found that

C(ε) ∝ εν , (3.75)

that is, the correlation integral is proportional to some power of ε [30]. This
power ν is called the correlation dimension, and is a simple measure of the
(possibly fractal) size of the attractor.

The correlation integral gives us an effective procedure for assigning a
fractal dimension to a strange set. This fractal dimension is a simple way to
distinguish a random signal from a signal generated by a strange (possibly
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chaotic) set. In principle, a random process has an “infinite” correlation
dimension. Intuitively, this is because an orbit of a random process is not
expected to have any spatial structure. In contrast, the correlation dimension
for a closed curve (a periodic orbit) is 1, and for a two-dimensional surface
(such as quasiperiodic motion on a torus) is 2. A strange (fractal) set can
have a correlation dimension that is not an integer. For instance, the strange
set arising at the end of the period doubling cascade found in the quadratic
map has a correlation dimension of 0.583 . . ., indicating that the dimension
of this strange attractor is somewhere between that of a finite collection of
points (ν = 0) and a curve (ν = 1).

There exist some technical issues associated with the calculation of a
correlation dimension ν from a time series that have to do with the choice of
the embedding dimension m and the delay time r. These issues are dealt with
more fully in references [1] and [23]. There now exist several computer codes
in the public domain that have, to a large extent, automated the calculation
of ν from a single time series x(ti). Such a time series could come from a
simulation or from an experiment. See, for example, the BINGO code by
Albano [31], or the efficient algorithm discussed by Grassberger [32]. Thus,
the correlation dimension is now a standard tool in a nonlinear dynamicist’s
toolbox that helps one distinguish between noise and low-dimensional chaos.
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[25] W. Ditto, M. Spano, H. Savage, S. Rauseo, J. Heagy, and E. Ott, Experimental
observation of a strange nonchaotic attractor, Phys. Rev. Lett. 65 (5), 533–536 (1990).

[26] N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, Geometry from a time series,
Phys. Rev. Lett. 45, 712 (1980). Also see Chapter 6 of D. Ruelle, Chaotic evolution
and strange attractors (Cambridge University Press: New York, 1989). For a geomet-
ric approach to the embedding problem see Th. Buzug, T. Reimers, and G. Pfister,
Optimal reconstruction of strange attractors from purely geometrical arguments, Eu-
rophys. Lett. 13 (7), 605–610 (1990).

[27] R. Hamming, An introduction to applied numerical analysis (McGraw-Hill: New York,
1971).

[28] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes in C
(Cambridge University Press: New York, 1988).

[29] K. Wiesenfeld, Virtual Hopf phenomenon: A new precursor of period doubling bifur-
cations, Phys. Rev. A 32, 1744 (1985); K. Wiesenfeld, Noisy precursors of nonlinear
instabilities, J. Stat. Phys. 38, 1701 (1985); P. Bryant and K. Wiesenfeld, Suppres-
sion of period doubling and nonlinear parametric effects in periodically perturbed
systems, Phys. Rev. A 33, 2525–2543 (1986); B. McNamara and K. Wiesenfeld, The-
ory of stochastic resonance, Phys. Rev. A 39 (9), 4854 (1989); K. Wiesenfeld and N.
B. Tufillaro, Suppression of period doubling in the dynamics of the bouncing ball,
Physica 26D, 321–335 (1987).



174 String

[30] P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev.
Lett. 50, 346–349 (1983); P. Grassberger and I. Procaccia, Measuring the strangeness
of strange attractors, Physica 9D, 189 (1983).

[31] The BINGO program runs on the IBM-PC. For a copy contact A. Albano, Department
of Physics, Bryn Mawr College, Bryn Mawr, PA 19010-2899.

[32] P. Grassberger, An optimized box-assisted algorithm for fractal dimensions, Phys.
Lett. A 148, 63–68 (1990). This brief paper provides a Fortran program for calculating
the correlation integral. For another new approach to calculating the correlation
integral see Xin-Jun Hou, Robert Gilmore, Gabriel B. Mindlin, and Hernán Solari,
An efficient algorithm for fast O(N ∗ ln(N)) box counting, Phys. Lett. 151 (1,2),
43–46 (1990).



Problems 175

Problems

Problems for section 3.2.

3.1. Use Ampère’s law to find the magnetic field at a radial distance r from a long straight
current-carrying wire.

3.2. The Joule heating law says that the power dissipated by a current-carrying object
is

P = V I = I2R, (3.76)

where V is the voltage, I is the current, and R is the resistance. Furthermore, for
small temperature changes ∆Temp, the fractional change of length of a solid obeys

∆L

L
= κ∆Temp, (3.77)

where κ is the linear coefficient of thermal expansion of the material. Discuss the
relevance of these two physical laws on the string apparatus.

Section 3.3.

3.3. From equation (3.3), show that the location of the two equilibrium points is approx-

imately given by r± ≈ ±l
√

l0−l
2l0

.

3.4. Solve the differential equation ẍ = −λẋ − ω2x and graph x(t) versus t for a few
values of λ. Why is λ called the damping coefficient?

3.5. Solve the differential equation r̈ = −λṙ, r = (x, y), λ = (λx, λy). Draw a plot of
r(t) = (x(t), y(t)) for a fixed (λx, λy).

3.6. Verify that the variables in equation (3.11) are dimensionless.

3.7. Verify that equation (3.13) is a solution to equation (3.7) with f(t) = (0, 0) and
K = 0 (discard second-order terms in λ). Draw the solution, r(t), in the x–y plane.

3.8. Derive equation (3.2) from Figure 3.3. Hint: To account for the factor of 2 realize
that each spring makes a separate contribution to the restoring force.

Section 3.4.

3.9. (a) Show that the equation of motion for a simple pendulum in dimensionless vari-
ables is

φ̈+ sinφ = 0. (3.78)

(b) Write this as a first-order system with (φ, v) ∈ S1 ×R. Using equation (3.18),
find the potential energy function and a few integral curves for a pendulum.
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(c) Show that the pendulum has equilibrium points at (0, 0) and (±π, 0) and discuss
the stability of these fixed points by relating them to the configurations of the
physical pendulum. Are there any saddle points? Are there any centers?

(d) Draw a schematic of the phase plane. Identify the separatrix in this phase
portrait. Orbits inside the separatrix are called oscillations. Why? Orbits outside
the separatrix are called rotations. Why?

(e) Add a dissipative term (λφ̇) to get a damped pendulum and discuss how this
changes the phase portrait. In particular, discuss the relation of the insets and out-
sets of the equilibrium points with the basins of attraction. Are there any attractors?
Are there any repellers?

(f) Now add a forcing term f cos(ωt) and write the differential equations for the
system in the extended phase space (φ, v, θ) ∈ R× S1 × S1, where θ = ωt. Define a
global cross section for the forced damped pendulum (see eq. (3.29)).

Section 3.5.

3.10. Verify that equation (3.32) is a solution to equation (3.31) (discard higher-order
terms in α).

3.11. Plot the linear response curve a(γ) (eq. (3.34)) for a few representative values of F
and α.

3.12. This exercise illustrates the method of harmonic balance. Assume an approximate
solution of the form

x0 = X sin γτ + Y cos γτ

to the Duffing equation (3.23).

(a) Substitute x0 into equation (3.23) and equate terms containing sin γτ and cos γτ
separately to zero.

(b) Show that
AX + γαY = 0, γαX −AY = F,

where

A = γ2 − 1− 3

4
βR2, R2 = X2 + Y 2.

(c) Show that
(A2 + γ2α2)R2 = F 2.

(d) Plot the response (R2 versus γ) for β = 0.9, α = 0.2, and several values of F .
Plot the amplitude characteristic (R2 versus F ) for β = 0.9, α = 0.2, and γ = 1.
Indicate the unstable solution with a dashed line. Hint: It is easier to plot R2 as
the independent variable.

Section 3.7.
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3.13. Verify equations (3.52–3.54) for the free whirling motions of a string.

3.14. Write a program to iterate the circle map (eq. (3.57)) and explore its solutions for
different values of K and Ω.

Section 3.8.

3.15. For a time series {xi}, in which the xi are sampled at evenly spaced times, write
a transformation between the phase space variable yi = (xi − xi−1)/(ti − ti−1) and
the embedded phase space variable yi = xi−r, with r = 1. Why is the embedded
phase space rotated like it is in Figure 3.24? Why does one usually choose r > 1?

3.16. Write a program based on equations (3.67–3.71) to calculate the discrete Fourier
amplitude coefficients and the power spectrum (eq., (3.72)) for a discrete time se-
ries. Test the program on some sample functions for periodic motion (e.g., x(t) =
cos(ωt) + cos(3ωt)), and quasiperiodic motions (e.g., x(t) = cos(ωt) + cos(

√
2ωt)).
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Chapter 4

Dynamical Systems Theory

4.1 Introduction

This chapter is an eclectic mix of standard results from the mathematical
theory of dynamical systems along with practical results, terminology, and
notation useful in the analysis of a low-dimensional dynamical system [1].
The examples in this chapter are usually confined to two-dimensional maps
and three-dimensional flows.

In the first three chapters we presented nonlinear theory by way of ex-
amples. We now present the theory in a more general setting. Many of the
fundamental ideas have already been illustrated in the one-dimensional set-
ting. For example, in one-dimension we found that the stability of a fixed
point is determined by the derivative at the fixed point. The same result
holds in higher dimensions. However, the actual computational machinery
needed is far more intricate because the derivative of an n-dimensional map
is an n× n matrix.

Another key idea we have already introduced is hyperbolicity, hyperbolic
sets, and symbolic analysis (see section 2.11). In this chapter we present
a detailed study of the Smale horseshoe, which is the canonical example
of a “hyperbolic chaotic invariant set.” A thorough understanding of this
example is essential to the analysis of a chaotic repeller or attractor. We
conclude this chapter with a discussion of sensitive dependence on initial
conditions. This brings us back to the Lyapunov exponent, which we define
for a general n-dimensional dynamical system.

179
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Flows

Lorenz Equation

φ(x, y, z) : R3 → R3

ẋ = σ(y − x)
ẏ = ρx− y − xz
ż = −βz + xy


parameters
σ, ρ, β

Duffing Equation

φ(x, v, θ) : R2 × S1 → R2 × S1

ẋ = v
v̇ = −(x+ βx3 + αv) + f cos(θ)

θ̇ = ω


nonautonomous form
ẍ+ αẋ+ x+ βx3 = f cos(ωt)
parameters
α, β, f, ω

Forced Damped Pendulum

φ(θ, v, ϕ) : S1 × S1 ×R→ S1 × S1 ×R

θ̇ = v
v̇ = −[αv + β sin(θ)] + f cos(ϕ)
ϕ̇ = ω


parameters
α, β, f, ω

Modulated Laser

φ(u, z, θ) : R2 × S1 → R2 × S1

u̇ = [z − f cos(θ)]u
ż = (1− α1z)− (1 + α2z)u

θ̇ = ω


parameters
α1, α2, f, ω

Maps

Quadratic Map

f(x) : R→ R

xn+1 = λxn(1− xn)
parameter
λ

Sine Circle Map

f(θ) : S1 → S1

θn+1 = θn + Ω + K
2π sin(2πθn)

parameters
Ω,K

Hénon Map

f(x, y) : R2 → R2

xn+1 = α− x2n + βyn
yn+1 = xn

}
parameters
α, β

Baker’s Map

f(x, y) : I × I → I × I
xn+1 = 2xn mod 1

yn+1 =

{
αyn for 0 ≤ xn < 1/2
1/2 + αyn for 1/2 ≤ xn ≤ 1


parameter
α < 1/2

IHJM Optical Map [2]

f(z) : C→ C

zn+1 = γ +Bzn exp
[
i
(
κ− α

1+|zn|2

)]
parameters
α, κ, γ,B
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4.2 Flows and Maps

Most of the dynamical systems studied in this book are either three-dimensional
flows or one- or two-dimensional maps. Common examples of maps and flows
are listed on the previous page.

Flows are specified by differential equations (section 4.2.1). Similarly,
maps are specified by difference equations:

xn+1 = f(xn;µ). (4.1)

Maps can also be written as x 7→ f(x;µ). The notation 7→ is read as “maps
to.” The forward orbit of x is O+(x) = {fn(x) : n ≥ 0}, where fn = f ◦ · · · ◦ f
is the nth composite of f , and f 0 is the identity function. If the inverse f−1

is well defined, then the backward orbit of x is O−(x) = {f−n(x) : n ≥ 0}.
Finally, the orbit of x is the sequence of all positions visited by x, O(x) =
O−(x)

⋃
O+(x).

4.2.1 Flows

A first-order system of differential equations is written as

dx

dt
= f(x, t;µ), (4.2)

where x = (x1, x2, . . . , xn) are the dependent variables, t is the independent
variable time, and µ is the set of parameters for the system. Sometimes the
parameter dependence is denoted by a subscript as in fµ(x, t).

A vector field is formally defined by a map F : A ⊂ Rn → Rn that assigns
a vector F(x) to each point x in its domain A. More generally, a vector field
on a manifold M is given by a map that assigns a vector to each point in M .
For most of this chapter we only need to work with Rn. A system governed
by a time-independent vector field is called autonomous; otherwise it is called
nonautonomous. As we saw in section 3.4.3, any nonautonomous vector field
can be converted to an autonomous vector field of a higher dimension.

The flow, φ, of the vector field F is analytically defined by:

∂

∂t
φ(x, t) = F(φ(x, t)), (4.3)

φ(x, 0) = x. (4.4)
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u

M
(a) (b)

x

(x,t)φ

φ (u)t

0

Figure 4.1: (a) The flow of a solution curve. (b) The flow of a collection of
solution curves resulting in a continuous transformation of the manifold.

The position x is the initial condition or initial state. The initial condition is
also written as x0 when it is specified at t = 0. A solution curve, trajectory,
or integral curve of the flow is an individual solution of the above differential
equation based at x0. We often explicitly note the time-dependence of the
position (the solution curve to the above differential equation) by writing
x(t) when we want to indicate the position of the trajectory at a time t > 0.
The collection of all states of a dynamical system is called the phase space.

The term “flow” describing the evolution of the system in phase space
comes by analogy from the motion of a real fluid flow. The flow φ(x, t) is
regarded as a function of the initial condition x and the single parameter
time t. The flow φ tells us the position of the initial condition x after a time
t. As illustrated in Figure 4.1(a), the position of the point on the flow line
through x is carried or flows to the point φ(x, t). A geometric description of a
flow says that it is a one-parameter family of diffeomorphisms of a manifold.
That is, the flow lines of the flow, which are solution curves of the differential
equation, provide a continuous transformation of the manifold into itself (Fig.
4.1(b)).

The flow is often written as φt(x) to highlight its dependence on the
single parameter t. The flow φt is also known as the evolution operator.
Composition of the evolution operator is defined in a natural way: starting
at the state x at time s = 0, it first flows to the point φs = φ(x, s) and
then onto the point φt+s = φ(φ(x, s), t). The evolution operator satisfies the
group properties

(i) φ0 = identity, (ii) φt+s = φt ◦ φs, (4.5)

which are taken as the defining relations of a flow for an abstract dynamical
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system. If the system is nonreversible we speak of a semiflow. A semiflow
flows forward in time, but not backward.

An explicit example of an evolution operator is given by solving the lin-
ear differential equation ẍ = −x. Here the vector field is found from the
equivalent first-order system (ẋ = v, v̇ = −x) so that the vector field is

F(x, v) = (v,−x).

This vector field generates a flow that is a simple rotation about the origin
(see Fig. 3). The evolution operator is given by the rotation matrix1

φt(x) =

[
x(t)
v(t)

]
=

[
cos(t) sin(t)
− sin(t) cos(t)

] [
x
v

]
.

4.2.2 Poincaré Map

A continuous flow can generate a discrete map in at least two ways: by a
time-T map and by a Poincaré map. A time-T map results when a flow is
sampled at a fixed time interval T . That is, the flow is sampled whenever
t = nT for n = 0, 1, 2, 3, and so on.

The more important way (as described, for instance, in Guckenheimer
and Holmes [1]) in which a continuous flow generates a discrete map is via a
Poincaré map. Let γ be an orbit of a flow φt in Rn. As illustrated in Figure
4.2, it is often possible to find a local cross section Σ ∈ Rn about γ, which is
of dimension n − 1. The cross section need not be planar; however, it must
be transverse to the flow. All the orbits in the neighborhood of γ must pass
through Σ. The technical requirement is that F(x) ·N(x) 6= 0 for all x ∈ Σ,
where N(x) is the unit normal vector to Σ at x. Let p be a point where γ
intersects Σ, and let q ∈ Σ be a point in the neighborhood of p. Then the
Poincaré map (or first return map) is defined by

P : Σ→ Σ, P (q) = φτ (q), (4.6)

where τ = τ(q) is the time taken for an orbit starting at q to return to Σ.
It is useful to define a Poincaré map in the neighborhood of a periodic orbit.

1The components of the map φ should be written as (φx, φv), where the superscript
indicates the dependent coordinate. It is a common convention, though, to suppress the
φ and mix the dependent variables with the coordinate functions so that [φx(t), φv(t)] =
[x(t), v(t)].
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Σ

qp

γ

Figure 4.2: Construction of a Poincaré map from a local cross section.

If the orbit γ is periodic of period T , then τ(p) = T . A periodic orbit that
returns directly to itself is a fixed point of the Poincaré map. Moreover, an
orbit starting at q close to p will have a return time close to T .

For forced systems, such as the Duffing oscillator studied in section 3.4, a
global cross section and Poincaré map are easy to define since the phase space
topology is R2×S1. All periodic orbits of a forced system have a period that
is an integer multiple of the forcing period. In this situation, it is sensible
to pick a planar global cross section that is transverse to S1 (see Fig. 3.8).
The return time for this cross section is independent of position and equals
the forcing period. In this special case, the Poincaré map is equivalent to a
time-T map.

The Poincaré map for the example of the rotational flow generated by
F(x, v) = (v,−x) is particularly trivial. A good cross section is defined by
the positive half of the x-axis, Σ = {(x, v)|v = 0 and x > 0}. All the orbits
of the flow are fixed points in the cross section, so the Poincaré map is just
the identity map, P (x) = x.

See Appendix E, Hénon’s Trick, for a discussion of the numerical calcu-
lation of a Poincaré map from a cross section.

4.2.3 Suspension of a Map

A discrete map can also be used to generate a continuous flow. A canonical
construction for this is the so-called suspension of a map [1], which is in
a sense the inverse of a Poincaré map.2 Given a discrete map f of an n-

2The suspension is defined globally, while the cross section for a Poincaré map is only
defined locally. Thus, these two constructions are not completely complementary.
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(a)

(b)

R

R

M

f  (x)n f      (x)n+1 f      (x)n+2

M
f  (x)n f      (x)n+1 f      (x)n+2

Figure 4.3: (a) Construction of a suspension of a map. (b) The suspension
is not unique; an arbitrary number of twists can be added.

dimensional manifold M , it is always possible to construct a flow on an
n + 1-dimensional manifold formed by the Cartesian product R with the
original manifold: φ : M ×R→M . This suspension process is illustrated in
Figure 4.3(a) where we show a mapping and the flow formed by “suspending”
this map. Each sequence of points of the map becomes an orbit of the
flow with the property that if fn(x) = φt(x) then fn+1(x) = φT+t(x). The
original map is recovered from the suspended flow by a time-T map. The
suspension construction is far from unique. For instance, as illustrated in
Figure 4.3(b), we could add an arbitrary number of complete twists to this
particular suspension and still get an identical time-T map. The number
of full twists in the suspended flow is called the global torsion, and it is a
topological invariant of the flow independent of the underlying map.

4.2.4 Creed and Quest

The close connection between maps and flows—Poincaré maps and suspensions—
gives rise to “The Discrete Creed”:

Anything that happens in a flow also happens in a (lower-dimensional)
discrete dynamical system (and conversely).

“The creed is stated in the mode of the sunshine patriot, leaving plenty of
room to duck as necessary [3].” This creed is implicit in Poincaré’s original
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work, but was first clearly enunciated by Smale.
The essence of dynamical systems studies is stated in “The Dynamical

Quest”:

Where do orbits go, and what do they do/see when they get
there?

The dynamical quest emphasizes the topological (i.e., qualitative) character-
ization of the long-term behavior of a dynamical system.

4.3 Asymptotic Behavior and Recurrence

In this section we present some more mathematical vocabulary that helps
to refine our notions of invariant sets, limit sets (attractors and repellers),
asymptotic behavior, and recurrence. For the most part we state the funda-
mental definitions in terms of maps. The corresponding definitions for flows
are completely analogous and can be found in Wiggins [1].

Recurrence is a key theme in the study of dynamical systems. The sim-
plest notion of recurrence is periodicity. Recall that a point of a map is
periodic of period n if there exists an integer n such that fn(p) = p and
f i(p) 6= p, 0 < i < n. This notion of recurrence is too restricted since it fails
to account for quasiperiodic motions or strange attractors. We will therefore
explore more general notions of recurrence. At the end we will argue that
the “chain recurrent set” is the best definition of recurrence that captures
most of the interesting dynamics.

4.3.1 Invariant Sets

Formally, a set S is an invariant set of a flow if for any x0 ∈ S we have
φ(x0, t) ∈ S for all t ∈ R. S is an invariant set of a map if for any x0 ∈ S,
fn(x0) ∈ S for all n. We also speak of a positively invariant set when we
restrict the definition to positive times, t ≥ 0 or n ≥ 0.

Invariant sets are important because they give us a means of decomposing
phase space. If we can find a collection of invariant sets, then we can restrict
our attention to the dynamics on each invariant set and then try to sew
together a global solution from the invariant pieces. Invariant sets also act
as boundaries in phase space, restricting trajectories to a subset of phase
space.
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4.3.2 Limit Sets: α, ω, and Nonwandering

We begin by introducing the ω-limit set, which starts us down the road
toward defining an attractor. Let p be a point of a map f : M → M of the
manifold M . Then the ω-limit set of p is

ω(p) = {a ∈M | there exists a sequence ni →∞ such that fni(p)→ a}.

Conversely, by going backwards in time we get the α-limit set of p,

α(p) = {r ∈M | there exists a sequence ni →∞ such that f−ni(p)→ r}.

These limit sets are the closure of the ends of the orbits. For example, if
p is a periodic point, then ω(p) = O+(p). It is not difficult to show that ω(p)
is a closed subset of M and that it is invariant under f , i.e., f(ω(p)) = ω(p).
Finally, a point p ∈ M is called recurrent if it is part of the ω-limit set, i.e.,
p ∈ ω(p).

The forward limit set, L+, is defined as the union of all ω-limit sets;
likewise the backward limit set, L−, is defined as the union of all α-limit sets:

L+(f) =
⋃
p∈M

ω(p) and L−(f) =
⋃
p∈M

α(p).

The forward and backward limit sets are not necessarily closed. This
observation motivates yet another useful notion of recurrence, the nonwan-
dering set. A point p ∈M wanders if there exist a neighborhood U of p and
an m > 0 such that fn(U) ∩ U = ∅ for all n > m. A nonwandering point is
one that does not wander. This brings us to the nonwandering set, Ω, which
is a closed, invariant (under f) subset of M :

Ω(f) = {q ∈M | q is nonwandering}.

The dynamical decomposition of a set into its wandering and nonwan-
dering parts separates, in mathematical terms, a dynamical system into its
transient behavior—the wandering set—and long-term or asymptotic behav-
ior—the nonwandering set.

The ω-limit set and the nonwandering set do not address the question of
the stability of an asymptotic motion. To get to the idea of an attractor, we
begin with the idea of an attracting set. A closed invariant set A ⊂M is an
attracting set if there is some neighborhood U of A such that for all x ∈ U
and all n ≥ 0,

fn(x) ∈ U and fn(x)→ A.
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Moreover, the domain or basin of attraction of A is given by⋂
n≤0

fn(U).

The attracting set can consist of a collection of different sets that are
dynamically disconnected. For instance, a single attracting set could consist
of two separate periodic orbits. To overcome this last difficulty, we will say
that an attractor is an attracting set that contains a dense orbit. Conversely,
a repeller is defined as a repelling set with a dense orbit.

Although this is a reasonable definition mathematically, we will see that
this is not the most useful definition of an attractor for physical applications
or numerical simulations. In these circumstances it will turn out that a more
useful (albeit mathematically naive) definition of an attractor or repeller is
the closure of a certain collection of periodic orbits. The proper definition of
an attractor is yet another hot spot in the creative tension between the rigor
demanded by a mathematician and the utility required by a physicist.

4.3.3 Chain Recurrence

In the previous section we attempted to capture all the recurrent behavior
of the mapping f : M →M . Let

Per(f) = {periodic points of f}
L+(f) =

⋃
p∈M ω(p)

Ω(f) = {nonwandering points}

Clearly,
Per(f) ⊂ L+(f) ⊂ Ω(f).

There is no universally accepted notion of a set that contains all the recur-
rence, but this set ideally ought to be closed and invariant. Per(f) is too
small—periodicity is too limited a kind of recurrence. L+(f) is not necessar-
ily closed. Ω(f), while closed and invariant, has the drawback that:

Ω(f |Ω) 6= Ω.

The mapping f |Ω : Ω→ Ω makes sense, of course, because of Ω’s invariance.
In certain contexts the chain recurrent set, which is bigger than Ω, has all

the desirable properties. According to the “chain recurrent point of view,”
all the interesting dynamics take place in the chain recurrent set [4].
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Figure 4.4: (a) An ε-pseudo orbit, or computer orbit, of a map; (b) a chain
recurrent point.

Let ε > 0. An ε-pseudo orbit is a finite sequence such that

d[f(xi), xi+1] < ε, i = 0, 1, . . . , n− 1,

where d[·, ·] is a metric on the manifold M . An ε-pseudo orbit can be thought
of as a “computer-generated orbit” because of the slight roundoff error the
computer makes at each stage of an iteration (see Fig. 4.4(a)).

A point x ∈M is chain recurrent if, for all ε > 0, there exists an ε-pseudo
orbit x0, x1, . . . , xn such that x = x0 = xn (see Fig. 4.4(b)). The chain
recurrent set is defined as

R(f) = {chain recurrent points}.

The chain recurrent set R(f) is closed and f -invariant. Moreover, Ω ⊂ R.
For proofs, see reference [1] or [4].

As an example consider the quadratic map, fλ(x) = λx(1 − x), for λ >
2 +
√

5 and M = [−∞,+∞]. It is easy to see from graphical analysis that
if x 6∈ [0, 1] then {−∞} is the attracting limit set. When x ∈ [0, 1], the
limit set Λ is a Cantor set (see section 2.11.1) and the dynamics on Λ are
topologically conjugate to a full shift on two symbols, so the periodic orbits
are dense in Λ. The chain recurrent set R(f) = Λ

⋃{−∞}.
As another example, consider the circle map f : S1 → S1 shown in

Figure 4.5, in which the only fixed points are x and y. The arrows indicate
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x y

Figure 4.5: Circle map with two fixed points.

the direction a point goes in when it is iterated. It is easy to see that

{x, y} = Per(f) = L+ = L− = Ω.

However, R(f) = S1 because an ε-pseudo orbit can jump across the fixed
points. Chain recurrence is a very weak form of recurrence.

4.4 Expansions and Contractions

In this section we consider how two-dimensional maps and three-dimensional
flows transform areas and volumes. Does a map locally expand or contract
a region? Does a flow locally expand or contract a volume in phase space?
To answer each of these questions we need to calculate the Jacobian of the
map and the divergence of the flow [5]. In this section we are concerned with
showing how to do these calculations. In section 4.10, where we introduce
the tangent map, we provide some geometric insight into these calculations.

4.4.1 Derivative of a Map

To fix notation, let f be a map from Rn to Rm specified by m functions,

f = (f1, . . . , fm), (4.7)

of n variables. Recall that the derivative3 of a map f : Rn → Rm at x0 is
written as T = Df(x0) and consists of an m× n matrix called the matrix of
partial derivatives of f at x0:

Df(x0) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 . (4.8)

3Some books call this the differential of f and denote it by df(x0).
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R f (R)

nv=y n+1y=y

n+1x=xnu=x

f (u,v)

Figure 4.6: Deformation of an infinitesimal region under a map.

The derivative of f at x0 represents the best linear approximation to f near
to x0.

As an example of calculating a derivative, consider the function from R2

to R2 that transforms polar coordinates into Cartesian coordinates:

f(r, θ) = [f1(r, θ), f2(r, θ)] = (r cos θ, r sin θ).

The derivative of this particular transformation is

Df(r, θ) =

 ∂f1
∂r

∂f1
∂θ

∂f2
∂r

∂f2
∂θ

 =

[
cos θ −r sin θ
sin θ r cos θ

]
.

4.4.2 Jacobian of a Map

The derivative contains essential information about the local dynamics of a
map. In Figure 4.6 we show how a small rectangular region R of the plane
is transformed to f(R) under one iteration of the map f(u, v) : R2 → R2

where f1(u, v) = x(u, v) and f2(u, v) = y(u, v). The Jacobian of f , written
∂(x, y)/∂(u, v), is the determinant of the derivative matrix Df(x, y) of f :4

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =
∂x

∂u
· ∂y
∂v
− ∂x

∂v
· ∂y
∂u
. (4.9)

In the example just considered, (x, y) = (r cos θ, r sin θ), the Jacobian is

∂(x, y)

∂(r, θ)
= r(cos2 θ + sin2 θ) = r.

4See Marsden and Tromba [5] for the n-dimensional definition.
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The Jacobian of a map at x0 determines whether the area about x0 ex-
pands or contracts. If the absolute value of the Jacobian is less than one,
then the map is contracting; if the absolute value of the Jacobian is greater
than one, then the map is expanding.

A simple example of a contracting map is provided by the Hénon map
for the parameter range 0 ≤ β < 1. In this case,

f1(xn, yn) = xn+1 = α− x2
n + βyn,

f2(xn, yn) = yn+1 = xn,

and a quick calculation shows

∂(xn+1, yn+1)

∂(xn, yn)
= −β.

The Jacobian is constant for the Hénon map; it does not depend on the initial
position (x0, y0). When iterating the Hénon map, the area is multiplied each
time by β, and after k iterations the size of an initial area a0 is

a = a0|βk|.

In particular, if 0 ≤ β < 1, then the area is contracting.

4.4.3 Divergence of a Vector Field

Recall from a basic course in vector calculus that the divergence of a vector
field represents the local rate of expansion or contraction per unit volume
[5]. So, to find the local expansion or contraction of a flow we must calculate
the divergence of a vector field. The divergence of a three-dimensional vector
field F(x, y, z) = (F1, F2, F3) is

div F = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
. (4.10)

Let V (0) be the measure of an infinitesimal volume centered at x. Figure 4.7
shows how this volume evolves under the flow; the divergence of the vector
field measures the rate at which this initial volume changes,

div F(x) =
1

V (0)

d

dt
V (t)|t=0. (4.11)
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Figure 4.7: Evolution of an infinitesimal volume along a flow line.

For instance, the divergence of the vector field for the Lorenz system is

∇ ·

 F1

F2

F3

 = ∇ ·

 σ(y − x)
ρx− y − xz
−βz + xy

 = −(σ + 1 + β);

we find that the flow is globally contracting at a constant rate whenever the
sum of σ and β is positive.

4.4.4 Dissipative and Conservative

The local rate of expansion or contraction of a dynamical system can be cal-
culated directly from the vector field or difference equation without explicitly
finding any solutions. We say a system is conservative if the absolute value of
the Jacobian of its map exactly equals one, or if the divergence of its vector
field equals zero,

∇ · F = 0, (4.12)

for all times and all points. A physical system is dissipative if it is not conser-
vative.5 Most of the physical examples studied in this book are dissipative
dynamical systems. The phase space of a dissipative dynamical system is
continually shrinking onto a smaller region of phase space called the attract-
ing set.

5Note that this definition of dissipative can include expansive systems. These will not
arise in the physical examples considered in this book. See Problem 4.12.
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4.4.5 Equation of First Variation

Another quantity that can be calculated directly from the vector field is the
equation of first variation, which provides an approximation for the evolution
of a region about an initial condition x. The flow φ(x, t) is a function of both
the initial condition and time. We will often be concerned with the stability
of an initial point in phase space, and thus we are led to consider the variation
about a point x while holding the time t fixed. Let Dx denote differentiation
with respect to the phase variables while holding t fixed. Then from the
differential equation for a flow (eq. (4.3)) we find

Dx
∂

∂t
φ(x, t) = Dx[F(φ(x, t))],

which, on applying the chain rule on the right-hand side, yields the equation
of first variation,

∂

∂t
Dxφ(x, t) = DF(φ(x, t))Dxφ(x, t). (4.13)

This is a linear differential equation for the operator Dxφ. DF(φ(x, t)) is the
derivative of F at φ(x, t). If the vector field F is n-dimensional, then both
DxF(φ) and Dxφ are n× n matrices.

Turning once again to the vector field

F(x, v) = (v,−x),

we find that the equation of first variation for this system is φ̇xx φ̇xv

φ̇vx φ̇vv

 =

 0 1

−1 0

  φxx φxv

φvx φvv

 .
The superscript i to φi indicates the ith component of flow, and the subscript
j to φj denotes that we are taking the derivative with respect to the jth phase
variable. For example, φvx = ∂

∂x
φv. The components of φ are the coordinate

positions, so they could be rewritten as [φx(t), φv(t)] = [x(t), v(t)]. The dot,
as always, denotes differentiation with respect to time.

4.5 Fixed Points

An equilibrium solution of a vector field ẋ = f(x) is a point x̄ that does not
change with time,

f(x̄) = 0. (4.14)
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(a) (b)

x x

x (0)

Figure 4.8: (a) A stable fixed point. (b) An asymptotically stable fixed point.

Equilibria are also known as fixed points, stationary points, or steady-state
solutions. A fixed point of a map is an orbit which returns to itself after one
iteration,

x̄ 7→ f(x̄) = x̄. (4.15)

We will tend to use the terminology “fixed point” when referring to a map
and “equilibrium” when referring to a flow. The theory for equilibria and
fixed points is very similar. Keep in mind, though, that a fixed point of a map
could come from a periodic orbit of a flow. This section briefly outlines the
theory for flows. The corresponding theory for maps is completely analogous
and can be found, for instance, in Rasband [6].

4.5.1 Stability

At least three notions of stability apply to a fixed point: local stability,
global stability, and linear stability. Here we will discuss local stability and
linear stability. Linear stability often, but not always, implies local stability.
The additional ingredient needed is hyperbolicity. This turns out to be quite
general: hyperbolicity plus a linearization procedure is usually sufficient to
analyze the stability of an attracting set, whether it be a fixed point, periodic
orbit, or strange attractor.

The notion of the local stability of an orbit is straightforward. A fixed
point is locally stable if solutions based near x̄ remain close to x̄ for all
future times. Further, if the solution actually approaches the fixed point,
i.e., x(t) → x̄ as t → ∞, then the orbit is called asymptotically stable.
Figure 4.8(a) shows a center that is stable, but not asymptotically stable.
Centers commonly occur in conservative systems. Figure 4.8(b) shows a sink,
an asymptotically stable fixed point that commonly occurs in a dissipative
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system. A fixed point is unstable if it is not stable. A saddle and source are
examples of unstable fixed points (see Fig. 4).

4.5.2 Linearization

To calculate the stability of a fixed point consider a small perturbation, y,
about x̄,

x = x̄(t) + y. (4.16)

The Taylor expansion (substituting eq. (4.16) into eq. (4.2)) about x̄ gives

ẋ = ˙̄x(t) + ẏ = f(x̄(t)) + Df(x̄(t))y + higher-order terms. (4.17)

It seems reasonable that the motion near the fixed point should be governed
by the linear system

ẏ = Df(x̄(t))y, (4.18)

since ẋ(t) = f(x̄(t)). If x̄(t) = x̄ is an equilibrium point, then Df(x̄) is a
matrix with constant entries. We can immediately write down the solution
to this linear system as

y(t) = exp[Df(x̄)t]y0, (4.19)

where exp[Df(x̄)] is the evolution operator for a linear system. If we let
A = Df(x̄) denote the constant n × n matrix, then the linear evolution
operator takes the form

exp(At) = id + At+
1

2!
A2t2 +

1

3!
A3t3 + · · · (4.20)

where id denotes the n× n identity matrix.
The asymptotic stability of a fixed point can be determined by the eigen-

values of the linearized vector field Df at x̄. In particular, we have the
following test for asymptotic stability: an equilibrium solution of a nonlinear
vector field is asymptotically stable if all the eigenvalues of the linearized
vector field Df(x̄) have negative real parts.

If the real part of at least one eigenvalue exactly equals zero (and all the
others are strictly less than zero) then the system is still linearly stable, but
the original nonlinear system may or may not be stable.
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4.5.3 Hyperbolic Fixed Points: . Saddles,
Sources, and Sinks

Let x = x̄ be an equilibrium point of a vector field. Then x̄ is called a
hyperbolic fixed point if none of the real parts of the eigenvalues of Df(x̄) is
equal to zero. The test for asymptotic stability of the previous section can
be restated as: a hyperbolic fixed point is stable if the real parts of all its
eigenvalues are negative. A fixed point of a map is hyperbolic if none of the
moduli of the eigenvalues equals one.

The motion near a hyperbolic fixed point can be analyzed and brought
into a standard form by a linear transformation to the eigenvectors of Df(x̄).
Additional analysis, including higher-order terms, is usually needed to ana-
lyze the motion near a nonhyperbolic fixed point.

At last, we can precisely define the terms saddle, sink, source, and center.
A hyperbolic equilibrium solution is a saddle if the real part of at least one
eigenvalue of the linearized vector field is less than zero and if the real part
of at least one eigenvalue is greater than zero. Similarly, a saddle point for a
map is a hyperbolic point if at least one of the eigenvalues of the associated
linear map has a modulus greater than one, and if one of the eigenvalues has
modulus less than one.

A hyperbolic point of a flow is a stable node or sink if all the eigenvalues
have real parts less than zero. Similarly, if all the moduli are less than one
then the hyperbolic point of a map is a sink.

A hyperbolic point is an unstable node or source if the real parts of all
the eigenvalues are greater than zero. The moduli of a source of a map are
all greater than one.

A center is a nonhyperbolic fixed point for which all the eigenvalues are
purely imaginary and nonzero (modulus one for maps). For a picture of the
elementary equilibrium points in three-dimensional space see Figure 3.10 of
Thompson and Stewart [7]. The corresponding stability information for a
hyperbolic fixed point of a two-dimensional map is summarized in Figure
4.9.

4.6 Invariant Manifolds

According to our discussion of invariant sets in section 4.3.1, we would like
to analyze a dynamical system by breaking it into its dynamically invariant
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(a) (b) (c)

Figure 4.9: Complex eigenvalues for a two-dimensional map with a hyperbolic
fixed point: (a) saddle, (b) sink, and (c) source.

parts. This is particularly easy to accomplish with linear systems because
we can write down a general solution for the flow operator as etA (see sec-
tion 4.5.2). The eigenspaces of a linear flow or map (i.e., the spaces formed
by the eigenvectors of A) are invariant subspaces of the dynamical system.
Moreover, the dynamics on each subspace are determined by the eigenvalues
of that subspace. If the original manifold is Rn, then each invariant sub-
space is also a Euclidean manifold which is a subset of Rn. It is sensible to
classify each of these invariant submanifolds according to the real parts of
its eigenvalues, λi:

Es is the subspace spanned by the eigenvectors of A with Re(λi) < 0,

Ec is the subspace spanned by the eigenvectors of A with Re(λi) = 0,

Eu is the subspace spanned by the eigenvectors of A with Re(λi) > 0.

Es is called the stable space of dimension ns, E
c is called the center space

of dimension nc, and Eu is called the unstable space of dimension nu. If the
original linear manifold is of dimension n, then the sum of the dimensions of
the invariant subspaces must equal n: nu + nc + ns = n. This definition also
works for maps when the conditions on λi are replaced by modulus less than
one (Es), modulus equal to one (Ec), and modulus greater than one (Eu).

For example, consider the matrix

A =

 1 2 0
1 0 0
0 0 0


This matrix has eigenvalues λ = −1, 0, 2 and eigenvectors (1,−1, 0), (0, 0, 1),



4.6. INVARIANT MANIFOLDS 199

x

y

Ec

u

s

E

E

Figure 4.10: Invariant manifolds for a linear flow with eigenvalues λi =
−1 (Es), 0 (Ec), 2 (Eu).

(2, 1, 0), and the flow on the invariant manifolds is illustrated in Figure 4.10.

4.6.1 Center Manifold Theorem

It is important to keep in mind that we always speak of invariant manifolds
based at a point. This point is usually a fixed point x̄ of a flow or a periodic
point of a map. In the linear setting, the invariant manifold is just a linear
vector space. In the nonlinear setting we can also define invariant manifolds
that are not linear subspaces but are still manifolds. That is, locally they look
like a copy of Rn. These invariant manifolds are a direct generalization of
the invariant subspaces of the linear problem. They are the most important
geometric structure used in the analysis of a nonlinear dynamical system.

The way to generalize the notion of an invariant manifold from the linear
to the nonlinear setting is straightforward. In both the linear and nonlinear
settings, the stable manifold is the collection of all orbits that approach
a point x. Similarly, the unstable manifold is the collection of all orbits
that depart from x. The fact that this notion of an invariant manifold for a
nonlinear system is well defined is guaranteed by the center manifold theorem
[1]:

Center Manifold Theorem for Flows. Let fµ(x) be a smooth
vector field on Rn with fµ(x̄) = 0 and A = Df(x̄). The spectrum
(set of eigenvalues) {λi} of A divides into three sets σs, σc, and
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Figure 4.11: Invariant manifolds of a saddle for a two-dimensional map.

σu, where

λi ∈


σs, Re(λi) < 0,
σc, Re(λi) = 0,
σu, Re(λi) > 0.

Let Es, Ec, and Eu be the generalized eigenspaces of σs, σc, and
σu. There exist smooth stable and unstable manifolds, called W s

and W u, tangent to Es and Eu at x̄, and a center manifold W c

tangent to Ec at x̄. The manifolds W s, W c, and W u are invariant
for the flow. The stable manifold W s and the unstable manifold
W u are unique. The center manifold W c need not be unique.

W s is called the stable manifold, W c is called the center manifold, and W u is
called the unstable manifold. A corresponding theorem for maps also holds
and can be found in reference [1] or [6]. Numerical methods for the construc-
tion of the unstable and stable manifolds are described in reference [8].

Always keep in mind that flows and maps differ: a trajectory of a flow is
a curve in Rn while the orbit of a map is a discrete sequence of points. The
invariant manifolds of a flow are composed from a union of solution curves;
the invariant manifolds of a map consist of a union of a discrete collection of
points (Fig. 4.11). The distinction is crucial when we come to analyze the
global behavior of a dynamical system. Once again, we reiterate that the
unstable and stable invariant manifolds are not a single solution, but rather
a collection of solutions sharing a common asymptotic past or future.

An example (from Guckenheimer and Holmes [1]) where the invariant
manifolds can be explicitly calculated is the planar vector field

ẋ = x, ẏ = −y + x2.



4.6. INVARIANT MANIFOLDS 201

Figure 4.12: (a) Invariant manifolds (at the origin) for the linear approxima-
tion. (b) Invariant manifolds for the original nonlinear system.

This system has a hyperbolic fixed point at the origin where the linearized
vector field is

ẋ = x, ẏ = −y.

The stable manifold of the linearized system is just the y-axis, and the unsta-
ble manifold of the linearized system is the x-axis (Fig. 4.12(a)). Returning
to the nonlinear system, we can solve this system by eliminating time:

ẏ

ẋ
=
dy

dx
=
−y
x

+ x or y(x) =
x2

3
+
c

x
,

where c is a constant of integration. It is now easy to see (Prob. 4.20) that
(Fig. 4.12(b))

W u(0, 0) = {(x, y) | y =
x2

3
} and W s(0, 0) = {(x, y) | x = 0}.

4.6.2 Homoclinic and Heteroclinic Points

We informally define the unstable manifold and the stable manifold for a
hyperbolic fixed point x̄ of a map f by

W s(x̄) = {x | limn→∞f
n(x) = x̄}

and
W u(x̄) = {x | limn→∞f

−n(x) = x̄}.
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Figure 4.13: (a) Poincaré map in the vicinity of a periodic orbit, W s(x̄) =
W u(x̄). (b) The map shown with a transversal intersection at a homoclinic
point.

These manifolds are tangent to the eigenvectors of f at x̄.
We are led to study a two-dimensional map f by considering the Poincaré

map of a three-dimensional flow in the vicinity of a periodic orbit. This sit-
uation is illustrated in Figure 4.13. The map f is orientation preserving6 be-
cause it comes from a smooth flow. The periodic orbit of the flow gives rise to
the fixed point x̄ of the map. The fixed point x̄ has a one-dimensional stable
manifold W s(x̄) and a one-dimensional unstable manifold W u(x̄). Poincaré
was led to his discovery of chaotic behavior and homoclinic tangles (see sec-
tion 3.6 and Appendix H) by considering the interaction between the stable
and unstable manifold of x̄. One possible interaction is shown in Figure
4.13(a) where the unstable manifold exactly matches the stable manifold,
W s(x̄) = W u(x̄).

However, such a smooth match is exceptional. The more common possi-
bility is for a transversal intersection between the stable and unstable man-
ifold (Fig. 4.13(b)). The location of the transversal intersection is called a
homoclinic point when both the unstable and stable manifold emanate from
the same periodic orbit (Fig. 4.14(a)). The intersection point is called a het-
eroclinic point when the manifolds emanate from different periodic orbits. A

6Informally, a map of a surface is orientation preserving if the normal vector to the
surface is not flipped under the map.
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Figure 4.14: (a) A homoclinic point. (b) A heteroclinic point.
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Figure 4.15: The interaction of the stable manifold W s(x̄) and the unsta-
ble manifold W u(x̄) with a homoclinic point x0. The homoclinic point x0

gets mapped to the homoclinic point f(x0). The orientation of the map is
determined by considering where points a and b in the vicinity of x0 are
mapped.

heteroclinic point is shown in Figure 4.14(b) where the unstable manifold
emanating from x̄ intersects the stable manifold of a different fixed point ȳ.

The existence of a single homoclinic or heteroclinic point forces
the existence of an infinity of such points. Moreover, it also gives
rise to a homoclinic (heteroclinic) tangle. This tangle is the geo-
metric source of chaotic motions.

To see why this is so, consider Figure 4.15. A homoclinic point is indicated
at x0. This homoclinic point is part of both the stable manifold and the
unstable manifold,

x0 ∈ W s(x̄) and x0 ∈ W u(x̄).
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Also shown is a point a that lies on the stable manifold behind x0 (the
direction is determined by the arrow on the manifold), i.e., a < x0 on W s.
Similarly, the point b lies on the unstable manifold with b < x0 on W u. Now,
we must try to find the location of the next iterate of f(x0) subject to the
following conditions:

1. The map f is orientation preserving.

2. f(x0) ∈ W s(x̄) and f(x0) ∈ W u(x̄) (all the iterates of a homoclinic
point are also homoclinic points).

3. f(a) < f(x0) on W s and f(b) < f(x0) on W u .

A picture consistent with these assumptions is shown in Figure 4.15. The
point f(x0) must lie at a new homoclinic point (that is, at a new intersection
point) ahead of x0. The first candidate for the location of f(x0) is the next
intersection point, indicated at d. However, f(x0) could not be located here
because that would imply that the map f is orientation reversing (see Prob.
4.21). The next possible location, which does satisfy all the above conditions,
is indicated by f(x0). More complicated constructions could be envisioned
that are consistent with the above conditions, but the solution shown in
Figure 4.15 is the simplest.

Now f(x0) is itself a homoclinic point. And the same argument ap-
plies again: the point f 2(x0) must lie closer to x̄ and ahead of f(x0) (Fig.
4.16(a)). In this way a single homoclinic orbit must generate an infinite num-
ber of homoclinic orbits. This sequence of homoclinic points asymptotically
approaches x̄.

Since f arises from a flow, it is a diffeomorphism and thus invertible.
Therefore, exactly the same argument applies to the preimages of x̄0. That
is, f−n(x0) approaches x̄ via the unstable manifold. The end result of this
construction is the violent oscillation of W s and W u in the region of x̄.
These oscillations form the homoclinic tangle indicated schematically in Fig-
ure 4.16(b).

The situation is even more complicated than it initially appears. The
homoclinic points are not periodic orbits, but Birkhoff and Smith showed
that each homoclinic point is an accumulation point for an infinite family of
periodic orbits [9]. Thus, each homoclinic tangle has an infinite number of
homoclinic points, and in the vicinity of each homoclinic point there exists
an infinite number of periodic points. Clearly, one major goal of dynamical
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Figure 4.16: (a) Images and preimages of a homoclinic point. (b) A homo-
clinic tangle resulting from a single homoclinic point.

systems theory, and nonlinear dynamics, is the development of techniques to
dissect and classify these homoclinic tangles. In section 4.8 we will show how
the orbit structure of a homoclinic tangle is organized by using a horseshoe
map. In Chapter 5 we will continue this topological approach by showing
how knot theory can be used to unravel a homoclinic tangle.

4.7 Example: Laser Equations

We now consider a detailed example to help reinforce the barrage of math-
ematical definitions and concepts in the previous sections. Our example is
taken from nonlinear optics and is known as the laser rate equation [10],

F =

(
F1

F2

)
=

(
u̇
ż

)
=

(
zu

(1− α1z)− (1 + α2z)u

)
.

In this model u is the laser intensity and z is the population inversion. The
parameters α1 and α2 are damping constants. When certain lasers are turned
on they tend to settle down to a constant intensity light output (constant u)
after a series of damped oscillations (ringing) around the stable steady state
solution. This behavior is predicted by the laser rate equation.

To calculate the stability of the steady states we need to know the deriva-
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tive of F:

DF =

 ∂F1

∂u
∂F1

∂z

∂F2

∂u
∂F2

∂z

 =

 z u

−(1 + α2z) −(α1 + α2u)

 .
4.7.1 Steady States

The steady states are found by setting F = 0:

zu = 0,

(1− α1z)− (1 + α2z)u = 0.

These equations have two equilibrium solutions. The first, which we label a,
occurs at

u = 0 ⇒ z =
1

α1

, a =
(

0,
1

α1

)
.

The second, which we label b, occurs at

z = 0 ⇒ u = 1, b = (1, 0).

The location in the phase plane of these equilibrium points is shown in Figure
4.17.

The motion in the vicinity of each equilibrium point is analyzed by finding
the eigenvalues λ and eigenvectors v,

λv = A · v, (4.21)

of the derivative matrix of F, A = DF, at each fixed point of the flow. At
the point a we find

DF|a =

 1
α1

0

−(1 + α2

α1
) −α1

 .
4.7.2 Eigenvalues of a 2× 2 Matrix

To calculate the eigenvalues of DF, we recall that the general solution for
the eigenvalues of any 2× 2 real matrix,

A =

(
a11 a12

a21 a22

)
, (4.22)
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are given by

λ+ =
1

2
[tr(A) +

√
∆], λ− =

1

2
[tr(A)−

√
∆], (4.23)

where

tr(A) = a11 + a22, (4.24)

det(A) = a11a22 − a12a21, (4.25)

∆(A) = [tr(A)]2 − 4 det(A). (4.26)

Applying these formulas to DF|a we find

tr(DF|a) = 1/α1 − α1,

det(DF|a) = −1,

∆(DF|a) = (1/α1 − α1)2 + 4 = (α1 + 1/α1)2,

and the eigenvalues for the fixed point a are

λ+ =
1

α1

and λ− = −α1.

The eigenvalue λ+ is positive, and indicates an unstable direction; the eigen-
value λ− is negative and indicates a stable direction. The fixed point a is a
hyperbolic saddle.

4.7.3 Eigenvectors

The stable and unstable directions, and hence the stable space Es(a) and
the unstable space Eu(a), are determined by the eigenvectors of DF|a. The
stable direction is calculated from

1

α1

(
ε
η

)
=

 1
α1

0

−(1 + α2

α1
) −α1

 · ( ε
η

)
.

Solving this system of simultaneous equations for ε and η gives the unnor-
malized eigenvector for the unstable space as

v(λ+) =

(
ε
−mε

)
, m =

α1 + α2

α2
1 + 1

.
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Similarly, the stable space is found from the eigenvalue equation for λ−:

−α1

(
ε
η

)
=

 1
α1

0

−(1 + α2

α1
) −α1

 · ( ε
η

)
.

Solving this set of simultaneous equations shows that the stable space is just
the z-axis,

v(λ−) =

(
0
η

)
.

In fact, the z-axis is invariant for the whole flow (i.e., if z = 0 then u̇ = 0 for
all t) so the z-axis is the global stable manifold at a, Es(a) = W s(a).

4.7.4 Stable Focus

To analyze the dynamics in the vicinity of the fixed point b we need to find
the eigenvalues and eigenvectors of

DF|b =

(
0 1
−1 −(α1 + α2)

)
.

The eigenvalues of DF|b are

λ+ = −α + iω and λ− = −α− iω,

where

α =
α1 + α2

2
and ω =

√
1− α2.

The fixed point b is a stable focus since the real parts of the eigenvalues
are negative. This focus represents the constant intensity output of a laser,
and the oscillation about this steady state is the ringing a laser initially
experiences when it is turned on.

The global phase portrait, pieced together from local information about
the fixed points, is pictured in Figure 4.17.

4.8 Smale Horseshoe

In section 4.6.2 we stressed the importance of analyzing the orbit structure
arising within a homoclinic tangle. From a topological and physical point of
view, analyzing the orbit structure primarily means answering two questions:
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Figure 4.17: Phase portrait for the laser rate equation.

1. What are the relative locations of the periodic orbits?

2. How are the stable and unstable manifolds interwoven within a homo-
clinic tangle?

By studying the horseshoe example we will see that these questions are inti-
mately connected.

In sections 2.11 and 2.12 we answered the first question for the one-
dimensional quadratic map by using symbolic dynamics. For the special case
of a chaotic hyperbolic invariant set (to be discussed in section 4.9), Smale
found an answer to both of the above questions for maps of any dimension.
Again, the solution involves the use of symbolic dynamics.

The prototypical example of a chaotic hyperbolic invariant set is the
Smale horseshoe [11]. A detailed knowledge of this example is essential for
understanding chaos. The Smale horseshoe (like the quadratic map for λ > 4)
is an example of a chaotic repeller. It is not an attractor. Physical appli-
cations properly focus on attractors since these are directly observable. It
is, therefore, sometimes believed that the chaotic horseshoe has little use in
physical applications. In Chapter 5 we will show that such a belief could not
be further from the truth. Remnants of a horseshoe (sometimes called the
proto-horseshoe [11]) are buried within a chaotic attractor. The horseshoe
(or some other variant of a hyperbolic invariant set) acts as the skeleton on
which chaotic and periodic orbits are organized. To quote Holmes, “Horse-
shoes in a sense provide the ‘backbone’ for the attractors [12].” Therefore,
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horseshoes are essential to both the mathematical and physical analysis of a
chaotic system.

4.8.1 From Tangles to Horseshoes

The horseshoe map is motivated by studying the dynamics of a map in the
vicinity of a periodic orbit with a homoclinic point. Such a system gives rise
to a homoclinic tangle. Consider a small box (ABCD) in the vicinity of a
periodic orbit as seen from the surface of section. This situation is illustrated
in Figure 4.18(a). The box is chosen so that the side AD is part of the
unstable manifold, and the sides AB and DC are part of the stable manifold.
We now ask how this box evolves under forward and backward iterations. The
unstable and stable manifolds of the periodic orbit are invariant. Therefore,
when the box is iterated, any point of the box that lies on an invariant
manifold must always remain on this invariant manifold.

If we iterate points in the box forward, then we generally end up (after a
finite number of iterations) with the “horseshoe shape” (C ′D′A′B′) shown in
Figure 4.18(b). The initial segment AD, which lies on the unstable manifold,
gets mapped to the segment A′D′, which is also part of the unstable manifold.
Similarly, if we iterate the box backward we find a backward horseshoe per-
pendicular to the forward horseshoe (Fig. 4.18(c)). The box of initial points
gets compressed along the unstable manifold W u and stretched along the
stable manifold W s. After a finite number of iterations, the forward image
of the box will intersect the backward image of the box. Further iteration
produces more intersections.

Each new region of intersection contains a periodic orbit (see Fig. 4.20) as
well as segments of the unstable and stable manifolds. That is, the horseshoe
can be viewed as generating the homoclinic tangle. Smale realized that this
type of horseshoe structure occurs quite generally in a chaotic system. There-
fore, he decided to isolate this horseshoe map from the rest of the problem
[11].

A schematic for this isolated horseshoe map is presented in Figure 4.18(d).
Like the quadratic map, it consists of a stretch and a fold. The horseshoe map
can be thought of as a “thickened” quadratic map. Unlike the quadratic map,
though, the horseshoe map is invertible. The future and past of all points
are well defined. However, the itinerary of points that get mapped out of the
box are ignored. We are only concerned with points that remain in the box
under all future and past iterations. These points form the invariant set.



4.8. SMALE HORSESHOE 211

A

D C

B

A B
D C 

A

D C

B

A

D C

B

A

B

D 

C 

(a) (b)

(c) (d)

A BD C 

A

B

D 
C 

A

D C

B

A

D C

B

W u

W s

f

f –1

Figure 4.18: Formation of a horseshoe inside a homoclinic tangle.

4.8.2 Horseshoe Map

A mathematical discussion of the horseshoe map is provided by Devaney [13]
or Wiggins [14]. Here, we will present a more descriptive account of the
horseshoe that closely follows Wiggins’s discussion.

The forward iteration of the horseshoe map is shown in Figure 4.19(a).
The horseshoe is a mapping of the unit square D,

f : D → R2, D = {(x, y) ∈ R2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

which contracts the horizontal directions, expands in the vertical direction,
and then folds. The mapping is only defined on the unit square. Points
that leave the square are ignored. Let the horizontal strip H0 be all points
on the unit square with 0 ≤ y ≤ 1/µ, and let horizontal strip H1 be all
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Figure 4.19: (a) Forward iteration of the horseshoe map. (b) Backward
iteration of the horseshoe map.
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points with 1− 1/µ ≤ y ≤ 1. Then a linear horseshoe map is defined by the
transformation

f(H0) :

(
x
y

)
7→
(
λ 0
0 µ

)(
x
y

)
, (4.27)

f(H1) :

(
x
y

)
7→
(
−λ 0
0 −µ

)(
x
y

)
+

(
1
µ

)
, (4.28)

where 0 < λ < 1/2 and µ > 2. The horseshoe map takes the horizontal strip
H0 to the vertical strip V0 = {(x, y)|0 ≤ x ≤ λ}, and H1 to the vertical strip
V1 = {(x, y)|1− λ ≤ x ≤ 1}:

f(H0) = V0 and f(H1) = V1. (4.29)

The strip H1 is also rotated by 180◦. The inverse of the horseshoe map f−1

is shown in Figure 4.19(b). The inverse map takes the vertical rectangles V0

and V1 to the horizontal rectangles H0 and H1.
The invariant set Λ of the horseshoe map is the collection of all points

that remain in D under all iterations of f ,

Λ = · · · f−2(D)
⋂
f−1(D)

⋂
D
⋂
f(D)

⋂
f 2(D) · · · =

∞⋂
n=−∞

fn(D).

This invariant set consists of a certain infinite intersection of horizontal and
vertical rectangles. To keep track of the iterates of the horseshoe map (the
rectangles), we will need the symbols si ∈ {0, 1} with i = 0,±1,±2, . . . .
The symbolic encoding of the rectangles works much the same way as the
symbolic encoding of the quadratic map (see section 2.12.2).

The first forward iteration of the horseshoe map produces two vertical
rectangles called V0 and V1. V0 is the vertical rectangle on the left and V1 is
the vertical rectangle on the right. The next step is to apply the horseshoe
map again, thereby producing f 2(D). As shown in Figure 4.20(a), V0 and
V1 produce four vertical rectangles labeled (from left to right) V00, V01, V11,
and V10. Applying the map yet again produces eight vertical strips labeled
V000, V001, V011, V010, V110, V111, V101, and V100. In general, the nth iteration
produces 2n rectangles. The labeling for the vertical strips is recursively
defined as follows: if the current strip is left of the center, then a 0 is added
to the front of the previous label of the rectangle; if it falls to the right, a
1 is added. So, for instance, the rectangle labeled V1 starts on the right.
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Figure 4.20: (a) Forward iteration of the horseshoe map and symbolic names.
(b) Backward iteration. (c) Symbolic encoding of the invariant points con-
structed from the forward and backward iterations.
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The rectangle labeled V01 originates from strip V1, but it currently lies on
the left. Lastly, the strip V101, starts on the right, then goes to the left, and
then returns to the right again. To each vertical strip we associate a symbolic
itinerary,

Vs−1s−2s−3...s−i...s−n ,

which gives the approximate orbit (left or right) of a vertical strip after n
iterations. The minus sign in the symbolic label indicates that the symbol
s−i arises from considering the ith preimage of the particular vertical strip
under f . Also note that the vertical strips get progressively thinner, so that
after n iterations, each strip has a width of λn.

The backward iterates produce 2n horizontal strips at the nth iteration.
The height of each of these horizontal strips is 1/µn. From the two horizontal
strips H0 and H1, the inverse map f−1 produces four horizontal rectangles
labeled (from bottom to top) as H00, H01, H11, and H10 (Fig. 4.20(b)). This
in turn produces eight horizontal rectangles, H000, H001, H011, H010, H110,
H111, H101, and H100. Each horizontal strip can be uniquely labeled with a
sequence of 0’s and 1’s,

Hs0s1s2...si...sn−1 ,

where the symbol s0 indicates the current approximate location (bottom
or top) of the horizontal rectangle. The fact that the labeling scheme is
unique follows from the definition of f and the observation that all of the
horizontal rectangles are disjoint. Unlike the vertical strips, the indexing for
the horizontal strips starts at 0 and is positive. The need for this indexing
convention will become apparent when we specify the labeling of points in
the invariant set.

Now, the invariant set Λ of the horseshoe map f is given by the infinite
intersection of all the horizontal and vertical strips. The invariant set is a
fractal, in fact, it is a product of two Cantor sets. The map f generates a
Cantor set in the horizontal direction, and the inverse map f−1 generates
a Cantor set in the vertical direction. The invariant set is, in a sense, the
product of these two Cantor sets.

4.8.3 Symbolic Dynamics

We can identify points in the invariant set according to the following scheme.
After one forward iteration and one backward iteration, the invariant set is
located within the four shaded rectangular regions shown in Figure 4.20(c).
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After two forward iterations and two backward iterations, the invariant set
is a subset of the 16 shaded regions. The shaded regions are the intersection
of the horizontal and vertical strips. To each shaded region we associate a
bi-infinite symbol sequence,

· · · s−n · · · s−3s−2s−1.s0s1s2 · · · sn · · · ,

constructed from the label of the vertical and horizontal strips forming a point
in the invariant set. The right-hand side of the symbolic name, s0s1s2 · · · sn · · ·,
is the label from the horizontal strip Hs0s1s2···sn···. The left-hand side of the
symbolic name, · · · s−n · · · s−3s−2s−1, is the label from the vertical strip writ-
ten backwards, Vs−1s−2s−3...s−i...s−n . For instance, the shaded region labeled L
in Figure 4.20(c) has a symbolic name “10.01.” The “.01” to the right of the
dot indicates horizontal strip H01. The “10.” (“01” backwards) to the left of
the dot indicates that the shaded region comes from the vertical strip V01.

We hone in closer and closer to the invariant set by iterating the horse-
shoe map both forward and backward. Moreover, the above labeling scheme
generates a symbolic name, or symbolic coordinate, for each point of the
invariant set. This symbolic name contains information about the dynamics
of the invariant point.

To see how this works more formally, let us call Σ the symbol space of all
bi-infinite sequences of 0’s and 1’s. A metric on Σ between the two sequences

s = (· · · s−n · · · s−1.s0s1 · · · sn · · ·)
s̄ = (· · · s̄−n · · · s̄−1.s̄0s̄1 · · · s̄n · · ·)

is defined by

d[s, s̄] =
∞∑

i=−∞

δi
2|i|

where δi =

{
0 if si = s̄i,
1 if si 6= s̄i.

(4.30)

Next we define a shift map σ on Σ by

σ(s) = (· · · s−n · · · s−1s0.s1s2 · · · sn · · ·), i.e., σ(s)i = si+1. (4.31)

The shift map is continuous and it has two fixed points consisting of a string
of all 0’s or all 1’s. A period n orbit of σ is written as s−n · · · s−1.s0s1 · · · sn−1,
where the overbar indicates that the symbolic sequence repeats forever. A
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few of the periodic orbits and their “shift equivalent” representations are
listed below,

Period 1 : 0.0, 1.1;
Period 2 : 01.01 −→ 10.10;
Period 3 : 001.001 −→ 010.010 −→ 100.100;

110.110 −→ 101.101 −→ 110.110;

and so on. In addition to periodic orbits of arbitrarily high period, the shift
map also possesses an uncountable infinity of nonperiodic orbits as well as a
dense orbit. See Devaney [13] or Wiggins [14] for the details.

In section 2.11 we showed that the shift map on the space of one-sided
symbol sequences is topologically semiconjugate to the quadratic map. A
similar results holds for the shift map on the space of bi-infinite sequences
and the horseshoe map; namely, there exists a homeomorphism φ : Λ → Σ
connecting the dynamics of f on Λ and σ on Σ such that φ ◦ f = σ ◦ φ:

Λ
f−→ Λ

φ ↓ ↓ φ
Σ

σ−→ Σ

The correspondence between the shift map on Σ and the horseshoe map on
the invariant set Λ is pretty easy to see (again, for the mathematical details
see Wiggins [14]). The invariant set consists of an infinite intersection of
horizontal and vertical strips. These intersection points are labeled by their
symbolic itinerary, and the horseshoe map carries one point of the invariant
set to another precisely by a shift map. Consider, for instance, the period
two orbit

01.01
σ−→ 10.10.

The shift map sends 01.10 to 10.10 and back again. This corresponds to an
orbit of the horseshoe map that bounces back and forth between the points
labeled 01.01 and 10.10 in Λ (see Fig. 4.21). The topological conjugacy
between σ and f allows us to immediately conclude that, like the shift map,
the horseshoe map has

1. a countable infinity of periodic orbits (and all the periodic orbits are
hyperbolic saddles);

2. an uncountable infinity of nonperiodic orbits;
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Figure 4.21: Equivalence between the dynamics of the horseshoe map on the
unit square and the shift map on the bi-infinite symbol space.

3. a dense orbit.

The shift map (and hence the horseshoe map) exhibits sensitive dependence
on initial conditions (see section 4.10). As stated above, it possesses a dense
orbit. These two properties are generally taken as defining a chaotic set.

4.8.4 From Horseshoes to Tangles

Forward and backward iterations of the horseshoe map generate the locations
of periodic points to a higher and higher precision. That is, by iterating the
horseshoe map, we can specify the location of a periodic orbit within a homo-
clinic tangle (of the horseshoe) to any degree of accuracy. For instance, after
one iteration, we know the approximate location of a period two orbit. It lies
somewhere within the shaded regions labeled 0.1 and 1.0 in Figure 4.20(c).
After two iterations, we know its position even better. It lies somewhere
within the shaded regions labeled 10.10 and 01.01 (Fig. 4.20(c)).

The forward iterates of the horseshoe map produce a “snake” that ap-
proaches the unstable manifold W u of the periodic point. The backward
iterates produce another snake that approaches the stable manifold W s of
the periodic point at the origin. Thus, iterating a horseshoe generates a tan-
gle. The relative locations of horizontal and vertical branches of this tangle
are the same as those that occur in a homoclinic tangle with a horseshoe
arising in a particular flow. This is illustrated in Figure 4.22. We can name
the branches of the tangle with the same labeling scheme we used for the
horseshoe. For a horseshoe, the labeling scheme is easy to see once we notice
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Figure 4.23: Examples of horseshoe-like maps that generate hyperbolic in-
variant sets.

that both the horizontal and vertical branches are labeled according to the
alternating binary tree introduced in section 2.12.2.

The labeling of the horizontal branches is determined by the symbols
s0s1s2 . . . . For instance, the horizontal label for branch H110 can be deter-
mined by reading down the alternating binary tree as illustrated in Figure
4.22. A second alternating binary tree is used to determine the labeling for
the vertical branches. The labeling for the branch V110 is indicated in Figure
4.22. The labeling scheme for the horizontal and vertical branches at first
appears complicated. However, the branch names are easy to write down
once we realize that they can be read directly from the alternating binary
tree.

4.9 Hyperbolicity

The horseshoe map is just one of an infinity of possible return maps (chaotic
forms) that can be successfully analyzed using symbolic dynamics. A few
other possibilities are shown in Figure 4.23. Each different return map gen-
erates a different homoclinic tangle, but all these tangles can be dissected
using symbolic dynamics. All these maps are similar to the horseshoe be-
cause they are topologically conjugate to an appropriate symbol space with a
shift map. All these maps possess an invariant Cantor set Λ. These invariant
sets all possess a special property that ensures their successful analysis using
symbolic dynamics, namely, hyperbolicity.

Recall our definition of a hyperbolic point. A fixed point of a map is
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hyperbolic if none of the moduli of its eigenvalues exactly equals one. The
notion of a hyperbolic invariant set is a generalization of a hyperbolic fixed
point. Informally, to define a hyperbolic set we extend this property of
“no eigenvalues on the unit circle” to each point of the invariant set. In
other words, there is no center manifold for any point of the invariant set.
Technically, a set Λ arising in a diffeomorphism f : R2 → R2 is a hyperbolic
set if

1. there exists a pair of tangent lines Es(x) and Eu(x) for each x ∈ Λ
which are preserved by Df(x);

2. Es(x) and Eu(x) vary smoothly with x;

3. there is a constant λ > 1 such that ‖Df(x)w‖ ≥ λ‖w‖ for all w ∈ Eu(x)
and ‖Df−1(x)w‖ ≥ λ‖w‖ for all w ∈ Es(x).

A more complete mathematical discussion of hyperbolicity can be found in
Devaney [13] or Wiggins [14]. A general mathematical theory for the symbolic
analysis of chaotic hyperbolic invariant sets is described by Devaney [13] and
goes under the rubric of “subshifts and transition matrices.”

Like the horseshoe, the chaotic hyperbolic invariant sets encountered in
the mathematics literature are often chaotic repellers. In physical applica-
tions, on the other hand, we are more commonly faced with the analysis of
nonhyperbolic chaotic attractors. The extension of symbolic analysis from
the (mathematical) hyperbolic regime to the (more physical) nonhyperbolic
regime is still an active research question [15].

4.10 Lyapunov Characteristic Exponent

In section 2.10 we informally introduced the Lyapunov exponent as a simple
measure of sensitive dependence on initial conditions, i.e., chaotic behavior.
The notion of a Lyapunov exponent is a generalization of the idea of an
eigenvalue as a measure of the stability of a fixed point or a characteristic
exponent [1] as the measure of the stability of a periodic orbit. For a chaotic
trajectory it is not sensible to examine the instantaneous eigenvalue of a tra-
jectory. The next best quantity, therefore, is an eigenvalue averaged over the
whole trajectory. The idea of measuring the average stability of a trajec-
tory leads us to the formal notion of a Lyapunov exponent. The Lyapunov
exponent is best defined by looking at the evolution (under a flow) of the
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Figure 4.24: Evolution of vectors in the tangent manifold under a flow.

tangent manifold. That is, “sensitive dependence on initial conditions” is
most clearly stated as an observation about the evolution of vectors in the
tangent manifold rather than the evolution of trajectories in the flow of the
original manifold M .

The tangent manifold at a point x, written as TMx, is the collection of
all tangent vectors of the manifold M at the point x. The tangent manifold
is a linear vector space. The collection of all tangent manifolds is called
the tangent bundle. For instance, for a surface embedded in R3 the tangent
manifold at each point of the manifold is a tangent plane. More generally,
if the original manifold is of dimension n, then the tangent manifold is a
linear vector space also of dimension n. For further background material on
manifolds, tangent manifolds, and flows, see Arnold [1].

The integral curves of a flow on a manifold provide a smooth foliation of
that manifold, in the following manner. A point x ∈ M goes to the point
φt(x) ∈ M under the flow (see Fig. 4.24). Now we make a key observation:
the tangent vectors w ∈ TMx are also carried by the flow (this is called a
“Lie dragging”) so that we can set up a unique correspondence between the
tangent vectors in TMx and the tangent vectors in TMφt(x). Namely, for each
w ∈ TMx, there exists a unique vector Dφt[w] ∈ TMφt(x). The Lyapunov
characteristic exponent of a flow is defined as

λ(x,w) = lim
t→∞

1

t
ln

(
‖Dφt(x)[w]‖
‖w‖

)
. (4.32)

That is, the Lyapunov characteristic exponent measures the average growth
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rate of vectors in the tangent manifold. The corresponding Lyapunov char-
acteristic exponent of a map is [6]

λ(x,w) = lim
n→∞

1

n
ln ‖(Df(x))n[w]‖, (4.33)

where
(Df(x))n = Df(fn−1(x)) ◦ · · · ◦Df(x)[w]. (4.34)

A flow is said to have sensitive dependence on initial conditions if the Lya-
punov characteristic exponent is positive. From a physical point of view, the
Lyapunov exponent is a very useful indicator distinguishing a chaotic from
a nonchaotic trajectory [16].
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Problems

Problems for section 4.2.

4.1. Show that the Hénon map with β = 0 reduces to an equivalent form of the quadratic
map.
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4.2. Introduce the new variable τ = ωt to the forced damped pendulum and rewrite the
equations for the vector field so that the flow is φ(τ, θ, v) : S1 ×R2.

4.3. Write the IHJM optical map as a map of two real variables f(x, y) : R2 → R2 where
z = x + iy. Consider separately the cases where the parameters γ and B are real
and complex.

Section 4.3.

4.4. What is the ω-limit set of a point x1 of a period two orbit of the quadratic map:
O(x1) = {x1, x2}?

4.5. Let f(z) : S1 → S1, with z 7→ e2πiθz. Show that if θ is irrational, then ω(p) = S1.

4.6. Give an example of a map f : M →M with L+ 6= Ω.

4.7. Why is the label Ω a good name for the nonwandering set?

Section 4.4.

4.8. Verify that the Jacobian for the Hénon map is

∂(xn+1, yn+1)

∂(xn, yn)
= −β.

4.9. Compute the divergence of the vector field for the damped linear oscillator, ẍ+αẋ+
ω2x = 0.

4.10. Calculate the divergence of the vector field for the Duffing equation, forced damped
pendulum, and modulated laser rate equation. For what parameter values are the
first two systems dissipative or conservative?

4.11. Calculate the Jacobian for the quadratic map, the sine circle map, the Baker’s map,
and the IHJM optical map. For what parameter values is the Baker’s map dissipative
or conservative?

4.12. The definition of a “dissipative” dynamical system in section 4.4.4 actually includes
expansive systems. How would you redefine the term dissipative to handle these
cases separately?

4.13. Solve the equation of first variation for the vector field F(x, v) = (v,−x). That is,
find the time evolution of φxx(t), φxv(t), φvx(t), φvv(t).

Section 4.5.

4.14. Explicitly derive the evolution operator for the vector field F(x, v) = (v,−x) by
solving the differential equation for the harmonic oscillator in dimensionless vari-
ables.
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4.15. Show that the following 2 × 2 Jordan matrices have the indicated linear evolution
operators:

(a)

A =

[
λ1 0
0 λ2

]
, etA =

[
eλ1t 0

0 eλ2t

]
;

(b)

A =

[
α −ω
ω α

]
, etA = eαt

[
cosωt − sinωt
sinωt cosωt

]
;

(c)

A =

[
λ 0
1 λ

]
, etA = eλt

[
1 0
t 1

]
.

4.16. Find an example of a differential equation with an equilibrium point which is linearly
stable but not locally stable. Hint: See Wiggins, reference [1].

4.17. Find the fixed points of the sine circle map and the Baker’s map.

4.18. Find all the fixed points of the linear harmonic oscillator ẍ+x+αẋ = 0 and evaluate
their local stability for α = 1 and α < 1. When are the fixed points asymptotically
stable?

4.19. Find the equilibrium points of the unforced Duffing equation and the damped pen-
dulum, and analyze their linear stability.

Section 4.6.

4.20. Calculate Wu(0, 0) and W s(0, 0) for the planar vector field ẋ = x, ẏ = −y + x2.

4.21. Draw a picture from Figure 4.15 to show that if f(x0) is located at d, then the map
is orientation reversing.

Section 4.7.

4.22. Follow section 4.7 to construct the phase portrait for the laser rate equation when
(a) α1 = α2 = 0, and (b) α1, α2 < 0.

Section 4.8.

4.23. Calculate the inverse of the horseshoe map f−1 described in section 4.8.2.



Chapter 5

Knots and Templates

5.1 Introduction

Physicists are confronted with a fundamental challenge when studying a non-
linear system; to wit, how are theory and experiment to be compared for a
chaotic system? What properties of a chaotic system should a physical the-
ory seek to explain or predict? For a nonchaotic system, a physical theory
can attempt to predict the long-term evolution of an individual trajectory.
Chaotic systems, though, exhibit sensitive dependence on initial conditions.
Long-term predictability is not an attainable or a sensible goal for a physical
theory of chaos. What is to be done?

A consensus is now forming among physicists which says that a physical
theory for low-dimensional chaotic systems should consist of two interlocking
components:

1. a qualitative encoding of the topological structure of the chaotic at-
tractor (symbolic dynamics, topological invariants), and

2. a quantitative description of the metric structure on the attractor (scal-
ing functions, transfer operators, fractal measures).

A physicist’s “dynamical quest” consists of first dissecting the topological
form of a strange set, and second, “dressing” this topological form with its
metric structure.

In this chapter we introduce one beautiful approach to the first part of
a physicist’s dynamical quest, that is, unfolding the topology of a chaotic
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attractor. This strategy takes advantage of geometrical properties of chaotic
attractors in phase space.

A low-dimensional chaotic dynamical system with one unstable direction
has a rich set of recurrence properties that are determined by the unstable
saddle periodic orbits embedded within the strange set. These unstable peri-
odic orbits provide a sort of skeleton on which the strange attractor rests. For
flows in three dimensions, these periodic orbits are closed curves, or knots.
The knotting and linking of these periodic orbits is a bifurcation invariant,
and hence can be used to identify or “fingerprint” a class of strange attractors.
Although a chaotic system defies long-term predictability, it may still possess
good short-term predictability. This short-term predictability fundamentally
distinguishes “low-dimensional” chaos from our notion of a “random” pro-
cess. Mindlin and co-workers [1,2,3], building on work initiated by Solari and
Gilmore [4,5], recently developed this basic set of observations into a coher-
ent physical theory for the topological characterization of chaotic sets arising
in three-dimensional flows. The approach advocated by Mindlin, Solari, and
Gilmore emphasizes the prominent role topology must play in any physical
theory of chaos. In addition, it suggests a useful approach toward developing
dynamical models directly from experimental time series.

In recent years the ergodic theory of differentiable dynamical systems has
played a prominent role in the description of chaotic physical systems [6].
In particular, algorithms have been developed to compute fractal dimensions
[7,8], metric entropies [9], and Lyapunov exponents [10] for a wide variety
of experimental systems. It is natural to consider such ergodic measures,
especially if the ultimate aim is the characterization of turbulent motions,
which are, presumably, of high dimension. However, if the aim is simply
to study and classify low-dimensional chaotic sets, then topological methods
will certainly play an important role. Topological signatures and ergodic
measures usually present different aspects of the same dynamical system,
though there are some unifying principles between the two approaches, which
can often be found via symbolic dynamics [11]. The metric properties of a
dynamical system are invariant under coordinate transformations; however,
they are not generally stable under bifurcations that occur during parameter
changes. Topological invariants, on the other hand, can be stable under
parameter changes and therefore are useful in identifying the same dynamical
system at different parameter values.

The aim of this chapter is to develop topological methods suitable for the
classification and analysis of low-dimensional nonlinear dynamical systems.
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The techniques illustrated here are directly applicable to a wide spectrum
of experiments including lasers [4], fluid systems such as those giving rise to
surface waves [12], the bouncing ball system described in Chapter 1, and the
forced string vibrations described in Chapter 3.

The major device in this analysis is the template, or knot holder, of
the hyperbolic chaotic limit set. The template is a mathematical construc-
tion first introduced by Birman and Williams [13] and further developed by
Holmes and Williams [14]. Roughly, a template is an expanding map on
a branched surface. Templates are useful because periodic orbits from the
flow of a chaotic hyperbolic dynamical system can be placed on a template in
such a way as to preserve their original topological structure. Thus templates
provide a visualizable model for the topological organization of the limit set.
Templates can also be described algebraically by finite matrices, and this in
turn gives us a kind of homology theory for low-dimensional chaotic limit
sets.

As recently described by Mindlin, Solari, Natiello, Gilmore, and Hou [2],
templates can be reconstructed from a moderate amount of experimental
data. This reconstructed template can then be used both to classify the
strange attractor and to make specific predictions about the periodic orbit
structure of the underlying flow. Strictly speaking, the template construc-
tion only applies to flows in the three-sphere, S3, although it is hoped that
the basic methodology illustrated by the template theory can be used to
characterize flows in higher dimensions.

The strategy behind the template theory is the following. For a nonlinear
dynamical system there are generally two regimes that are well understood,
the regime where a finite number of periodic orbits exist and the hyperbolic
regime of fully developed chaos. The essential idea is to reconstruct the form
of the fully developed chaotic limit set from a non-fully developed (possibly
nonhyperbolic) region in parameter space. Once the hyperbolic limit set
is identified, then the topological information gleaned from the hyperbolic
limit set can be used to make predictions about the chaotic limit set in other
(possibly nonhyperbolic) parameter regimes, since topological invariants such
as knot types, linking numbers, and relative rotation rates are robust under
parameter changes.

In the next section we follow Auerbach and co-workers to show how pe-
riodic orbits are extracted from an experimental time series [15, 16]. These
periodic cycles are the primary experimental data that the template theory
seeks to organize. Section 5.3 defines the core mathematical ideas we need
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Figure 5.1: A recurrent flow around a hyperbolic fixed point.

from knot theory: knots, braids, links, Reidemeister moves, and invariants.
In section 5.4 we describe a simple, but physically useful, topological invari-
ant called a relative rotation rate, first introduced by Solari and Gilmore [4].
Section 5.5 discusses templates, their algebraic representation, and their sym-
bolic dynamics. Here, we present a new algebraic description of templates
in terms of “framed braids,” a representation suggested by Melvin [17]. This
section also shows how to calculate relative rotation rates from templates.
Section 5.6 provides examples of relative rotation rate calculations from two
common templates. In section 5.7 we apply the template theory to the Duff-
ing equation. This final section is directly applicable to experiments with
nonlinear string motions, such as those described in Chapter 3 [18].

5.2 Periodic Orbit Extraction

Periodic orbits are available in abundance from a single chaotic time series.
To see why this is so consider a recurrent three-dimensional flow in the vicin-
ity of a hyperbolic periodic orbit (Fig. 5.1) [19]. Since the flow is recurrent,
we can choose a surface of section in the vicinity of this fixed point. This
section gives a compact map of the disk onto itself with at least one fixed
point. In the vicinity of this fixed point a chaotic limit set (a horseshoe)
containing an infinite number of unstable periodic orbits can exist. A single
chaotic trajectory meanders around this chaotic limit set in an ergodic man-
ner, passing arbitrarily close to every point in the set including its starting
point and each periodic point.

Now let us consider a small segment of the chaotic trajectory that returns
close to some periodic point. Intuitively, we expect to be able to gently adjust
the starting point of the segment so that the segment precisely returns to its
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(a) (b)

Figure 5.2: (a) A close recurrence of a chaotic trajectory. (b) By gently
adjusting a segment of the chaotic trajectory we can locate a nearby periodic
orbit. (Adapted from Cvitanović [19].)

initial starting point, thereby creating a periodic orbit (Fig. 5.2).
Based on these simple observations, Auerbach and co-workers [15] showed

that the extraction of unstable periodic orbits from a chaotic time series is
surprisingly easy. Very recently, Lathrop and Kostelich [16], and Mindlin
and co-workers [2], successfully applied this orbit extraction technique to a
strange attractor arising in an experimental flow, the Belousov-Zhabotinskii
chemical reaction.

As discussed in Appendix H, the idea of using the periodic orbits of a
nonlinear system to characterize the chaotic solutions goes back to Poincaré
[20]. In a sense, Auerbach and co-workers made the inverse observation: not
only can periodic orbits be used to describe a chaotic trajectory, but a chaotic
trajectory can also be used to locate periodic orbits.

A real chaotic trajectory of a strange attractor can be viewed as a kind
of random walk on the unstable periodic orbits. A segment of a chaotic tra-
jectory approaches an unstable periodic orbit along its stable manifold. This
approach can last for several cycles during which time the system has good
short-term predictability. Eventually, though, the orbit is ejected along the
unstable manifold and proceeds until it is captured by the stable manifold
of yet another periodic orbit. A convenient mathematical language to de-
scribe this phenomenon is the shadowing theory [21] of Conley and Bowen.
Informally, we say that a short segment of a chaotic time series shadows an
unstable periodic orbit embedded within the strange attractor. This shad-
owing effect makes the unstable periodic orbits (and hence, the hyperbolic
limit set) observable. In this way, horseshoes and other hyperbolic limit sets
can be “measured.”
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This also suggests a simple test to distinguish low-dimensional chaos from
noise. Namely, a time series from a chaotic process should have subsegments
with strong recurrence properties. In section 5.2.3 we give examples of recur-
rence plots that show these strong recurrence properties. These recurrence
plots give us a quick test for determining if a time series is from a low-
dimensional chaotic process.

5.2.1 Algorithm

Let the vector xi be a point on the strange attractor where xi in our setting is
three-dimensional, and the components are either measured directly from ex-
periment (e.g., x, ẋ, ẍ) or created from an embedding xi = (si, si+τ , si+2τ ) of
{si}ni=1, the scalar time series data generated from an experimental measure-
ment of one variable. In the three-dimensional phase space the saddle orbits
generally have a one-dimensional repelling direction and a one-dimensional
attracting direction. When a trajectory is near a saddle it approximately
follows the motion of the periodic orbit. For a data segment xi,xi+1,xi+2, ...
near a periodic orbit, and an ε > 0, we can find a smallest n such that
‖xi+n − xi‖ < ε. We will often write n = kn0. In a forced system, n0 is
simply the number of samples per fundamental forcing period and k is the
integer period. If the system is unforced, then n0 can be found by construct-
ing a histogram of the recurrence times as described by Lathrop and Kostelich
[16]. Candidates for periodic orbits embedded in the strange attractor are
now given by all xi which are (k, ε) recurrent points, where k = n/n0 is the
period of the orbit.

In practice we simply scan the time series for close returns (strong recur-
rence properties),

‖xi+n − xi‖ < ε, (5.1)

for k = 1, 2, 3... to find the period one, period two, period three orbits, and
so on. When the data are normalized to the maximum of the time series,
then ε = 0.005 appears to work well. The recurrence criterion ε is usually
relaxed for higher-order orbits and can be made more stringent for low-order
orbits.

In a flow with a moderate number of samples per period, say n0 > 32,
the recurrent points tend to be clustered about one another. That is, if xi is
a recurrent point, then xi+1,xi+2, ..., are also likely to be recurrent points for
the same periodic orbit, simply because the periodic orbit is being approached
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from its attracting direction. We call a cluster of such points a window. The
saddle orbit is estimated, or reconstructed, by choosing the orbit with the
best recurrence property (minimum ε) in a window. Alternatively, the orbit
can also be approximated by averaging over nearby segments, which is the
more appropriate procedure for maps [15].

Data segments of strong recurrence in a chaotic time series are easily seen
in recurrence plots, which are obtained by plotting ‖xi+n− xi‖ as a function
of i for fixed n = kn0. Different recurrence plots are necessary for detecting
period one (k = 1) orbits, period two (k = 2) orbits, and so on. Windows
in these recurrence plots are clear signatures of near-periodicity over several
complete periods in the corresponding segment of the time series data. The
periodic orbits are reconstructed by choosing the orbit at the bottom of each
window. Windows in recurrence plots also provide a quick test showing that
the time series is not being generated by noise, but may be coming from a
low-dimensional chaotic process.

5.2.2 Local Torsion

In addition to reconstructing the periodic orbits, we can also extract from a
single chaotic time series the linearized flow in the vicinity of each periodic
orbit. In particular, it is possible to calculate the local torsion, that is, how
much the unstable manifold twists about the fixed point. Let vu be the
eigenvector corresponding to the largest eigenvalue λu about the periodic
orbit. That is, vu is the local linear approximation of the unstable manifold
of the saddle orbit. To find the local torsion, we need to estimate the number
of half-twists vu makes about the periodic orbit. The operator ST,0,

ST,0 = exp

(∫ T

0
DFdη

)
, (5.2)

gives the evolution of the variational vector. This variational vector will
generate a strip under evolution, and the number of half-turns (the local
torsion) is nothing but one-half the linking number (defined in section 5.3.3)
of the central line and the end of the strip defined by [22]

A = {x0(t) + ηvu(t); 0 ≤ t < 2T}, (5.3)

where x0 is the curve corresponding to the periodic orbit.
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The evolution operator can be estimated from a time series by first noting
that

exp

(∫ T

0
DFdη

)
≈

exp(DF |T∆t)× exp(DF |T−∆T∆t)× ...× exp(DF |0∆t). (5.4)

Let xi be a recurrent point, and let {xj}nj=1 be a collection of points in some
predefined neighborhood about xi. Then DF (xi) is a 3 × 3 matrix, and
we can use a least-squares procedure on points from the time series in the
neighborhood of xi to approximate both the Jacobian and the tangent map
[10,22]. The local torsion (the number of half-twists about the periodic orbit)
is a rather rough number calculated from the product of the Jacobians and
hence is insensitive to the numerical details of the approximation.

5.2.3 Example: Duffing Equation

To illustrate periodic orbit extraction we again consider the Duffing oscillator,
in the following form:

ẋ1 = x2, (5.5)

ẋ2 = −αx2 − x1 − x3
1 + f cos(2πx3 + φ), (5.6)

ẋ3 = ω/2π, (5.7)

with the control parameters α = 0.2, f = 27.0, ω = 1.330, and φ = 0.0
[3]. At these parameter values a strange attractor exists, but the attractor
is probably not hyperbolic.

The Duffing equation is numerically integrated for 213 periods with 213

steps per period. Data are sampled and stored every 27 steps, so that 26

points are sampled per period. A short segment of the chaotic orbit from the
strange attractor, projected onto the (x2, x1) phase space, is shown in Figure
5.3.

Periodic orbits are reconstructed from the sampled data using a standard
Euclidean metric. The program used to extract the periodic orbits of the
Duffing oscillator is listed in Appendix F. The distances d[xi+n − xi] are
plotted as a function of i for fixed n = kn0, with n0 = 26. Samples of these
recurrence plots are shown in Figure 5.4 for k = 2 and k = 3. The windows
at the bottom of these plots are clear signatures of near-periodicity in the
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Figure 5.3: Two-dimensional projection of a data segment from the strange
attractor of the Duffing oscillator.
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Figure 5.4: Recurrence plots. Distances d[xi+n − xi] plotted as a function
of i for fixed n = kn0, with n0 = 26. The windows in these plots show
near-periodicity over at least a full period in the corresponding segment of
the time series data. The bottom of each window is a good approximation
to the nearby unstable periodic orbit: (a) k = 2; (b) k = 3.

corresponding segment of the time series data. The segment of length n with
the smallest distance (the bottom of the window) was chosen to represent
the nearby unstable periodic orbit. Some of the unstable periodic orbits that
were reconstructed by this procedure are shown in Figure 5.5. We believe
that the orbits shown in Figure 5.5 correctly identify all the period one and
some of the period three orbits embedded in the strange attractor at these
parameter values. In addition, a period two orbit and higher-order periodic
orbits can be extracted (see Table 5.3). However, this may not be all the
periodic orbits in the system since some of them may have basins of attraction
separate from the basin of attraction for the strange attractor.

The periodic orbits give a spatial outline of the strange attractor. By
superimposing the orbits in Figure 5.5 onto one another, we recover the
picture of the strange attractor shown in the upper left-hand corner of Figure
5.5. Each periodic orbit indicated in Figure 5.5 is actually a closed curve in
three-space (we only show a two-dimensional projection in Fig. 5.5).

Now we make a simple but fundamental observation. Each of these pe-
riodic orbits is a knot, and the periodic orbits of the strange attractor are
interwoven (tied together) in a very complicated pattern. Our goal in this
chapter is to understand the knotting of these periodic orbits, and hence the
spatial organization of the strange attractor. We begin by reviewing a little
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Figure 5.5: Some of the periodic orbits extracted from the chaotic time series
data of Figure 5.3: (a) symmetric period one orbit; (b), (c) asymmetric pair of
period one orbits; (d), (e) symmetric period three orbits; (f), (g) asymmetric
period three orbits.
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(a) (b) (c) (d) (e) (f)

Figure 5.6: Planar diagrams of knots: (a) the trivial or unknot; (b) figure-
eight knot; (c) left-handed trefoil; (d) right-handed trefoil; (e) square knot;
(f) granny knot.

(a) (b) (c)

Figure 5.7: Link diagrams: (a) Hopf link; (b) Borromean rings; (c) White-
head link.

knot theory.

5.3 Knot Theory

Knot theory studies the placement of one-dimensional objects called strings
[23,24,25] in a three-dimensional space. A simple and accurate picture of
a knot is formed by taking a rope and splicing the ends together to form a
closed curve. A mathematician’s knot is a non-self-intersecting smooth closed
curve (a string) embedded in three-space. A two-dimensional planar diagram
of a knot is easy to draw. As illustrated in Figure 5.6, we can project a knot
onto a plane using a solid (broken) line to indicate an overcross (undercross).
A collection of knots is called a link (Fig. 5.7).

The same knot can be placed in space and drawn in planar diagram
in an infinite number of different ways. The equivalence of two different
presentations of the same knot is usually very difficult to see. Classification
of knots and links is a fundamental problem in topology. Given two separate
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Figure 5.8: Equivalent planar diagrams of the trefoil knot.

Figure 5.9: Two knots whose equivalence is hard to demonstrate.

knots or links we would like to determine when two knots are the same or
different. Two knots (or links) are said to be topologically equivalent if there
exists a continuous transformation carrying one knot (or link) into another.
That is, we are allowed to deform the knot in any way without ever tearing or
cutting the string. For instance, Figure 5.8 shows two topologically equivalent
planar diagrams for the trefoil knot and a sequence of “moves” showing
their equivalence. The two knots shown in Figure 5.9 are also topologically
equivalent. However, proving their equivalence by a sequence of moves is a
real challenge.

A periodic orbit of a three-dimensional flow is also a closed nonintersect-
ing curve, hence a knot. A periodic orbit has a natural orientation associated
with it: the direction of time. This leads us to study oriented knots. Formally
an oriented knot is an embedding S1 → R3 where S1 is oriented. Informally,
an oriented knot is just a closed curve with an arrow attached to it telling
us the direction along the curve.

The importance of knot theory in the study of three-dimensional flows
comes from the following observation. The periodic orbits of a three-dimensional
flow form a link. In the chaotic regime, this link is extraordinarily complex,
consisting of an infinite number of periodic orbits (knots). As the parameters
of the flow are varied the components of this link, the knots, may collapse to
points (Hopf bifurcations) or coalesce (saddle-node or pitchfork bifurcations).
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Figure 5.10: Crossing conventions: (a) positive (b) negative.

But no component of the link can intersect itself or any other component of
the link, because if it did, then there would be two different solutions based at
the same initial condition, thus violating the uniqueness theorem for differen-
tial equations. The linking of periodic orbits fixes the topological structure
of a three-dimensional flow [14]. Moreover, as we showed in the previous
section, periodic orbits and their linkings are directly available from experi-
mental data. Thus knot theory is expected to play a key role in any physical
theory of three-dimensional flows.

5.3.1 Crossing Convention

In our study of periodic orbits we will work with oriented knots and links. To
each crossing C in an oriented knot or link we associate a sign σ(C) as shown
in Figure 5.10. A positive cross (also known as right-hand cross, or overcross)
is written as σ(C) = +1. A negative cross (also known as a left-hand cross,
or undercross) is written as σ(C) = −1. This definition of crossing is the
opposite of the Artin crossing convention adopted by Solari and Gilmore [4].

5.3.2 Reidemeister Moves

Reidemeister observed that two different planar diagrams of the same knot
represent topologically equivalent knots under a sequence of just three pri-
mary moves, now called Reidemeister moves of type I, II, and III. These
Reidemeister moves, illustrated in Figure 5.11, simplify the study of knot
equivalence by reducing it to a two-dimensional problem. The type I move
untwists a section of a string, the type II move pulls apart two strands, and
the type III move acts on three strings sliding the middle strand between the
outer strands. The Reidemeister moves can be applied in an infinite number
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(a) Type I (b) Type II (c) Type III

Figure 5.11: Reidemeister moves: (a) untwist; (b) pull apart; (c) middle
slide.

(a) (b)

Figure 5.12: Linking numbers: (a) one; (b) zero.

of combinations. So knot equivalence can still be hard to show using only
the Reidemeister moves.

5.3.3 Invariants and Linking Numbers

A more successful strategy for classifying knots and links involves the con-
struction of topological invariants. A topological invariant of a knot or link
is a quantity that does not change under continuous deformations of the
strings. The calculation of topological invariants allows us to bypass directly
showing the geometric equivalence of two knots, since distinct knots must
be different if they disagree in at least one topological invariant. What we
really need, of course, is a complete set of calculable topological invariants.
This would allow us to definitely say when two knots or links are the same or
different. Unfortunately, no complete set of calculable topological invariants
is known for knots. However, mathematicians have been successful in de-
veloping some very fine topological invariants capable of distinguishing large
classes of knots [23].

The linking number is a simple topological invariant defined for a link
on two oriented strings α and β. Intuitively, we expect the Hopf link in
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+
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+
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+
lk(α,β) =      (1+1) = 11

2 lk(α,β) =      (1–1) = 01
2

lk(α,β) = 2 lk(α,β) = 0

Figure 5.13: Examples of linking number calculations. (Adapted from Kauff-
man [24].)

Figure 5.12(a) to have linking number +1 since the two strings are linked
once. Similarly, the two strings in Figure 5.12(b) are unlinked and should
have linking number 0. The linking number, which agrees with this intuition,
is defined by

lk(α, β) =
1

2

∑
C

σ(C). (5.8)

In words, we just add up the crossing numbers for each cross between the
two strings α and β and divide by two. The calculation of linking numbers
is illustrated in Figure 5.13. Note that the last example is a planar diagram
for the Whitehead link showing that “links can be linked even when their
linking number is zero” [24].

The linking number is an integer invariant. More refined algebraic poly-
nomial invariants can be defined such as the Alexander polynomial and the
Jones polynomial [23]. We will not need these more refined invariants for our
work here.

5.3.4 Braid Group

Braid theory plays a fundamental role in knot theory since any oriented
link can be represented by a closed braid (Alexander’s Theorem [24]). The
identification between links, braids, and the braid group allows us to pass
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(a) (b)1 2 … n

1 n

1 2 3 …

1 2 3 …2 …

… n – 1

… n – 1 … n

… n

Figure 5.14: (a) A braid on n-strands. (b) A trivial braid.

(a) (b)

1 2 i + 1i n

1 2 i + 1i n

1 2 i + 1i n

1 2 i + 1i n

bi
–1bi

Figure 5.15: Braid operators: (a) bi, overcross; (b) b−1
i , undercross.

back and forth between the geometric study of braids (and hence knots and
links) and the algebraic study of the braid group. For some problems the
original geometric study of braids is useful. For many other problems a purely
algebraic approach provides the only intelligible solution.

A geometric braid is constructed between two horizontal level lines with
n base points chosen on the upper and lower level lines. From upper base
points we draw n strings or strands to the n lower base points (Fig. 5.14(a)).
Note that the strands have a natural orientation from top to bottom. The
trivial braid is formed by taking the ith upper base point directly to the
ith lower base point with no crossings between the strands (Fig. 5.14(b)).
More typically, some of the strands will intersect. We say that the i + 1st
strand passes over the ith strand if there is a positive crossing between the
two strands (see Crossing Convention, section 5.3.1). As illustrated in Figure
5.15(a), an overcrossing (or right-crossing) between the i+ 1st and ith string
is denoted by the symbol bi. The inverse b−1

i represents an undercross (or
left-cross), i.e., the i+ 1st strand goes under the ith strand (Fig. 5.15(b)).

By connecting opposite ends of the strands we form a closed braid. Each
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Figure 5.16: (a) Braid of a trefoil knot. (b) Braid of a Hopf link.

1 2 3 4

1 2 3 4

b2

b3
–1

b1

Figure 5.17: Braid on four strands whose braid word is b2b
−1
3 b1.

closed braid is equivalent to a knot or link, and conversely Alexander’s the-
orem states that any oriented link is represented by a closed braid. Figure
5.16(a) shows a closed braid on two strands that is equivalent to the trefoil
knot; Figure 5.16(b) shows a closed braid on three strands that is equivalent
to the Hopf link. The representation of a link by a closed braid is not unique.
However, only two operations on braids (the Markov moves) are needed to
prove the identity between two topologically equivalent braids [24].

A general n-braid can be built up from successive applications of the
operators bi and b−1

i . This construction is illustrated for a braid on four
strands in Figure 5.17. The first crossing between the second and third
strand is positive, and is represented by the operator b2. The next crossing is
negative, b−1

3 , and is between the third and fourth strands. The last positive
crossing is represented by the operator b1. Each geometric diagram for a
braid is equivalent to an algebraic braid word constructed from the operators
used to build the braid. The braid word for our example on four strands is
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Figure 5.18: Braid relations.

b2b
−1
3 b1.
Two important conventions are followed in constructing a braid word.

First, at each level of operation (bi, b
−1
i ) only the ith and i + 1st strands

are involved. There are no crossings between any other strands at a given
level of operation. Second, it is not the string, but the base point which is
numbered. Each string involved in an operation increments or decrements
its base point by one. All other strings keep their base points fixed.

The braid group on n-strands, Bn, is defined by the operators {bi; i =
1, 2, . . . n − 1}. The identity element of Bn is the trivial n-braid. However,
as previously mentioned, the expression of a braid group element (that is, a
braid word) is not unique. The topological equivalence between seemingly
different braid words is guaranteed by the braid relations (Fig. 5.18):

bibj = bjbi, |i− j| ≥ 2, (5.9)

bibi+1bi = bi+1bibi+1. (5.10)

The braid relations are taken as the defining relations of the braid group.
Each topologically equivalent class of braids represents a collection of words
that are different representations for the same braid in the braid group. In
principle, the braid relations can be used to show the equivalence of any two
words in this collection. Finding a practical solution to word equivalence is
called the word problem. The word problem is the algebraic analog of the
geometric braid equivalence problem.

5.3.5 Framed Braids

In our study of templates we will need to consider braids with “framing.”
A framed braid is a braid with a positive or negative integer associated to
each strand. This integer is called the framing. We think of the framing as
representing an internal structure of the strand. For instance, if each strand
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0 +1 –2+1
ribbon graphframed braid

Figure 5.19: Geometric representation of a framed braid as a ribbon graph.
The integer attached to each strand is the sum of the half-twists in the
corresponding branch of the ribbon graph.

is a physical cable then we could subject this cable to a torsional force causing
a twist. In this instance the framing could represent the number of half-twists
in the cable.

Geometrically, a framed braid can be represented by a ribbon graph. Take
a braid diagram and replace each strand by a ribbon. To see the framing
we twist each ribbon by an integer number of half-turns. A half-twist is a
rotation of the ribbon through π radians. A positive half-twist is a half-
twist with a positive crossing, the rightmost half of the ribbon crosses over
the leftmost half of the ribbon. Similarly, a negative half-twist is a negative
crossing of the ribbon. Figure 5.19 shows how the framing is pictured as the
number and direction of internal ribbon crossings.

This concludes our brief introduction to knot theory. We now turn our
attention to discussing how our rudimentary knowledge of knot theory and
knot invariants is used to characterize the periodic and chaotic behavior of
a three-dimensional flow.
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1

23
1

2

Figure 5.20: Rotations between a period two and period three orbit pair.
The rotation of the difference vector between the two orbits is calculated at
the surface of section. This vector is followed for 3·2 = 6 full periods, and the
number of average rotations of the difference vector is the relative rotation
rate between the two orbits. (Adapted from Eschenazi [25].)

5.4 Relative Rotation Rates

Solari and Gilmore [4] introduced the “relative rotation rate” in an attempt
to understand the organization of periodic orbits within a flow. The phase
of a periodic orbit is defined by the choice of a Poincaré section. Relative
rotation rates make use of this choice of phase and are topological invariants
that apply specifically to periodic orbits in three-dimensional flows. Our
presentation of relative rotation rates closely follows Eschenazi’s [25].

As usual, we begin with an example. Figure 5.20 shows a period two
orbit, a period three orbit, and their intersections with a surface of section.
The relative rotation rate between an orbit pair is calculated beginning with
the difference vector formed at the surface of section,

∆r = (xA − xB, yA − yB), (5.11)

where (xA, yA) and (xB, yB) are the coordinates of the periodic orbits labeled
A of period pA and B of period pB. In general there will be pA · pB choices
of initial conditions from which to form ∆r at the surface of section. To
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calculate the rotation rate, consider the evolution of ∆r in pA · pB periods
as it is carried along by the pair of periodic orbits. The difference vector
∆r will make some number of rotations before returning to its initial config-
uration. This number of rotations divided by pApB is the relative rotation
rate. Essentially, the relative rotation rate describes the average number of
rotations of the orbit A about the orbit B, or the orbit B about the orbit A.
In the example shown in Figure 5.20, the period three orbit rotates around
the period two orbit twice in six periods, or one-third average rotations per
period.

The general definition proceeds as follows. Let A and B be two orbits
of periods pA and pB that intersect the surface of section at (a1, a2, ..., apA),
and (b1, b2, ..., bpB). The relative rotation rate Rij(A,B) is

Rij(A,B) =
1

2πpApB

∫
d[arctan(∆r2/∆r1)], (5.12)

or in vector notation,

Rij(A,B) =
1

2πpApB

∫ n · [∆r× d(∆r)]

∆r ·∆r
. (5.13)

The integral extends over pA ·pB periods, and n is the unit vector orthogonal
to the plane spanned by the vectors ∆r and d∆r. The indices i and j denote
the initial conditions ai and bj on the surface of section. In the direction of
the flow, a clockwise rotation is positive.1

The self-rotation rate Rij(A,A) is also well defined by equation (5.13) if
we establish the convention that Rii(A,A) = 0. The relative rotation rate
is clearly symmetric, Rij(A,B) = Rji(B,A). It also commonly occurs that
different initial conditions give the same relative rotation rates. Further prop-
erties of relative rotation rates, including a discussion of their multiplicity,
have been investigated by Solari and Gilmore [4,5].

Given a parameterization for the two periodic orbits, their relative rota-
tion numbers can be calculated directly from equation (5.12) by numerical
integration (see Appendix F). There are, however, several alternative meth-
ods for calculating Rij(A,B). For instance, imagine arranging the periodic
orbit pair as a braid on two strands. This is illustrated in Figure 5.21 where
the orbits A and B are partitioned into segments of length pA and pB each
starting at ai(bj) and ending at ai+1(bj+1). We keep track of the crossings

1As previously mentioned, the crossing convention and this definition of the relative
rotation rate are the opposite of those originally adopted by Solari and Gilmore [4].
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A

B

0 t

–

+ – –

Figure 5.21: The orbit pair of Figure 5.20 arranged as a braid on two strands.
The relative rotation rates can be computed by keeping track of all the cross-
ings of the orbit A over the orbit B. Each crossing adds or subtracts a half-
twist to the rotation rate. The linking number is calculated from the sum of
all the crossings of A over B. (Adapted from Eschenazi [25].)

between A and B with the counter σij,

σij =


+1 if Ai crosses over Bj from left to right
−1 if Ai crosses over Bj from right to left

0 if Ai does not cross over Bj .
(5.14)

Then the relative rotation rates can be computed from the formula

Rij(A,B) =
1

pApB

∑
n

σi+n,j+n, n = 1, 2, 3, ..., pApB. (5.15)

Using this same counter, the linking number of knot theory is

lk(A,B) =
∑
i,j

σij, i = 1, 2, ..., pA and j = 1, 2, ..., pB. (5.16)

The linking number is easily seen to be the sum of the relative rotation rates:

lk(A,B) =
∑
ij

Rij(A,B). (5.17)

An intertwining matrix is formed when the relative rotation rates for all
pairs of periodic orbits of a return map are collected in a (possibly infinite-
dimensional) matrix. Intertwining matrices have been calculated for several
types of flows such as the suspension of the Smale horseshoe [4] and the
Duffing oscillator [5]. Perhaps the simplest way to calculate intertwining
matrices is from a template, a calculation we describe in section 5.5.4.
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Intertwining matrices serve at least two important functions. First, they
help to predict bifurcation schemes, and second, they are used to identify a
return mapping mechanism.

Again, by uniqueness of solutions, two orbits cannot interact through a
bifurcation unless all their relative rotation rates are identical with respect
to all other existing orbits. With this simple observation in mind, a care-
ful examination of the intertwining matrix often allows us to make specific
predictions about the allowed and disallowed bifurcation routes. An inter-
twining matrix can give rise to bifurcation “selection rules,” i.e., it helps us
to organize and understand orbit genealogies. A specific example for a laser
model is given in reference [4].

Perhaps more importantly, intertwining matrices are used to identify or
fingerprint a return mapping mechanism. As described in section 5.2, low-
order periodic orbits are easy to extract from both experimental chaotic time
series and numerical simulations. The relative rotation rates of the extracted
orbits can then be arranged into an intertwining matrix, and compared with
known intertwining matrices to identify the type of return map. In essence,
intertwining matrices can be used as signatures for horseshoes and other
types of hyperbolic limit sets.

If the intertwining comes from the suspension of a map then, as mentioned
in section 4.2.3 (see Fig. 4.3), the intertwining matrix with zero global torsion
is usually presented as the “standard” matrix. A global torsion of +1 adds a
full twist to the suspension of the return map, and this in turn adds additional
crossings to each periodic orbit in the suspension. If the global torsion is
an integer GT , then this integer is added to each element of the standard
intertwining matrix.

Relative rotation rates can be calculated from the symbolic dynamics of
the return map [25] or directly from a template if the return map has a
hyperbolic regime. We illustrate this latter calculation in section 5.5.4.

5.5 Templates

In section 5.5.1 we provide the mathematical background surrounding tem-
plate theory. This initial section is mathematically advanced. Section 5.5.2
contains a more pragmatic description of templates and can be read inde-
pendently of section 5.5.1.

Before we begin our description of templates, we first recall that the dy-
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namics on the attractor can have very complex recurrence properties due
to the existence of homoclinic points (see section 4.6.2). Poincaré’s origi-
nal observation about the complexity of systems with transverse homoclinic
intersections is stated in more modern terms as [26]

Katok’s Theorem. A smooth flow φt on a three-manifold, with positive
topological entropy, has a hyperbolic closed orbit with a transverse
homoclinic point.

Templates help to describe the topological organization of chaotic flows
in three-manifolds. In our description of templates we will work mainly with
forced systems, so the phase space topology is R2 × S1. However, the use of
templates works for any three-dimensional flow.

Periodic orbits of a flow in a three-manifold are smooth closed curves
and are thus oriented knots. Recall yet again that once a periodic orbit is
created (say through a saddle-node or flip bifurcation) its knot type will not
change as we move through parameter space. Changing the knot type would
imply self-intersection, and that violates uniqueness of the solution. Knot
types along with linking numbers and relative rotation rates are topological
invariants that can be used to predict bifurcation schemes [14] or to identify
the dynamics behind a system [1,2,3,4,5]. The periodic orbits can be pro-
jected onto a plane and arranged as a braid. Strands of a braid can pass
over or under one another, where our convention for positive and negative
crossings is given in section 5.3.1. We next try to organize all the knot in-
formation arising from a flow, and this leads us to the notion of a template.
Our informal description of templates follows the review article of Holmes
[14].

5.5.1 Motivation and Geometric Description

Before giving the general definition of a template, we begin by illustrating
how templates, or knot holders, can arise from a flow in R3. In accordance
with Katok’s theorem, let O be a closed hyperbolic orbit with a transversal
intersection and a return map resembling a Smale horseshoe (Figure 5.22(a)).
For a specific physical model, the form of the return map can be obtained
either by numerical simulations or by analytical methods as described by
Wiggins [27]. The only periodic orbit shown in Figure 5.22(b) is given by a
solid dot (•). The points of transversal intersection indicated by open dots
(◦) are not periodic orbits, but—according to the Smale-Birkhoff homoclinic
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Figure 5.22: (a) Suspension of a Smale horseshoe type return map for a
system with a transversal homoclinic intersection. This return map resembles
the orientation preserving Hénon map. (b) The dots (both solid and open)
will be the boundary points of the branches in a template. The pieces of the
unstable manifold W u on the intervals (a, ā) and (b, b̄) generate two ribbons.

theorem [28]—they are accumulation points for an infinite family of periodic
orbits (see section 4.6.2).

The periodic orbits in the suspension of the horseshoe map have a com-
plex knotting and linking structure, which was first explored by Birman and
Williams [13] using the template construction.

Let us assume that our example is from a forced system. Then the
simplest suspension consistent with the horseshoe map is shown in Figure
5.23(a). However, this is not the only possible suspension. We could put an
arbitrary number of full twists around the homoclinic orbit O. The number
of twists is called the global torsion, and it is a topological invariant of the
flow. In Figure 5.23(b) the suspension of the horseshoe with a global torsion
of −1 is illustrated by representing the lift2 of the boundaries on W u(O) of
the horseshoe as a braid of two ribbons.

Note that adding a single twist adds one to the linking number of the
boundaries of the horseshoe, and this in turn adds one to the relative rota-
tion rates of all periodic orbits within the horseshoe. That is, a change in
the global torsion changes the linking and knot types, but it does so in a
systematic way. In the horseshoe example the global torsion is the relative

2For our purposes, a lift is a suspension consisting of flow with a simple twist.
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Figure 5.23: Suspension of intervals on W u(O): (a) global torsion is 0; (b)
global torsion is −1.
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Figure 5.24: Template construction: (a) identify the branch ends at ΣT , i.e.,
“collapse onto W u(O),” and (b) identify Σ0 and ΣT to get a “braid template.”

rotation rate of the period one orbits.
To finish the template construction we identify certain orbits in the sus-

pension. Heuristically, we project down along the stable manifolds W s(O)
onto the unstable manifold W u(O), i.e., we “collapse onto W u(O).” For the
Smale horseshoe, this means that we first identify the ends of the ribbons
(now called branches) at ΣT in Figure 5.24(a), and next identify Σ0 and ΣT .
The resulting braid template for the horseshoe is shown in Figure 5.24(b).
The template itself may now be deformed to several equivalent forms (not
necessarily resembling a braid) including the standard horseshoe template
illustrated in Figure 5.25 [14].

For this particular example it is easy to see that such a projection is one-
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Figure 5.25: Standard Smale horseshoe template. Each periodic (infinite)
symbolic string of 0s and 1s generates a knot.

to-one on periodic orbits. Each point of the limit set has a distinct symbol
sequence and thus lies on a distinct leaf of the stable manifold W s(O). This
projection takes each leaf of W s(O) onto a distinct point of W u(O). In
particular, for each periodic point of the limit set there is a unique point on
W u(O).

Each periodic orbit of the map corresponds to some knot in the tem-
plate. Since the collapse onto W u(O) is one-to-one, we can use the standard
symbolic names of the horseshoe map to name each knot in the template
(sections 4.8.2–4.8.3). Each knot will generate a symbolic sequence of 0s and
1s indicated in Figure 5.25. Conversely, each periodic symbolic sequence of
0s and 1s (up to cyclic permutation) will generate a unique knot. The three
simplest periodic orbits and their symbolic names are illustrated in Figure
5.26.

If a template has more than two branches, then we number the k branches
of the template with the numbers {0, 1, 2, . . . , k−1}. In this way we associate
a symbol from the set {0, 1, 2, . . . , k − 1} to each branch. A periodic orbit
of period n on the template generates a sequence of n symbols from the
set {0, 1, 2, . . . , k − 1} as it passes through the branches. Conversely, each
periodic word (up to cyclic permutations) generates a unique knot on the
template. The template itself is not an invariant object. However, from the
template one can easily calculate invariants such as knot types and linking
numbers. In this sense it is a knot holder.
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0
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Figure 5.26: Some periodic orbits held by the horseshoe template. Note that
the orbits 0 and 1 are unlinked, but the orbits 1 and 01 are linked once.

The branches of a template are joined (or glued) at the branch lines. In
a braid template, all the branches are joined at the same branch line. Figure
5.24(b) is an example of a braid template, and Figure 5.25 is an example
of a (nonbraided) template holding the same knots. Forced systems always
give rise to braid templates. We will work mostly with full braid templates,
i.e., templates which describe a full shift on k symbols. Franks and Williams
have shown that any embedded template can be arranged, via isotopy, as a
braid template [26].

The template construction works for any hyperbolic flow in a three-
manifold. To accommodate the unforced situation we need the following
more general definition of a template.

Definition. A template is a branched surface T and a semiflow φ̄t on T
such that the branched surface consists of the joining charts and the
splitting charts shown in Figure 5.27.

The semiflow fails to be a flow because inverse orbits are not unique at
the branch lines. In general the semiflow is an expanding map so that some
sections of the semiflow may also spill over at the branch lines. The properties
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(a) (b)

Figure 5.27: Template building charts: (a) joining chart and (b) splitting
chart.

that the template (T, φ̄t) are required to satisfy are described by the following
theorem [13].

Birman and Williams Template Theorem (1983). Given a flow φt on
a three-manifold M3 having a hyperbolic chain recurrent set there is a
template (T, φ̄t), T ⊂ M3, such that the periodic orbits under φt cor-
respond (with perhaps a few specified exceptions) one-to-one to those
under φ̄t. On any finite subset of the periodic orbits the correspondence
can be taken via isotopy.

The correspondence is achieved by collapsing onto the (strong) stable man-
ifold. Technically, we establish the equivalence relation between elements
in the neighborhood, N , of the chain recurrent set, as follows: x1 ∼ x2 if
‖φt(x1)− φt(x2)‖ → 0 as t→∞. In other words, x1 and x2 are equivalent if
they lie in the same connected component of some local stable manifold of a
point x ∈ N .

Orbits with the same asymptotic future are identified regardless of their
past. By throwing out the history of a symbolic sequence, we can hope to
establish an ordering relation on the remaining symbols and thus develop
a symbolic dynamics and kneading theory for templates similar to that for
one-dimensional maps. The symbolic dynamics of orbits on templates, as
well as their kneading and bifurcation theory, is discussed in more detail in
the excellent review article by Holmes [14].

The “few specified exceptions” will become clear when we consider specific
examples. In some instances it is necessary to create a few period one orbits
in φ̄t that do not actually exist in the original flow φt. These virtual orbits
can sometimes be identified with points at infinity in the chain recurrent set.

Some examples of two-branch templates that have arisen in physical prob-
lems are shown in Figure 5.28: the Smale horseshoe with global torsion 0 and
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+1, the Lorenz template, and the Pirogon. The Lorenz template is the first
knot holder originally studied by Birman and Williams [13]. It describes
some of the knotting of orbits in the Lorenz equation for thermal convection.
The horseshoe template describes some of the knots in the modulated laser
rate equations mentioned in section 4.1 [4].

5.5.2 Algebraic Description

In addition to the geometric view of a template, it is useful to develop an
algebraic description. Braid templates are described by three pieces of al-
gebraic data. The first is a braid word describing the crossing structure of
the k branches of the template. The second is the framing describing the
twisting in each branch, that is, the local or branch torsion internal to each
branch. The third piece of data is the “layering information” or insertion
array, which determines the order in which branches are glued at the branch
line. We now develop some conventions for drawing a geometric template. In
the process we will see that the first piece of data, the braid word, actually
contains the last piece of data, the insertion array. Thus we conclude that
a template is just an instance of a framed braid, a braid word with framing
(see sections 5.3.3–5.3.5).

Drawing Conventions

A graph of a template consists of two parts: a ribbon graph and a layering
(or insertion) graph (Fig. 5.29). In the upper section of a template we draw
the ribbon graph, which shows the intertwining of the branches as well as
the internal twisting (local torsion) within each branch. The lower section
of the template shows the layering information, that is, the order in which
branches are glued at the branch line. By convention, we usually confine the
expanding part of the semiflow on the template to the layering graph: the
branches of the layering graph get wider before they are glued at the branch
line. We also often draw the local torsion as a series of half-twists at the top
of the ribbon graph.

In setting up the symbolic dynamics on the templates (that is, in naming
the knots) we follow two important conventions. First, at the top of the
ribbon graph we label each of the k branches from left to right with a number
from the labeling set 0, 1, 2, . . . , i, . . . , k − 1. Second, from now on we will
always arrange the layering graph so that the branches of the template are
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(c) (d)

(a) (b)

Figure 5.28: Common two-branch templates: (a) Smale horseshoe with global
torsion 0; (b) Lorenz flow, showing equivalence to Lorenz mask; (c) Pirogon;
(d) Smale horseshoe with global torsion +1. (Adapted from Mindlin et al.
[1].)
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ribbon graph framed braid

–1 +2 0
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0 1 2
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Figure 5.29: Representation of a template as a framed braid using standard
insertion.

nonstandard insertion standard insertion

exchange

b and c

b c a b ca

Figure 5.30: The layering graph can always be moved to standard form, back
to front.

ordered back to front from left to right. This second convention is called the
standard insertion.

The standard insertion convention follows from the following observation.
Any layering graph can always be isotoped to the standard form by a sequence
of branch moves that are like type II Reidemeister moves. This is illustrated
in Figure 5.30, where we show a layering graph in nonstandard form and a
simple branch exchange that puts it into standard form.

The adoption of the standard insertion convention allows us to dispense
with the need to draw the layering graph. The insertion information is now
implicitly contained in the lower ordering (left to right, back to front) of the
template branches. We see that the template is well represented by a ribbon
graph or a framed braid. We will often continue to draw the layering graph.
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However, if it is not drawn then we are following the standard insertion
convention. A template with standard insertion is a framed braid.

These conventions and the framed braid representation of a template are
illustrated in Figure 5.31 for a series of two-branch templates. We show
the template, its version following standard insertion, and the ribbon graph
(framed braid) without the layering graph from which we can write a braid
word with framing. We also show the “braid linking matrix” for the template,
which is introduced in the next section.

Braid Linking Matrix

A nice characterization of some of the linking data of the knots held by a
template is given by the braid linking matrix. In particular, in the second
half of section 5.5.4 we show how to calculate the relative rotation rates for
all pairs of periodic orbits from the braid linking matrix. The braid linking
matrix is a square symmetric k × k matrix defined by3

B =


bii : the sum of half-twists in the ith branch,
bij : the sum of the crossings between the

ith and the jth branches of the ribbon graph
with standard insertion.

(5.18)

The ith diagonal element of B is the local torsion of the ith branch. The
off-diagonal elements of B are twice the linking numbers of the ribbon graph
for the ith and jth branches. The braid linking matrix describes the linking
of the branches within a template and is closely related to the linking of
the period one orbits in the underlying flow [17]. For the example shown in
Figure 5.29, the braid linking matrix is

B =

 −1 0 −1
0 2 −1
−1 −1 0

 .
The braid linking matrix also allows us to compute how the strands of

the framed braid are permuted. At the top of the ribbon graph the branches
of the template are ordered 0, 1, . . . , i, . . . , k−1. At the bottom of the ribbon

3The braid linking matrix is equivalent to the orbit matrix and insertion array previ-
ously introduced by Mindlin et al. [1]. See Melvin and Tufillaro for a proof [17].



5.5. TEMPLATES 261

=

=

=

=

0 –1

–1 –1

0 –1

–1 +1

0

–1

0

+1

0

0

0

0

Figure 5.31: Examples of two-branched templates, their corresponding rib-
bon graphs (framed braids) with standard insertion, and their braid linking
matrices.
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graph each strand occupies some possibly new position. The new ordering,
or permutation σB, of the strands is given by

σB(i) = i − # odd entries bij with j < i
+ # odd entries bij with j > i.

(5.19)

Informally, to calculate the permutation on the ith strand, we examine the
ith row of the braid linking matrix, adding the number of odd entries to the
right of the ith diagonal element to i, and subtracting the number of odd
entries to the left.

For example, for the template shown in Figure 5.29 we find that σB(0) =
0 + 1 = 1, σB(1) = 1 + 1− 0 = 2, and σB(2) = 2− 2 = 0. The permutation
is σB = (012). That is, the first strand goes to the second position, and the
third strand goes to the first position. The second strand goes to the front
third position.

5.5.3 Location of Knots

Given a knot on a template, the symbolic name of the knot is determined by
recording the branches over which the knot passes. Given a template and a
symbolic name, how do we draw the correct knot on a template?

There are two methods for finding the location of a knot on a template
with k branches. The first is global and consists of finding the locations of
all knots up to a length (period) n by constructing the appropriate k-ary
tree with n levels. The second method, known as “kneading theory,” is local.
Kneading theory is the more efficient method of solution when we are dealing
with just a few knots.

Trees

A branch of a template is called orientation preserving if the local torsion
(the number of half-twists) is an even integer. Similarly, a branch is called
orientation reversing if the local torsion is an odd integer. A convenient way
to find the relative location of knots on a k-branch template is by constructing
a k-ary tree which encodes the ordering of points on the orientation preserving
and reversing branches of the template.

The ordering tree is defined recursively as follows. At the first level
(n = 1) we write the symbolic names for the branches from left to right
as 0, 1, 2, . . . , k− 1. The second level (n = 2) is constructed by recording the
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symbolic names at the first level of the tree according to the ordering rule:
if the ith branch of the template is orientation preserving then we write the
branch names in forward order (0, 1, 2, . . . , k − 1); if the ith branch is orien-
tation reversing then we write the symbolic names at the first level in reverse
order (k− 1, k− 2, . . . , 2, 1, 0). The n+ 1st level is constructed from the nth
level by the same ordering rule: if the ith symbol (branch) at the nth level is
orientation preserving then we record the ordering of the symbols found at
the nth level; if the ith symbol labels an orientation reversing branch then
we reverse the ordering of the symbols found at the nth level.

This rule is easier to use than to state. The ordering rule is illustrated in
Figure 5.32 for a three-branch template. Branch 0 is orientation reversing;
branches 1 and 2 are both orientation preserving. Thus, we reverse the order
of any branch at the n + 1st level whose nth level is labeled with 0. In this
example we find

0 1 2

(2, 1, 0) (0, 1, 2) (0, 1, 2)

((2, 1, 0), (2, 1, 0), (0, 1, 2)) ((2, 1, 0), (0, 1, 2), (0, 1, 2)) ((2, 1, 0), (0, 1, 2), (0, 1, 2))

...
...

...

and so on.
To find the ordering of the knots on the template we read down the k-ary

tree recording the branch names through which we pass (see Fig. 5.32). The
ordering at the nth level of the tree is the correct ordering for all the knots
of period n on the template. Returning to our example, we find that the
ordering up to period two is 02 ≺ 01 ≺ 00 ≺ 10 ≺ 11 ≺ 12 ≺ 20 ≺ 21 ≺ 22.
The symbol ≺ is read “precedes” and indicates the ordering relation found
from the ordering tree (the order induced by the template).

To draw the knots with the desired symbolic name on a template, we use
the ordering found at the bottom of the k-ary tree. Lastly, we draw connect-
ing line segments between “shift equivalent” periodic orbits as illustrated in
Figure 5.32. For instance, the period two orbit 02 is composed of two shift
equivalent string segments 02 and 20, which belong to the branches 0 and 2
respectively.
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Figure 5.32: Example: location of period two knots (n = 2).
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Kneading Theory

The limited version of kneading theory [14] needed here is a simple rule
which allows us to determine the relative ordering of two or more orbits on a
template. From an examination of the ordering tree, we see that the ordering
relation between two itineraries s = {s0, s1, . . . , si, . . . , sn} and s′ is given by
s ≺ s′ if si = s′i for 0 ≤ i < n, and sn < s′n when the number of symbols in
{s0, . . . , sn−1} representing orientation reversing branches is even, or sn > s′n
when the number of symbols representing orientation reversing branches is
odd.

As an example, consider the orbits 012 and 011 on the template shown
in Figure 5.32. We first construct all cyclic permutations of these orbits,

012 011
201 101
120 110.

Next we sort these permutations in ascending order,

011 012 101 110 120 201.

Last, we note that the only orientation reversing branch is 0, so we need to
reverse the ordering of the points 012 and 011, yielding

012 ≺ 011 ≺ 101 ≺ 110 ≺ 120 ≺ 201,

which agrees with the ordering shown on the ordering tree in Figure 5.32.

5.5.4 Calculation of Relative Rotation Rates

Relative rotation rates can be calculated from the symbolic dynamics of the
return map or directly from the template. We now illustrate this latter
calculation for the zero global torsion lift of the horseshoe. We then describe
a general algorithm for the calculation of relative rotation rates from the
symbolics.

Horseshoe Example

Consider two periodic orbits A and B of periods pA and pB. At the sur-
face of section, a periodic orbit is labeled by the set of initial conditions
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(a) (b) (c) (d)
000 010 110 000 010 110 01 10 01 10

+

Σ0

TΣ

2TΣ

3TΣ

           0          01           110

  0       0          0             0

 01      0          0,1/2       1/3

110     0          1/3          0,1/3,1/3

(e)

Figure 5.33: Relative rotation rates from the standard horseshoe template:
(a) composite template for the orbits 110 and 000; (b) the periodic orbits rep-
resented as pure braids; (c) composite template for calculating self-rotation
rate of 01; (d) pure braid of 01 and 10; (e) the intertwining matrix for the
orbits 0, 01, and 110.

(x1, x2, ..., xn), each xi corresponding to some cyclic permutation of the sym-
bolic name for the orbit. That is, it amounts to a choice of “phase” for the
periodic orbit. For instance, the period three orbit “011” on the standard
horseshoe template gives rise to three symbolic names (011, 110, 101). When
calculating relative rotation rates it is important to keep track of this phase
since different permutations can give rise to different relative rotation rates.

To calculate the relative rotation rate between two periodic orbits we
first represent each orbit by some symbolic name (choice of phase). Next,
we form the composite template of length pA · pB. This is illustrated for the
period three orbit 110 and the period one orbit 000 in Figure 5.33(a). The
two periodic orbits can now be extracted from the composite template and
presented as two strands of a pure braid of length pA · pB with the correct
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crossing data (Figure 5.33(b)). The self-rotation rate is calculated in a similar
way. The case of the period two orbit in the horseshoe template is illustrated
in Figure 5.33(c,d).

General Algorithm

Although we have illustrated this process geometrically, it is completely al-
gorithmic and algebraic. For a general braid template, the relative ordering
of the orbits at each branch line is determined from the symbolic names and
kneading theory. Given the ordering at the branch lines, and the form of the
template, all the crossings between orbits are determined, and hence so are
the relative rotation rates. Gilmore developed a computer program [29] that
generates the full spectrum of relative rotation rates when supplied with only
the periodic orbit matrix and insertion array (for a definition of periodic orbit
matrix, also known as the template matrix, see ref. [1]), i.e., purely algebraic
data. Here we describe an alternative algorithm based on the framed braid
presentation and the braid linking matrix. This algorithm is implemented as
a Mathematica package, listed in Appendix G.

To calculate the relative rotation rate between two orbits we need to keep
track of three pieces of crossing data: (1) crossings between two knots within
the same branch (recorded by the branch torsion); (2) crossings between two
knots on separate branches (recorded by the branch crossings); and (3) any
additional crossings occurring at the insertion layer (calculated from kneading
theory). One way to organize this crossing information is illustrated in Figure
5.34, which shows the braid linking matrix for a three-branch template and
two words for which we wish to calculate the relative rotation rate.

Formulas can be written down describing the relative rotation rate calcu-
lation [17], but we will instead try to describe in words the “relative rotation
rate arithmetic” that is illustrated in Figure 5.34. To calculate the relative
rotation rate between two orbits we use the following sequence of steps:

1. Write the braid linking matrix for the template with standard insertion (rearrange
branches as necessary until you reach back to front form).

2. In the row labeled α write the word w1 until the length of the row equals the least
common multiple (LCM) between the lengths of w1 and w2; do the same with
word w2 in row β.

3. Above these rows create a new row (called the zeroth level) formed by the braid
linking matrix elements bαiβi , where i indexes the rows.
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4. Find all identical blocks of symbols, that is, all places where the symbolics in both
words are identical (these are boxed in Figure 5.34). Wrap around from the end of
the rows to the beginning of the rows if appropriate.

5. The remaining groups of symbols are called unblocked regions; for the unblocked
regions write the zeroth-level value mod 2 (if even record a zero, if odd record a
one) directly below the word rows at the first level.

6. For the blocked regions sum the zeroth-level values above the block (i.e., add up all
the entries at the zeroth level that lie directly above a block) and write this sum
mod 2 at the second level.

7. For the unblocked regions look for a sign change (orientation reversing branches)
from one pair of symbols to the next (i.e., αi < βi but αi+u > βi+u, or αi > βi but
αi+u < βi+u) and write a 1 at the second level if there is a sign change, or write a
0 if there is no change of sign. The counter u gives the integer distance to the next
unblocked region. Wrap around from the end of the rows to the beginning of the
rows if necessary.

8. Group all terms in the first and second levels as indicated in Figure 5.34. Add all
terms in each group mod 2 and write at the third level.

9. Sum all the terms at the zeroth level, and write the sum to the right of the zeroth
row.

10. Sum all the terms at the third level, and write the sum to the right of the third
row.

11. To calculate the relative rotation rate, add the sums of the zeroth level and the

third level, and divide by 2× the LCM found in step 2.

The rules look complicated, but they can be mastered in just a few min-
utes, after which time the calculation of relative rotation rates becomes just
an exercise in the rotation rate arithmetic.

5.6 Intertwining Matrices

With the rules learned in the previous section we can now calculate rela-
tive rotation rates and intertwining matrices directly from templates. For
reference we present a few of these intertwining matrices below.
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0
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0

0
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5

rotations         =        8
relative rotation rate        =        8

8

2 × 18

=       2/9

α

β

Figure 5.34: Example of the relative rotation rate arithmetic.
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0 1 01 001 011 0001 0011 0111

0 0

1 0 0

01 0 1
2 0, 12

001 0 1
3

1
3 0, 13 ,

1
3

011 0 1
3

1
3

1
3 0, 13 ,

1
3

0001 0 1
4

1
4

1
4

1
4 0, 14 ,

1
4 ,

1
4

0011 0 1
4

1
4

1
4

1
4

1
4 0, 14 ,

1
4 ,

1
4

0111 0 1
2

1
4

1
3

1
3

1
4

1
4 0, 12 ,

1
4 ,

1
2

Table 5.1: Horseshoe intertwining matrix.

5.6.1 Horseshoe

The intertwining matrix for the zero global torsion lift of the Smale horseshoe
is presented in Table 5.1.

5.6.2 Lorenz

The intertwining matrix for the relative rotation rates from the Lorenz tem-
plate is presented in Table 5.2. Adding a global torsion of one (a full twist)
adds two to the braid linking matrix, and it adds one to each relative rotation
rate, i.e., each entry of the intertwining matrix.

5.7 Duffing Template

In this final section we will apply the periodic orbit extraction technique and
the template theory to a chaotic time series from the Duffing oscillator. For
the parameter regime discussed in section 5.2.3, Gilmore and Solari [4,29]
argued on theoretical grounds that the template for the Duffing oscillator is
that shown in Figure 5.35. The resulting intertwining matrix up to period
three is presented in Table 5.3. All the relative rotation rates calculated
from the periodic orbits extracted from the chaotic time series agree (see
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0 1 01 001 011 0001 0011 0111

0 0

1 0 0

01 0 0 0, 12

001 0 0 1
6 0, 13 ,

1
3

011 0 0 1
6 0, 0, 13 0, 13 ,

1
3

0001 0 0 0 1
6

1
12 0, 14 ,

1
4 ,

1
4

0011 0 0 1
4

1
6

1
6 0, 0, 14 ,

1
4 0, 14 ,

1
4 ,

1
4

0111 0 0 0 1
12

1
6 0, 0, 0, 14 0, 0, 14 ,

1
4 0, 14 ,

1
4 ,

1
4

Table 5.2: Lorenz intertwining matrix.

B   =
5       4       4
4       4       4
4       4       5

Figure 5.35: Template for the Duffing oscillator for the parameter regime
explored in section 5.2.3.
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0 1 2 01 02 12 001 002 011 012 021 022 112 122

0 0

1 2 0

2 2 2 0

01 5
2

2 2 0, 5
2

02 5
2

5
2

5
2

5
2

0, 5
2

12 2 2 5
2

2 5
2

0, 5
2

001 7
3

2 2 7
3

5
2

2 0, 7
3
, 7
3

002 7
3

7
3

7
3

7
3

5
2

7
3

7
3

0, 7
3
, 7
3

011 7
3

2 2 7
3

5
2

2 7
3

7
3

0, 7
3
, 7
3

012 7
3

7
3

7
3

7
3

5
2

7
3

7
3

7
3

7
3

0, 7
3
, 7
3

021 7
3

7
3

7
3

7
3

5
2

7
3

7
3

7
3

7
3

7
3

0, 7
3
, 7
3

022 7
3

7
3

7
3

7
3

5
2

7
3

7
3

7
3

7
3

7
3

7
3

0, 7
3
, 7
3

112 2 2 7
3

2 5
2

7
3

2 7
3

2 7
3

7
3

7
3

0, 7
3
, 7
3

122 2 2 7
3

2 5
2

7
3

2 7
3

2 7
3

7
3

7
3

7
3

0, 7
3
, 7
3

Table 5.3: Duffing intertwining matrix, calculated from the template for the
Duffing oscillator. All the periodic orbits were extracted from a single chaotic
time series except for those in italics, the so-called “pruned” orbits.

Appendix G) with those found in Table 5.3, which were calculated from the
braid linking matrix for the template shown in Figure 5.35.

However, not all orbits (up to period three) were found in the chaotic
time series. In particular, the orbits 02, 002, and 022 did not appear to be
present. Such orbits are said to be “pruned.”

The template theory helps to organize the periodic orbit structure in the
Duffing oscillator and other low-dimensional chaotic processes. Mindlin and
co-workers [1,2] have carried the template theory further than our discussion
here. In particular, they show how to extract not only periodic orbits, but
also templates from a chaotic time series. Thus, the template theory is a
very promising first step in the development of topological models of low-
dimensional chaotic processes.
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Problems

Problems for section 5.3.

5.1. Calculate the linking numbers for the links shown in Figures 5.7(a) and (c). Choose
different orientations for the knots and recalculate.

5.2. Calculate the linking numbers between the three orbits shown in Figure 5.26.

5.3. Calculate the linking numbers between the orbits 00, 01, and 02 in Figure 5.32.

5.4. Write the braid words for the braids shown in Figure 5.16.

5.5. Verify that the braid group (section 5.3.4) is, in fact, a group.

5.6. Find an equivalent braid to the braid shown in Figure 5.17 and write down its
corresponding braid word. Use the braid relations to show the equivalence of the
two braids.

5.7. Write down the braid words for the braids shown in Figure 5.18. Use the braid
relations to demonstrate the equivalence of the braids as shown.

5.8. Write down the braid word for the braid in Figure 5.19.

Section 5.4.

5.9. Calculate the relative rotation rates from both the A orbit and the B orbit in Figure
5.20. That is, verify the equivalence of R(A,B) and R(B,A) in this instance. Use
the geometric method illustrated in Figure 5.21 (which is taken from Figure 5.20).
Attempt the same calculation directly from Figure 5.20.

5.10. Show that the sum of the relative rotation rates is the linking number (see reference
[4] for more details).

5.11. Show the equivalence of equations (5.12) and (5.13).

Section 5.5.
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5.12. Draw three different three-branch templates and sketch their associated return maps.
Assume a linear expansive flow on each branch. Construct their braid linking ma-
trices.

5.13. Show that the Lorenz template arises from the suspension of a discontinuous map.
Consider the evolution of a line segment connecting the two branches at the middle.

5.14. Draw the template in Figure 5.32 as a ribbon graph and as a framed braid. What
is its braid linking matrix?

5.15. Verify that the strands of a braid are permuted according to equation (5.19).

5.16. Verify the relative rotation rates in Figure 5.33(e) by the relative rotation rate
arithmetic described in section 5.5.4. Add the orbit 010 to the table.

Section 5.6.

5.17. Calculate the intertwining matrix for the orbits shown in Figure 5.32 up to period
two.

Section 5.7.

5.18. Verify the 012 row in Table 5.3 by the relative rotation arithmetic.
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Appendix A: Bouncing Ball Code

The dynamical state of the bouncing ball system is specified by three variables: the
ball’s height y, its velocity v, and the time t. The time also specifies the table’s vertical
position s(t). Let tk be the time of the kth table-ball collision, and vk the ball’s velocity
immediately after the kth collision. The system evolves according to the velocity and phase
equations:

vk − ṡ(tk) = −α{vk−1 − g[tk − tk−1]− ṡ(tk)},

s(tk) = s(tk−1) + vk−1[tk − tk−1]− 1

2
g[tk − tk−1]2,

which are collectively called the impact map. The velocity equation states that the rel-
ative ball-table speed just after the kth collision is a fraction α of its value just before
the kth collision. The phase equation determines tk (given tk−1) by equating the table
position and the ball position at time tk; tk is the smallest strictly positive solution of the
phase equation. The simulation of the impact map on a microcomputer presents no real
difficulties. The only somewhat subtle point arises in finding an effective algorithm for
solving the phase equation, which is an implicit algebraic equation in tk.

We choose to solve for tk by the bisection method 1 because of its great stability
and ease of coding. Other zero-finding algorithms, such as Newton’s method, are not
recommended because of their sensitivity to initial starting values. All bisection methods
must be supplied with a natural step size for the method at hand. The step interval must
be large enough to work quickly, yet small enough so as not to include more than one zero
on the interval. Our solution to the problem is documented in the function findstep() of
the C program below. In essence, our step-finding method works as follows.

If the relative impact velocity is large then tk and tk−1 will not be close, so the step
size need only be some suitable fraction of the forcing period. On the other hand, if tk and
tk−1 are close then the step size needs to be some fraction of the interval. We approximate
the interval between tk and tk−1 by noting that the relative velocity between the ball and
the table always starts out positive and must be zero before they collide again. Using the
fact that the time between collisions is small, it is easy to show that

τk ≈
Aω cos(δk−1)− vk−1
Aω2 sin(δk−1)− g

,

where δk−1 is the phase of the previous impact and τk is the time it takes the relative
velocity to reach zero. τk provides the correct order of magnitude for the step size. This
algorithm is coded in the following C program.

/* bb.c bouncing ball program

1For a discussion of the bisection method for finding the real zeros of a continuous
function, see R. W. Hamming, Introduction to applied numerical analysis (McGraw-Hill:
New York, 1971), p. 36.
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Date written: 25 July 1985

Date last modified: 5 August 1987

This program simulates the dynamics of a bouncing ball subject to

repeated collisions with an oscillating wall.

The INPUT is:

delta v0 Amplitude Frequency damping cycles

where

delta: the initial position of ball between 0 and 1, this is the

phase of forcing frequency that you start at (phase mod 2*PI)

v0: the initial velocity of the ball, this must be greater than

the initial velocity of the wall.

A: Amplitude of the oscillating wall

Freq: Frequency of the oscillating wall in hertz

damp: (0-1) the impact parameter describing the energy loss per

collision. No energy loss (conservative case) when d = 1,

maximum dissipation occurs at d = 0.

cycles:the total length the simulation should be run in terms of

the number of forcing oscillations.

Units: CGS assumed

Compile with: cc bb.c -lm -O -o bb

Bugs:

∗/

#include <stdio.h>
#include <math.h>

/* CONSTANTS (CGS Units) */

#define STEPSPERCYCLE (256)

#define TOLERANCE (1e-12)

#define MAXITERATIONS (1024)

#define PI (3.14159265358979323846)

#define G (981) /* earth’s gravitational constant */

#define STUCK (-1)

#define EIGHTH (0.125)

/* Macros */

#define max(A, B) ((A) > (B) ? (A) : (B))

#define min(A, B) ((A) < (B) ? (A) : (B))

/* Comments of variables

t is time since last impact
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ti is time of last impact

tau is ti + t, time since start of simulation

xi is position of ball at last impact

vi is velocity of ball at last impact

w is velocity of wall

v is velocity of ball

∗/

/* Global Variables */

double delta; /* initial phase (position) of ball */

double v0; /* initial ball velocity */

double A; /* table amplitude */

double freq; /* frequency of forcing */

double damp; /* impact parameter */

double omega; /* angular frequency 2*PI*f = 2*PI/T */

double T; /* period of forcing */

double cycles; /* length of simulation */

/* Functions */

double s(), w(), x(), v(), d(), acc();

double find step();

double checkstep();

double root();

double fmod(), asin();

main()

{
int stuckcount;

double t, ti, tau, dt, tstop, xi, vi, tj, xj, vj;

double t alpha, t beta, t ph; /* variables for sticking case */

/* read input parameters */

scanf("%lf%lf%lf%lf%lf%lf", &delta, &v0, &A, &freq, &damp, &cycles);

T = 1.0/freq;

tstop = T*cycles;

omega = 2*PI*freq;

delta = delta/freq;

if( v0 < w(0.0) ) {
printf("Error: Initial velocity less than wall velocity \n");
printf("Wall velocity: %g \n", w(0.0));

exit();

}
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t = 0; ti = 0; tau = ti + t; xi = s(tau); vi = v0;

dt = find step(ti, xi, vi);

t = dt; tau = ti + t; stuckcount = 0;

while( tau <= tstop) {
t += dt; tau = ti + t;

if( impact( tau, t, xi, vi)) {
t = root(t-dt, t, t, xi, vi, ti);

tj = ti + t;

xj = s(tj);

vj = (1+damp)*w(tj) - damp*v(t,vi);

t = 0; xi = xj; vi = vj; ti = tj;

dt = find step(ti, xi, vi);

if (dt == STUCK ) { /* sticking solution */

if (A*omega*omega < G) {
printf("Stuck forever with table\n");
exit();

}
if(fabs(G/(A*omega*omega)) < 1.0)

t alpha = (1.0/omega)*asin(G/(A*omega*omega));

else

t alpha = T*0.25;

t beta = 0.5*T-t alpha;

dt = (t beta-t alpha)/STEPSPERCYCLE;

t ph = fmod(ti+delta,T);

if(!((t ph > t alpha) && (t ph < t beta))) {
stuckcount +=1;

if (t alpha < t ph)

tj = T + ti + t alpha - t ph;

else

tj = ti + t alpha - t ph;

xj = s(tj); vj = w(tj);

t = 0; xi = xj; vi = vj; ti = tj;

}
if(stuckcount == 2) {

printf("%g %g\n", fmod(tj/T,1.0), v(t,vj));

printf("Ball Stuck Twice\n");
exit();

}
}
if(tau > tstop/10.0)

printf("%g %g\n", fmod(tj/T,1.0), v(t,vj));

dt = checkstep(dt,ti,xi,vi);

t = dt; tau = ti + dt;

}
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}
}

double s(tau) /* wall position */

double tau;

{
return(A*(sin(omega*(tau+delta))+1));

}

double w(tau) /* wall velocity */

double tau;

{
return(A*omega*cos(omega*(tau+delta)));

}

double acc(tau) /* table acceleration */

double tau;

{
return(-A*omega*omega*sin(omega*(tau+delta)));

}

double x(t,xi,vi) /* ball position */

double t, xi, vi;

{
return(xi+vi*t-0.5*G*t*t);

}

double v(t,vi) /* ball velocity */

double t, vi;

{
return(vi-G*t);

}

double d(tau,t,xi,vi) /* distance between ball and wall */

double tau, t, xi, vi;

{
return(x(t,xi,vi)-s(tau));

}

int impact(tau,t,xi,vi) /* find when ball is below wall */

double tau,t,xi,vi;

{
return(d(tau,t,xi,vi) <= 0.0);

}
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/* pick a good step for finding zero */

double find step(ti,xi,vi)

double ti,xi,vi;

{
double t max, tstep;

if(vi-w(ti) <= 0.0) { /* should be alpha = 0, or sticking */

return(STUCK);

}
if(-acc(ti) - G != 0.0)

t max = fabs((w(ti)-vi)/(-acc(ti)-G));

else

t max = T/STEPSPERCYCLE;

if(t max < T*TOLERANCE) {
return(STUCK);

}
tstep = min(EIGHTH*t max,T/STEPSPERCYCLE);

return(tstep);

}

double root(a,b,t,xi,vi,ti)

double a,b;

double t, xi, vi, ti;

{
double m;

int count;

count = 0;

while(1) {
count += 1;

if(count > MAXITERATIONS) {
printf("ERROR: infinite loop in root\n");
exit();

}
if(d(ti+a,a,xi,vi)*d(ti+b,b,xi,vi) > 0.0) {

printf("root finding error: no zero on interval\n");
exit();

}
m = (a+b)/2.0;

if((d(ti+m,m,xi,vi) == 0.0 ) || (b-a) < T*TOLERANCE)

return(m);

else if ((d(ti+a,a,xi,vi)*d(ti+m,m,xi,vi)) < 0.0 )

b = m;

else

a = m;

}
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}

double checkstep(dt,ti,xi,vi)

double dt, ti, xi, vi;

{
int count;

for(count=0; d(ti+dt,dt,xi,vi) < 0.0; ++count) {
dt = EIGHTH*dt;

if (count > 10) {
printf("Error: Can’t calculate dt\n");
exit();

}
}
return(dt);

}
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Appendix B: Exact Solutions for a Cubic Oscillator

The free conservative cubic oscillator, equation (3.19), arose in the single-mode model
of string vibrations, and admits exact solutions in two special circumstances. The first is
the case of circular motion at a constant radius R. In Figure 3.3 we could imagine circular
orbits arising when the restoring force on the string just balances the centrifugal force.
Plugging the ansatz

r = (R cosωt, R sinωt) (B.1)

into equation (3.6) we see that it is indeed a solution provided the frequency is adjusted
to

ω2
c = ω2

0(1 +KR2) . (B.2)

The second solution appears when we consider planar motion. If all the motion is
confined to the x–z plane, then the system is a single degree of freedom oscillator, whose
equation of motion in the dimensionless form obtained from equation (3.11) is

x′′ + x+ βx3 = 0. (B.3)

The exact solution to equation (B.3) is [1]

τ =
1

(1 + 4βE)1/4

[
K

(
a2

a2 + b2

)
− F

(
arccos

x

a
,

a2

a2 + b2

)]
, (B.4)

where F (θ, φ) is an elliptic integral of the first kind and K(φ) = F (π/2, φ) [2]; E is the
energy constant

E =
1

2
x′

2
+

1

2
x2 +

β

4
x4 (B.5)

and

b2, a2 =
1

β
(
√

1 + 4βE ± 1) . (B.6)

As in circular motion, the frequency in planar motion is again shifted to a new value given
by

γp =
π

2

(1 + 4βE)1/4

I[a2/(a2 + b2)]
. (B.7)

The exact solutions for circular and planar motion are useful benchmarks for testing
limiting cases of more general, but not necessarily exact, results.

An exact solution for the more general case of an anharmonic oscillator,

x′′ + a1 + a2x+ a3x
2 + a4x

3 = 0

is provided by Reynolds [3].
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Appendix C: Ode Overview

Ode renders a numerical solution to the initial value problem for many families of
first-order differential equations. It is a programming language that resembles the mathe-
matical language so that the problem posed by a system is easy to state, thereby making a
numerical solution readily available. Ode solves higher-order systems since a simple proce-
dure converts an nth-order equation into n first-order equations. Three distinct numerical
methods are implemented at present: Runge-Kutta-Fehlberg (default), Adams-Moulton,
and Euler. The Adams-Moulton and Runge-Kutta routines are available with adaptive
step size [1]. The Ode User’s Manual provides both a tutorial on applying Ode and a
discussion of its design and implementation [2].

The user need only be familiar with the fundamentals of the UNIX operating system
to access and run this numerical software. Ode provides:

• A simple problem-oriented user interface,

• A table-driven grammar, simplifying extensions and changes to the language,

• A structure designed to ease the introduction of new numerical methods, and

• Remarkable execution speed and capacity for large problems, for an “interpretive”
system.

Ode currently runs on a wide range of microcomputers and mainframes that support the
UNIX operating system. Ode was developed at Reed College in the summer of 1981 under
a UNIX operating system and is public domain software. The program is currently in use
at numerous educational and industrial sites (Reed College, Tektronix Inc., U.C. Berkeley,
Bell Labs, etc.), and the program and documentation are available from some electronic
networks, such as Internet.

Ode solves the initial value problem for a family of first-order differential equations
when provided with an explicit expression for each equation. Ode parses a set of equa-
tions, initial conditions, and control parameters, and then provides an efficient numerical
solution. Ode makes the initial value problem easy to express; for example, the Ode
program

# an ode to Euler

y = 1

y’ = y

print y from 1

step 0, 1

prints 2.718282.
A UNIX Shell can be used as a control language for Ode. Indeed, this allows Ode to

be used in combination with other graphical or analytical tools commonly available with
the UNIX operating system. For instance, the following shell script [3] could be used to
generate a bifurcation diagram for the Duffing equation:

: shell script using Ode to construct a bifurcation diagram

: for the Duffing oscillator.
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: Scan in F: 50 ---> 60.

: Create a file "bif.data" with the initial conditions

: before running this shell script.

for I in 0 1 2 3 4 5 6 7 8 9

do

for J in 0 1 2 3 4 5 6 7 8 9

do

for K in 0 2 4 6 8

do

tail -1 bif.data > lastline.tmp

xo=‘awk ’{print $1}’ lastline.tmp‘

vo=‘awk ’{print $2}’ lastline.tmp‘

ode <<marker >>bif.data

alpha = 0.0037

beta = 86.2

gamma = 0.99

F = 5$I.$J$K

x0 = $xo

v0 = $vo

theta0 = 0

x’ = v

v’ = -(alpha*v + x + beta*x^3) + F*cos(theta)

theta’ = gamma

F = 5$I.$J$K; t = 0; theta = 0;

print x, v, F every 64 from (2*PI*200)/(0.99)

step 0, (2*PI*400)/(0.99), (2*PI)/(64*0.99)

marker

done

done

done

In addition to Ode, there exist many other packages that provide numerical solutions
to ordinary differential equations. However, if you wish to write your own routines see
Chapter 15 of Numerical Recipes [4].
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Appendix D: Discrete Fourier Transform

The following C routine calculates a discrete Fourier transform and power spectrum
for a time series. It is only meant as an illustrative example and will not be very useful
for large data sets, for which a fast Fourier transform is recommended.

/* Discrete Fourier Transform and Power Spectrum

Calculates Power Spectrum from a Time Series

Copyright 1985 Nicholas B. Tufillaro

*/

#include <stdio.h>

#include <math.h>

#define PI (3.1415926536)

#define SIZE 512

double ts[SIZE], A[SIZE], B[SIZE], P[SIZE];

main()

{

int i, k, p, N, L;

double avg, y, sum, psmax;

/* read in and scale data points */

i = 0;

while(scanf("%lf", &y) != EOF) {

ts[i] = y/1000.0;

i += 1;

}

/* get rid of last point and make sure #

of data points is even */

if((i%2) == 0)

i -= 2;

else

i -= 1;

L = i; N = L/2;

/* subtract out dc component from time series */

for(i = 0, avg = 0; i < L; ++i) {

avg += ts[i];

}

avg = avg/L;

/* now subtract out the mean value from the time series */

for(i = 0; i < L; ++i) {

ts[i] = ts[i] - avg;
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}

/* o.k. guys, ready to do Fourier transform */

/* first do cosine series */

for(k = 0; k <= N; ++k) {

for(p = 0, sum = 0; p < 2*N; ++p) {

sum += ts[p]*cos(PI*k*p/N);

}

A[k] = sum/N;

}

/* now do sine series */

for(k = 0; k < N; ++k) {

for(p = 0, sum = 0; p < 2*N; ++p) {

sum += ts[p]*sin(PI*k*p/N);

}

B[k] = sum/N;

}

/* lastly, calculate the power spectrum */

for(i = 0; i <= N; ++i) {

P[i] = sqrt(A[i]*A[i]+B[i]*B[i]);

}

/* find the maximum of the power spectrum to normalize */

for(i = 0, psmax = 0; i <= N; ++i) {

if(P[i] > psmax)

psmax = P[i];

}

for(i = 0; i <= N; ++i) {

P[i] = P[i]/psmax;

}

/* o.k., print out the results: k, P(k) */

for(k = 0; k <= N; ++k) {

printf("%d %g\n", k, P[k]);

}

}



Hénon’s Trick 291

Appendix E: Hénon’s Trick

The numerical calculation of a Poincaré map from a cross section at first appears to
be a rather tedious problem. Consider, for example, calculating the Poincaré map for an
arbitrary three-dimensional flow

dx

dt
= f(x, y, z),

dy

dt
= g(x, y, z),

dz

dt
= h(x, y, z),

with a planar cross section
Σ = (x, y, z = 0).

A simpleminded approach to this problem would involve numerically integrating the equa-
tions of motion until the cross section is pierced by the trajectory. An intersection of the
trajectory with the cross section is determined by testing for a change in sign of the vari-
able in question. Once an intersection is found, a bisection algorithm could be used to
hone-in on the surface of section to any desired degree of accuracy.

Hénon, however, suggested a very clever procedure that allows one to find the inter-
section point of the trajectory and the cross section in one step [1]. Suppose that between
the nth and the n+ 1st steps we find a change of sign in the z coordinate:

(tn, xn, yn, zn < 0) and (tn + ∆t, xn+1, yn+1, zn+1 > 0).

To find the exact value in t at which the z coordinate equals zero we can change t from
the independent to a dependent variable, and change z from a dependent variable to the
independent variable. This is accomplished by dividing the first two equations by dt/dz
and inverting the last equation:

dx

dz
=
f(x, y, z)

h(x, y, z)
,
dy

dz
=
g(x, y, z)

h(x, y, z)
,

dt

dz
=

1

h(x, y, z)
.

This new system can be numerically integrated forward one step, ∆z = −zn, with the
initial values xn, yn, tn. A simple numerical integration method, such as a Runge-Kutta
procedure, is ideally suited for this single integration step.

As an application of Hénon’s method consider the swinging Atwood’s machine (SAM)
defined by the conservative equations of motion [2]:

v̇ =
1

1 + µ

(
ru2 + cos θ − µ

)
,

u̇ = −1

r
(2vu+ sin θ) ,

ṙ = v,

θ̇ = u.

A cross section for this system is defined by (r, ṙ, θ = 0). So we need to change the
independent variable from t to θ. When θ changes sign, we can find the Poincaré map by
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numerically integrating the equations:

dv

dθ
=

1

u(1 + µ)

(
ru2 + cos θ − µ

)
,

du

dθ
= − 1

ur
(2vu+ sin θ) ,

dr

dθ
=

v

u
dt

dθ
=

1

u
.

Pictures of the resulting Poincaré map are found in reference [2].
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Appendix F: Periodic Orbit Extraction Code

The first C routine below was used to extract the periodic orbits from a chaotic time
series arising from the Duffing oscillator, as described in section 5.2. This code is specific
to the Duffing oscillator and is provided because it illustrates the coding techniques needed
for periodic orbit extraction. The second routine takes a pair of extracted periodic orbits
and calculates their relative rotation rates according to equation (5.12). The input to the
relative rotation rate program is a pair of periodic orbits plus a first line containing some
header information about the input file.

/* fp.c

Find all Periodic orbits of period P and tolerance TOL.

Copyright 1989 by Nicholas B. Tufillaro

Department of Physics

Bryn Mawr College, Bryn Mawr, PA 19010-2899 USA

*/

#include <stdio.h>

#include <math.h>

/* This Array Maximum must be greater then 2*P*STEPS + 1 */

#define AMAX 1000

#define DIST(X1,X2,Y1,Y2)

((float)sqrt((double)((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1))))

main(ac, av)

char **av;

{

int m, n, cnt, P, STEPS, LEN, TWOLEN, SHORTERPERIODICORBIT;

float d, ds, phe[AMAX], x[AMAX], y[AMAX], TOL, SHRTOL;

float oldphe;

/* process command line arguments: P TOL */

--ac; P = atoi(*++av); --ac; TOL = (float)atof(*++av);

/* set "global" variables */

STEPS = 64; LEN = P*STEPS; TWOLEN = 2*LEN;

SHRTOL = 2*TOL;

/* initialization, get first LEN points */

for(n = 0; n < LEN; ++n) {

if(scanf("%f %f %f", &phe[n], &x[n], &y[n]) == EOF) {

printf("Not enough orbits for computations.\n");

exit();

}

}

/* find periodic orbits */
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for(;;) {

for(n = LEN; n < TWOLEN; ++n) {

if(scanf("%f %f %f", &phe[n], &x[n], &y[n]) == EOF) {

exit();

}

}

for(n = 0; n < LEN; ++n) {

d = DIST(x[n], x[n+LEN], y[n], y[n+LEN]);

if(d < TOL) {

/* Identify shorter periodic orbits, if any.

This is a kludge.

*/

for(m = 1, SHORTERPERIODICORBIT = 0; m < P; ++m) {

ds = DIST(x[n], x[n+m*STEPS], y[n], y[n+m*STEPS]);

if(ds < SHRTOL) {

SHORTERPERIODICORBIT = 1;

}

}

/* End of kludge. */

if(!SHORTERPERIODICORBIT) {

if(fabs(phe[n]-oldphe) > 1.0) {

oldphe = phe[n];

printf("\n%f %f %f\n\n", -1.0, (float) P, (float) cnt);

for(m = n; m <= n+LEN; ++m) {

printf("%f %f %f\n", phe[m], x[m], y[m]);

}

cnt += 1;

}

}

}

}

for(n = 0; n < LEN; ++n) {

phe[n] = phe[n+LEN]; x[n] = x[n+LEN]; y[n] = y[n+LEN];

}

}

}

/* rrr.c

calculate Relative Rotation Rates of two periodic orbits
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of periods PA, PB.

Copyright 1989 by Nicholas B. Tufillaro

Department of Physics, Bryn Mawr College

Bryn Mawr, PA 19010-2899 USA

INPUT:

Data file with phase, x, and y listed for points in two

periodic orbits. For the first input line of each

periodic orbit, use -1.0 for phase and give the period in x.

For this first point y is ignored.

*/

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

#define ARG(X,Y) (float)(atan2((double)Y,(double)X))

main()

{

int m, n, M, N, I[10], J[10];

float phe, x, y, PA, PB, A[3][1000], B[3][1000];

int i, j, q, Q;

float rx[10000], ry[10000], RR[10][10];

if(scanf("%f %f %f", &phe, &x, &y)==EOF) {

printf("Error: empty input file\n");

exit();

}

if(phe != -1.0) {

printf("Error: Input file does not begin with -1.0\n");

exit();

}

if(phe == -1.0) {

PA = x;

for(n = 0, m = 0; ; ++n) {

if(scanf("%f%f%f", &phe, &x, &y)==EOF) {

printf("Error: not enough orbits\n");

exit();

}

if(phe == -1.0) {

break;

}

if(fmod(phe,1.0) == 0.0) {

I[m] = n;
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m +=1;

}

A[0][n] = phe; A[1][n] = y; A[2][n] = x;

}

PB = x;

M = n;

for(n = 0, m = 0; scanf("%f%f%f", &phe, &x, &y) != EOF; ++n) {

if(phe == -1.0) {

printf("Error: Too many orbits\n");

exit();

}

if(fmod(phe,1.0) == 0.0) {

J[m] = n;

m += 1;

}

B[0][n] = phe; B[1][n] = y; B[2][n] = x;

}

N = n;

}

Q = (int)(PA)*(N-1) + 1;

for(i = 0; i < PA; ++i) {

for(j = 0; j < PB; ++j) {

for(m = I[i], n = J[j], q = 0; q < Q; ++q, ++m, ++n) {

if(m == 0) m = M-1;

if(n == 0) n = N-1;

if(m == M) m = 1;

if(n == N) n = 1;

rx[q] = B[1][n]-A[1][m]; ry[q] = B[2][n]-A[2][m];

}

for(q = 0; q < Q - 1; ++q) {

if(ARG(rx[q],ry[q]) > PI/2 && ARG(rx[q],ry[q]) < PI

&& ARG(rx[q+1],ry[q+1]) > -PI &&

ARG(rx[q+1],ry[q+1]) < -PI/2)

RR[i][j] += 2*PI + ARG(rx[q+1],ry[q+1]) -

ARG(rx[q],ry[q]);

else if(ARG(rx[q],ry[q]) > -PI &&

ARG(rx[q],ry[q]) < -PI/2 &&

ARG(rx[q+1],ry[q+1]) > PI/2 &&

ARG(rx[q+1],ry[q+1]) < PI)

RR[i][j] += ARG(rx[q+1],ry[q+1])-

ARG(rx[q],ry[q]) - 2*PI;

else

RR[i][j] += ARG(rx[q+1],ry[q+1])-

ARG(rx[q],ry[q]);

}
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}

}

printf("\nROTATION RATES\n\n");

printf("PA: %g PB: %g\n\n", PA, PB);

for(i = 0; i < PA; ++i) {

for(j = 0; j < PB; ++j) {

printf("Index: %d, %d. Rotations: %g Rel. Rot.: %g\n",

i+1, j+1, RR[i][j]/(2*PI), RR[i][j]/(2*PI*PA*PB));

}

}

printf("\n");

}
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Appendix G: Relative Rotation Rate Package

The following Mathematica package calculates relative rotation rates and intertwining
matrices by the methods described in section 5.5.4.

(*

Relative Rotation Rates --- Mathematica Package

Date: 10/04/90

Last Modified:

Authors: Copyright 1990

A. Lorentz, N. Tufillaro and P. Melvin.

Departments of Mathematics and Physics

Bryn Mawr College, Bryn Mawr, PA 19010-2899 USA

Bugs:

Many of these symbolic computations are exponential time algorithms,

so they are slow for long periodic orbits and templates with many branches.

A "C" version of these routines exists which runs considerably

faster. The algorithm for the calculation of the relative

rotation rate from a single word pair, however, is polynomial time.

About the Package:

This collection of routines automates the process for the symbolic

calculation of relative rotation rates, and the intertwining matrix

for an arbitrary template. The template is represented algebraically

by a framed braid matrix, which is specified by the global variable

"bm" in these routines. This variable must be defined by the user

when these routines are entered.

There are three major routines:

RelRotRate[word pair], AllRelRotRates[word pair], and

Intertwine[start row, stop row].

The input for the RelRotRate programs is a word pair, which is just

a list of lists. For example, a valid input for these programs is

{ {0,1,0,1,1,0}, {1,1,0} }

where the first word of the word pair is "010110" and the second word

is "110". The input for the Intertwine program is just two integers,

"start row" and "stop row". For instance, Intertwine[2,3] would produce

all relative rotation rates for all words of length between 2 and 3.

In addition, the routine
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GetFunCyc[branches, period]

generates all fundamental cycles of length "period" for a template with

"b" branches or a symbolic alphabet of "b" letters. This routine can

be useful for the cycle expansion techniques (see, R. Artuso, E. Aurell,

and P. Cvitanovic, Recycling of strange sets I and II, Nonlinearity

Vol 3., Num. 2, May 1990, p. 326.).

References:

[1] G. B. Mindlin, X.-J. Hou, H. G. Solari, R. Gilmore, and N. B. Tufillaro,

Classification of strange attractors by integers, Phys. Rev. Lett. 64

(20), 2350 (1990).

[2] N. B. Tufillaro, H. G. Solari, and R. Gilmore, Relative rotation rates:

fingerprints for strange attractors, Phys. Rev. A 41 (10), 5717 (1990).

[3] H. G. Solari and R. Gilmore, Organization of periodic orbits in the

driven Duffing oscillator, Phys. Rev. A 38 (3), 1566 (1988).

[4] H. G. Solari and R. Gilmore, Relative rotation rates for driven

dynamical systems, Phys. Rev. A 37 (8), 3096 (1988).

*)

(*

The template braid matrix is a global variable that should be

defined by the user before this package is used. Comment out the

default setting for the braid matrix.

Examples for the braid matrix are presented below.

Global Variable Abbreviation.

bm braid matrix --- algebraic description of template

*)

(* Braid Matrix Example: The Horseshoe Template *)

(*

bm = {

{ 0, 0 },

{ 0, 1 }

};

*)

(* Braid Matrix Example: Second Iterate of The Horseshoe Template *)

bm = {

{ 0, 0, 0, 0},

{ 0, 1, 1, 1},

{ 0, 1, 2, 1},

{ 0, 1, 1, 1}

};
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(* Calculate the relative rotation rate for a pair of words.

Variables local to RelRotRate.

wordp wordpair

lcm lowest common multiple of word pair lengths

ewordp expanded word pair

top top list

bottom bottom list

rrr relative rotation rate of word pair

*)

RelRotRate[wordp_List] :=

Block[

{

lcm,

ewordp, top, bottom,

rrr,

},

If[wordp[[1]] == wordp[[2]], Return[0]]; (* Self rotation rate *)

ewordp = ExpandWordPair[wordp];

top = GetTop[ewordp];

bottom = GetBottom[ewordp];

lcm = Length[top];

rrr = (SumAll[top] + SumAll[bottom])/(2 lcm);

Return[rrr]

]

(* Permute the word pair list to generate

all possible relative rotation rates *)

AllRelRotRates[wordp_List] :=

Block[

{i, pa, pb, lcm, wordstep, rrr,

firstword, secondword, rrrs},

firstword = wordp[[1]];

secondword = wordp[[2]];

pa = Length[firstword];

pb = Length[secondword];

lcm = LCM[pa, pb];

wordstep = (lcm*lcm)/(pa*pb);

rrrs = {};
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For[i = 0, i < lcm, i += wordstep,

rrr = RelRotRate[{firstword, secondword}];

rrrs = Append[rrrs, {firstword, secondword, rrr}];

firstword = RotateRight[firstword, wordstep];

];

Return[rrrs];

]

(* Calculate the Intertwining Matrix of all orbits of length "startrow"

to length "stoprow", startrow <= stoprow. *)

Intertwine[startrow_Integer, stoprow_Integer] :=

Block[

{b, i, j, k, rowsize, rsum, colsize, csum, mult,

cycls = {}, rcycls = {}, ccycls = {}, rrr = {}, rrrs = {}},

b = Length[bm];

rowsize = 0; rsum = 0;

For[i = startrow, i <= stoprow, ++i,

cycls = GetFunCyc[b, i]; rowsize = Length[cycls];

rsum += rowsize;

For[j = 1, j <= rowsize, ++j,

rcycls = Append[rcycls, cycls[[j]]];

];

];

colsize = 0; csum = 0;

For[i = 1, i <= stoprow, ++i,

cycls = GetFunCyc[b, i]; colsize = Length[cycls];

csum += colsize;

For[j = 1, j <= colsize, ++j,

ccycls = Append[ccycls, cycls[[j]]];

];

];

rrr = {}; rrrs = {};

For[i = 1, i <= rsum, ++i,

For[j = 1, j <= csum, ++j,

rrr = AllRelRotRates[{rcycls[[i]], ccycls[[j]]}];

mult = Length[rrr];

rrrs = {rrr[[1,1]], rrr[[1,2]]};

For[k = 1, k <= mult, ++k,

rrrs = Append[rrrs, rrr[[k,3]]];

];

Print[rrrs];

If[rcycls[[i]] == ccycls[[j]], Break[]];
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];

];

]

(* Subroutines for major programs: RelRotRate, AllRelRotRates,

Intertwine *)

ExpandWordPair[wp_List] :=

Block[

{i, lcm, firstword, secondword},

firstword = wp[[1]]; secondword = wp[[2]];

lcm = LCM[Length[firstword], Length[secondword]];

Return[

{ Flatten[ Table[firstword, {i, lcm/Length[firstword] }]],

Flatten[ Table[secondword, {i, lcm/Length[secondword] }]] }

];

]

GetTop[ewp_List] :=

Block[

{i, lcm},

lcm = Length[ ewp[[1]] ];

Return[

Table[ bm[[ ewp[[1,i]]+1, ewp[[2,i]]+1]], {i, lcm} ]

];

]

GetBottom[ewp_List] :=

Block[

{i=0, s=0, j=0, prevj=0, nextj=0, cnt=0, lcm=0, sgn=0,

top={}, ewpd={}, b1={}, b2={}, b3={}, bot={}},

lcm = Length[ewp[[1]]];

top = GetTop[ewp];

ewpd = ewp[[1]] - ewp[[2]];

(* initialize rows b1, b2, b3 *)

For[i = 1, i < lcm+1, i++,

AppendTo[b1,0]; AppendTo[b2,0]; AppendTo[b3,0];

];

(* calculate b1 row *)

For[i = 1, i < lcm + 1, i++,
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If[ewpd[[i]] != 0, b1[[i]] = Mod[top[[i]],2]];

];

(* calculate b2 row *)

For[s = 0, ewpd[[s+1]] == 0, ++s];

For[i = 1, i < lcm + 1, i++,

j = i + s; If[j > lcm, j -= lcm];

prevj = j - 1; If[prevj < 1, prevj += lcm];

If[0 == ewpd[[j]],

cnt = 0;

For[k = j, ewpd[[k]] == 0, k++,

cnt = cnt + top[[k]];

If[k == lcm, k = 0];

i++;

];

cnt = Mod[cnt, 2];

b2[[prevj]] = cnt;

];

];

(* calculate b3 row *)

For[i = 1, i < lcm + 1, i++,

j = i + s; If[j > lcm, j -= lcm];

nextj = j + 1; If[nextj > lcm, nextj -= lcm];

k = nextj;

While[0 == ewpd[[nextj]],

++nextj; ++i;

If[nextj > lcm, nextj -= lcm];

];

If[Negative[ewpd[[j]]*ewpd[[nextj]]], sgn = 1, sgn = 0];

b3[[j]] = sgn;

];

bot = Mod[b1 + b2 + b3, 2];

Return[bot];

]

SumAll[l_List] :=

Block[{i},

Return[Sum[l[[i]], {i, Length[l]}]]

]

(* Generates the fundamental cycles of length "period" for a template

with "b" branches *)
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GetFunCyc[b_Integer, period_Integer] :=

Block[

{cycles},

(* get all cycles of length *)

cycles = GetAllCyc[b, period]; (* "period", and b "branches" *)

cycles = DelSubCyc[b, cycles]; (* delete nonfundamental subcycles *)

cycles = DelCycPerm[cycles]; (* delete cyclic permutations

of fundamental cycles *)

Return[cycles];

]

(* Subroutines for GetFunCyc *)

GetAllCyc[branches_Integer, levels_Integer] :=

Block[

{n, m, i, j,

roots, tree, nextlevel, cycle, cycles},

For[i = 0; roots = {}, i < branches, ++i,

roots = Append[roots, i];

];

(* creates full n-ary tree recursively *)

tree = {roots};

For[n = 1, n < levels, ++n,

nextlevel = {};

For[m = 1, m <= branches, ++m,

nextlevel = Append[nextlevel, Last[tree]];

];

tree = Append[tree, Flatten[nextlevel]];

];

(* reads up each branch of tree to root, from left to right *)

cycles = {};

For[i = 1, i <= branches^levels, ++i,

cycle = {};

For[j = levels, j > 0, --j,

k = Ceiling[i/(branches^(levels-j))];

cycle = Prepend[cycle, tree[[j]][[k]]];

];

cycles = Append[cycles, cycle];

];

Return[cycles];

]
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DelSubCyc[b_Integer, allcycls_List] :=

Block[

{i, j, k, levels, period, numofdivs, numofsub, copies, wordpos,

cycles = {}, div = {}, word = {}, droplist = {},

subcycles = {}, subword = {}, nonfun = {}, funcycls = {}},

(* Initializations and gets divisor list *)

cycles = allcycls; levels = Length[ cycles[[1]] ];

period = levels; div = Divisors[levels];

(* Creates nonfundamental words from periodic orbits created from

divisor list *)

numofdivs = Length[div];

For[i = 1, i < numofdivs, ++i, (* go throw divisor list *)

copies = period/div[[i]];

subcycles = GetAllCyc[b, div[[i]]];

numofsub = Length[subcycles];

(* create subwords of lengths found in divisor list *)

For[j = 1; subword = {}, j <= numofsub, ++j,

subword = subcycles[[j]];

(* expand subwords to length of periodic orbits *)

For[k = 1; word = {}, k <= copies, ++k,

word = Flatten[Append[word, subword]];

];

(* find positions of nonfundamental cycles in all cycles *)

wordpos = Flatten[Position[cycles, word]][[1]];

droplist = Union[Append[droplist, wordpos]];

];

];

(* this is a kludge to delete nonfundamental cycles *)

For[i = 1; nonfun = {}, i <= Length[droplist], ++i,

nonfun = Append[nonfun, cycles[[droplist[[i]]]]];

];

funcycls = Complement[cycles, nonfun];

Return[funcycls];

]

DelCycPerm[funcycls_List] :=

Block[

{size, i, j, period,

cycs, word },

cycs = funcycls;
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size = Length[cycs]; period = Length[cycs[[1]]];

For[i = 1, i < size, ++i,

word = cycs[[i]];

For[j = 1, j < period, ++j,

word = RotateLeft[word];

cycs = Complement[cycs, {word}];

size = size-1;

];

];

Return[cycs];

]
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Appendix H: Historical Comments

How hard are the problems posed by classical mechanics? The beast in the machine,
the beast we now call chaos, was discovered about a century ago by the French scientist and
mathematician Henri Poincaré during the course of his investigations on “the three-body
problem,” the great unsolved problem of classical mechanics. Poincaré, in his magnum
opus on the three-body problem, New Methods of Celestial Mechanics, writes:1

397. When we try to represent the figure formed by these two curves and
their intersections in a finite number, each of which corresponds to a doubly
asymptotic solution, these intersections form a type of trellis, tissue, or grid
with infinitely serrated mesh. Neither of the two curves must ever cut across
itself again, but it must bend back upon itself in a very complex manner in
order to cut across all of the meshes in the grid an infinite number of times.

The complexity of this figure will be striking, and I shall not even try to draw
it. Nothing is more suitable for providing us with an idea of the complex
nature of the three-body problem, and of all the problems of dynamics in
general, where there is no uniform integral and where the Bohlin series are
divergent.

Poincaré is describing his discovery of homoclinic solutions (homoclinic intersections, or
homoclinic tangles2). The existence of these homoclinic solutions “solved” the three-body
problem insofar as it proved that no solution of the type envisioned by Jacobi or Hamilton
could exist. Volume III of Poincaré’s New Methods of Celestial Mechanics (1892–1898),
from which the above quote is taken, is the foundational work of modern dynamical systems
theory.

Poincaré’s great theorem of celestial mechanics, as stated in his prize-winning essay
to the King of Sweden, is the following:3

The canonical equations of celestial mechanics do not admit (except for some
exceptional cases to be discussed separately) any analytical and uniform
integral besides the energy integral.

Simply put, Poincaré’s theorem says that there does not exist a solution to the three-
body problem of the type assumed by the Hamilton-Jacobi method or any other method
seeking an analytic solution to the differential equations of motion. Poincaré “solved” the
three-body problem by showing that no solution exists—at least not of the type assumed
by scientists of his era.

1H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vol. 1–3 (Gauthier-
Villars: Paris, 1899); reprinted by Dover, 1957. English translation: New methods of
celestial mechanics (NASA Technical Translations, 1967).

2R. Abraham and C. Shaw, Dynamics—The geometry of behavior, Vol. 1–4 (Aerial
Press: Santa Cruz, CA, 1988).

3H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta
Math. 13, 1–271 (1890).
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But Poincaré did much more. Confronted with his discovery of homoclinic tangles,
Poincaré went on to reinvent what is meant by a solution. In the process, Poincaré
laid the foundations for several new branches of mathematics including topology, ergodic
theory, homology theory, and the qualitative theory of differential equations.4 Poincaré
also pointed out the possible uses of periodic orbits in taming the beast:5

36. . . . It seems at first that this fact can be of no interest whatever for
practice. In fact, there is a zero probability for the initial conditions of the
motion to be precisely those corresponding to a periodic solution. However,
it can happen that they differ very little from them, and this takes place
precisely in the case where the old methods are no longer applicable. We
can then advantageously take the periodic solution as first approximation,
as intermediate orbit, to use Gyldén’s language.

There is even more: here is a fact which I have not been able to demonstrate
rigorously, but which seems very probable to me, nevertheless.

Given equations of the form defined in art. 13 and any particular solution
of these equations, we can always find a periodic solution (whose period, it
is true, is very long), such that the difference between the two solutions is
as small as we wish, during as long a time as we wish. In addition, these
periodic solutions are so valuable for us because they are, so to say, the
only breach by which we may attempt to enter an area heretofore deemed
inaccessible.

The periodic orbit theme is pursued in Chapter 5.
Shortly thereafter Hadamard (1898) produced the first example of an abstract system

exhibiting chaos—the geodesics on a surface of constant negative curvature.6 Hadamard’s
example was later generalized by Anosov and is still one of the best mathematical examples
of chaos in its most extreme form.

In America, George David Birkhoff continued in the way of Poincaré. He examined
the use of maps7 instead of flows, and began the process of hunting and naming different
critters that he called limit sets of the alpha and omega variety.8 Still, without the aid of
the computer, Birkhoff was often fooled by the beast into thinking that nonintegrability
implies complete ergodicity. It took the work of Kolmogorov, Arnold, and Moser in the
early 1960s to show that the beast is more subtle in its destructive tendencies, and that
it prefers to chew on rational frequencies.9

4F. Browder, The mathematical heritage of Henri Poincaré, Vol. 1–2, Proc. Sym. in
Pure Math. Vol. 39 (American Mathematical Society: Providence, RI, 1983).

5R. MacKay and J. Meiss, eds., Hamiltonian dynamical systems (Adam Hilger:
Philadelphia, 1987).

6J. Hadamard, Les surfaces à curbures opposés et leurs lignes géodésiques, Journ. de
Math. 4 (5), 27–73 (1898).

7G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math.
43, 1–119 (1922).

8G. D. Birkhoff, Collected mathematical works, Vol. 1–3 (Dover: New York, 1968).
9J. Moser, Stable and random motions in dynamical systems, Ann. Math. Studies 77
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Few physicists were concerned about the beast, or even aware of its existence, during
the first half of the twentieth century; however, this is more than understandable when
you consider that they had their hands full with quantum mechanics and some less savory
inventions. Still, there were some notable exceptions, such as those discussed by Brillouin
in his book Scientific Uncertainty, and Information.10

Near the end of the Second World War, Cartwright and Littlewood11 and Levinson12

showed that the beast liked to play the numbers, and could generate solutions as random
as a coin toss. At first they did not quite believe their results; however, experiments with
a simple circuit (the van der Pol oscillator) forced them to accept the idea that a fully
deterministic system can produce random results—what we now think of as the definition
of chaos.

In 1960, the young topologist Steven Smale was sitting on the beach in Rio playing
with the beast when he first saw that in its heart lay a horseshoe.13 Smale found that
he could name the beast, a hyperbolic limit set, even if he had trouble seeing it since it
was very, very thin. Moreover, Smale found a simple way to unravel the horseshoe via
symbolic dynamics.14 Now that the beast was named and dissected, mathematicians had
some interesting mathematical objects to play with, and Smale and his friends were off
and running.

At about the same time the meteorologist Ed Lorenz, a former student of G. D.
Birkhoff, discovered that the beast was not only in the heavens, as evidenced in the three-
body problem, but may well be around us all the time in the atmosphere.15 Whereas
Smale showed us how to name the beast, Lorenz allowed us to see the beast with computer
simulations and judiciously chosen models. Lorenz pointed out the role return maps can
play in understanding real systems, how ubiquitous the beast really is, and how we can
become more familiar with the beast through simple models such as the logistic map.16

This two-pronged approach of using abstract topological methods on the one hand
and insightful computer experiments on the other is central to the methodology employed
when studying nonlinear dynamical systems. More than anything else, it probably best
defines the “nonlinear dynamical systems method” as it has developed since Lorenz and
Smale. In fact, J. von Neumann helped invent the electronic computer mainly to solve, and

(Princeton University Press: Princeton, NJ, 1973).
10L. Brillouin, Scientific uncertainty, and information (Academic Press: New York,

1964).
11M. L. Cartwright and N. Littlewood, On nonlinear differential equations of the second

order, I, J. Lond. Math. Soc. 20, 180–189 (1945).
12N. Levinson, A second-order differential equation with singular solutions, Ann. Math.

50, 127–153 (1949).
13S. Smale, The mathematics of time: Essays on dynamical systems, economic processes,

and related topics (Springer-Verlag: New York, 1980).
14R. L. Devaney, An introduction to chaotic dynamical systems, second ed. (Addison-

Wesley: New York, 1989).
15E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141 (1963).
16E. N. Lorenz, The problem of deducing the climate from the governing equations,

Tellus 16, 1–11 (1964).
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provide insight into, nonlinear equations. In 1946 in an article called “On the principles
of large scale computing machines,” he wrote:

Our present analytic methods seem unsuitable for the solution of the im-
portant problems arising in connection with non-linear partial differential
equations and, in fact, with virtually all types of non-linear problems in pure
mathematics. . . .

. . . really efficient high-speed computing devices may, in the field of non-
linear partial differential equations as well as in many other fields which are
now difficult or entirely denied of access, provide us with those heuristic hints
which are needed in all parts of mathematics for genuine progress.

Thank heavens for the Martians.
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Appendix I: Projects

In this appendix we provide a brief guide to the literature on some topics that might
be suitable for an advanced undergraduate research project.

1. Acoustics

(a) Review article
W. Lauterborn and U. Parlitz, Methods of chaos physics and their application
to acoustics, J. Acoust. Soc. Am. 84 (6), 1975–1993 (1988).

(b) Oscillations in gas columns
T. Yazaki, S. Takashima, and F. Mizutani, Complex quasiperiodic and chaotic
states observed in thermally induced oscillations of gas columns, Phys. Rev.
Lett. 58 (11), 1108–1111 (1987).

(c) Wineglass
A. French, A study of wineglass acoustics, Am. J. Phys. 51 (8), 688–694
(1983).

2. Biology

(a) Review article
L. Olsen and H. Degn, Chaos in biological systems, Quart. Rev. Biophys. 18
(2), 165–225 (1985).

(b) Brain waves
P. Rapp, T. Bashore, J. Martinerie, A. Albano, I. Zimmerman, and A. Mees,
Dynamics of brain electrical activity, Brain Topography 2 (1&2), 99–118
(1989).

(c) Gene structure
H. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Res.
18 (8), 2163–2170 (1990).

3. Chemistry

(a) Chemical clocks
S. Scott, Clocks and chaos in chemistry, New Scientist (2 December 1989),
53–59; E. Mielczarek, J. Turner, D. Leiter, and L. Davis, Chemical clocks:
Experimental and theoretical models of nonlinear behavior, Am. J. Phys. 51
(1), 32–42 (1983).

4. Electronics

(a) Analog simulation of laser rate equations
M. James and F. Moss, Analog simulation of a periodically modulated laser
model, J. Opt. Soc. Am. B 5 (5), 1121–1127 (1988); for more details about the
circuit contact F. Moss, Dept. of Physics, University of St. Louis, St. Louis,
MO 63121.
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(b) Circuits
J. Lesurf, Chaos on the circuit board, New Scientist (30 June 1990), 63–66.
A. Rodriguez-Vazquez, J. Huertas, A. Rueda, B. Perez-Verdu, and L. Chua,
Chaos from switched-capacitor circuits: Discrete maps, Proc. IEEE 75 (8),
1090–1106 (1987).

(c) Double scroll
T. Matsumoto, L. Chua, and M. Komuro, The double scroll bifurcations,
Circuit theory and applications 14, 117–146 (1986); T. Matsumoto, L. Chua,
and M. Komuro, The double scroll, IEEE Trans. on Circuits and Systems
CAS-32 (8), 798–818 (1985); L. Chua, M. Komuro, and T. Matsumoto, The
double scroll family, IEEE Trans. on Circuits and Systems CAS-33 (11), 1073–
1118 (1986); T. Weldon, An inductorless double scroll circuit, Am. J. Phys.
58 (10), 936–941 (1990).

5. Hydrodynamics

(a) Dripping faucet
R. Cahalan, H. Leidecker, and G. Cahalan, Chaotic rhythms of a dripping
faucet, Computing in Physics, 368–383 (Jul/Aug 1990); R. Shaw, The drip-
ping faucet as a model chaotic system (Aerial Press, Santa Cruz, CA 1984);
H. Yepez, N. Nuniez, A. Salas Brito, C. Vargas, and L. Viente, Chaos in a
dripping faucet, Eur. J. Phys. 10, 99–105 (1989).

(b) Hele-Shaw cell
J. Nye, H. Lean, and A. Wright, Interfaces and falling drops in Hele-Shaw
cell, Eur. J. Phys. 5, 73–80 (1984).

(c) Lorenz loop
S. Dodd, Chaos in a convection loop, Reed College Senior Thesis (1990); M.
Gorman, P. Widmann, and K. Robbins, Nonlinear dynamics of a convec-
tion loop, Physica 19D, 255–267 (1986); P. Widmann, M. Gorman, and K.
Robbins, Nonlinear dynamics of a convection loop II, Physica 36D, 157–166
(1989).

(d) Surface waves
R. Apfel, “Whispering” waves in a wineglass, Am. J. Phys. 53 (11), 1070–
1073 (1985); S. Douady and S. Fauve, Pattern selection in Faraday instability,
Europhys. Lett. 6 (3), 221–226 (1988); J. P. Gollub, Spatiotemporal chaos
in interfacial waves (To appear in: New perspectives in turbulence, edited
by S. Orszag and L. Sirovich, Springer-Verlag); J. Miles and D. Henderson,
Parametrically forced surface waves, Annu. Rev. Fluid Mech. 22, 143–165
(1990); V. Nevolin, Parametric excitation of surface waves, J. Eng. Phys.
(USSR) 47, 1482–1494 (1984).
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6. Mechanics
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Commonly Used Notation

α coefficient of restitution
α(p) α-limit set of p
bi braid operator
bij braid linking matrix item
B braid linking matrix
Bn braid group on n strands
β normalized nonlinear term; fractional binary number
βi binary digit
C complex plane
C(ε) correlation integral
D trapping region; unit square
d[s, t] metric
dfn(x) derivative of nth composite of f
Df derivative matrix of f
∇ divergence operator
∇ · F,divF divergence of vector field F
Es, Ec, Eu stable space, center space, unstable space
fλ quadratic map
(fn)′(x) derivative of nth composite of f
g acceleration of gravity
γ normalized frequency
h topological entropy
Hk power spectrum amplitude
H0, H1 horizontal strips of horseshoe
I unit interval
K coefficient of nonlinear term in Duffing equation
l equilibrium string length
l0 relaxed string length
L+, L− forward, backward limit sets
lk(α, β) linking number of the knots α and β
λ quadratic map parameter; string damping; eigenvalue;

Lyapunov characteristic exponent
Λ invariant set, invariant limit set
M manifold
Mn n-dimensional manifold
ν correlation dimension
O orbit
ω angular frequency
ω(p) ω-limit set of p
Ω nonwandering set
P Poincaré map
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PA period of orbit A
Per(f) set of periodic points of f
φ, φt flow
R,Rn real numbers; real n-space
R(f) chain recurrent set of f
Rij(A,B) relative rotation rate of the periodic orbits A and B
s one-sided symbol sequence {s0s1s2 . . .} or

two-sided symbol sequence {. . . s−2s−1.s0s1s2 . . .}
S1 unit circle
σ shift map; sign of a crossing
σs, σc, σu set of stable, center, unstable eigenvalues
σB permutation of braid strands in a template
Σ cross section; Poincaré section; symbol space of bi-infinite sequences
Σ2 sequence space on two symbols
Σθ0 global cross section
T period; tension; branched surface
Tn n-torus
τ dimensionless time
θ phase variable
V potential energy function
V0, V1 vertical strips of horseshoe
W s,W c,Wu stable, center, unstable manifolds
x∗ periodic point
ẋ, dx/dt time derivative of x
◦ composite of functions
| | absolute value
‖ ‖ norm
∪ union
∩ intersection
∈ a member of
≺ precedes
. implies
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(k, ε) recurrent point, 245
α-limit set, 195
ε-pseudo orbit, 197
ω-limit set, 195
“period three implies chaos”, 90

abstract dynamical system, 191
alternating binary tree, 105
Arnold, V. I., 1, 9
Artin crossing convention, 253
asymptotic behavior, 196
asymptotically stable, 204
attracting, 68

set, 47, 196
attractor, 14, 41, 47, 196

identification, 174
autonomous, 138, 189

backward limit set, 195
backward orbit, 189
Baker’s map, 188
basin of attraction, 48, 196
beam, 130, 133, 135
Bendixson, Ivar, 13
bi-infinite symbol sequence, 226
bifurcation, 41, 79

diagram, 49, 77
summary diagram, 84

binary expansion, 17, 92
binary tree, 120
BINGO, 179, 183
Birkhoff, G. D., 324
Birman and Williams template theorem, 270
bisection method, 293
Borromean rings, 251
bouncing ball

C program, 293

impact map, 25, 293
impact relation, 29
phase map, 30, 293
sticking solution, 34, 39, 66
strange attractor, 26
system, 23
velocity map, 31, 293

braid, 256
group, 258
relations, 258
word, 258

braid linking matrix, 275
branch line, 269
branch torsion, 272

C programming language, 61
Cantor set, 19, 95
Cartwright and Littlewood, 325
center, 135, 206
center manifold, 209

theorem, 209
center space, 208
chain recurrent, 197
chain recurrent set, 197
chain rule, 134
chaos, 14, 152
chaos vs. noise, 177, 244
chaotic, 14, 174, 231, 233

attractor, 163
repeller, 93
set, 228

circle map, 159
close return, 245
closure, 152
coefficient of restitution, 28
coexisting solutions, 42
conservative, 27, 202
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contraction, 199
correlation dimension, 179
correlation integral, 177
cross section, 16, 140, 191
crossing convention, 253

damping coefficient, 28
delay time, 168
derivative

of a composite function, 60
of a map, 199

deterministic, 11
Devaney, R. L., 91, 93, 98, 114, 115
devil’s staircase, 182
diffeomorphism, 16
differential, 199
differential equations

first-order system of, 11
geometric definition, 10
numerical solution of, 302

differentiator, 163
disconnected set, 95
discrete Fourier transform

C program, 305
dissipative, 27, 202
divergence, 201, 202
domain of attraction, 48, 196
Duffing equation, 132, 188, 247

template, 287
dynamical quest, 194, 239
dynamical systems theory, 2

eigenvalues, 2× 2 real matrix, 216
elastic collision, 27
embedded time series, 58
embedded variable, 167
embedding, 58

differential, 166
time-delayed, 167

equation of first variation, 203
equilibrium

point, 14
solution, 204
state, 133

eventually fixed, 66
eventually periodic point, 68

evolution operator, 190, 246
linear, 205

expansion, 199
extended phase space, 138

fast Fourier transform, 171
Feigenbaum, 86
Feigenbaum’s delta, 88
FFT, 171
figure-eight knot, 251
finite Fourier series, 170
first return map, 17, 192
first-order system, differential equations, 11
fixed point, 66, 68, 204
flip bifurcation, 83
flow, 11, 140, 189, 190
forced damped pendulum, 184, 188
forward limit set, 195
forward orbit, 189
Fourier series, 169
Fourier transform

C program, 305
fractal, 18
fractal dimension, 19, 179
framed braid, 259
framing, 259
frequency spectrum, 172
fully developed chaos, 93, 241
functional composition, 60
fundamental frequency, 128

geometric braid, 256
geometric convergence, 88
geometric series, 38, 88
global torsion, 194, 264, 267
granny knot, 251
graphical iteration of a one-dimensional map,

62

Hadamard, J., 324
half-twist, 259
harmonic balance, 146, 181, 185
harmonic oscillator, 55, 132, 143
Hausdorff, F., 19
Heaviside function, 177
Hénon map, 15, 188
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Jacobian, 201
Hénon, Michel, 15
Hénon’s trick, 307
heteroclinic

point, 212
tangle, 213

Holmes, P., 220
homeomorphism, 16, 98
homoclinic

intersection, 151
point, 212
solution, 323
tangle, 152, 213, 220

Hopf bifurcation, 158
Hopf link, 251
horseshoe, 65, 219

intertwining matrix, 284
linear map, 223
template, 271

hyperbolic
fixed point, 206
point, 231
set, 94, 231

hyperbolicity, 94
hysteresis, 144, 148

IHJM optical map, 188
incommensurate, 14
inelastic collision, 27
initial condition, 190
inset, 137, 150
integral curve, 11, 135, 190
integration trick, 134
intertwining matrix, 264
invariant set, 93, 137, 195
invertible map, 16
itinerary, 98, 101

Jacobian, 200, 201

Katok’s theorem, 265
kneading theory, 96, 277, 280
knot, 249

problem, 251
types, 251

laser rate equation, 215
Levinson, N., 325
Li and Yorke, 90
lift, 267
limit cycle, 13, 14, 149
linear approximation, 199
linear differential equation, 3
linear map, 65
linear resonance, 142
linear stability, 204
linear system, 3
linearization, 205
link, 251
linking number, 255, 263
local stability, 204
local torsion, 246
logistic map, 56
longitudinal vibrations, 124
Lorentz force law, 125
Lorenz equations, 188

divergence, 202
intertwining matrix, 284
template, 271

Lorenz, E. N., 57, 325
Lyapunov exponent, 92, 117, 233

main resonance, 143
Mandelbrot, B., 18
manifold, 10
map, 15, 189
maps to, 189
Martians, 326
Mathematica, 110, 314
matrix of partial derivatives, 199
metric, 96
mod operator, 25
modulated laser equations, 188
multifractal, 20

negative cross, 253
neutral stability, 68
nonautonomous, 189
noninvertible map, 16
nonlinear dynamics, 2
nonwandering

point, 196
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set, 196
numerical methods

calculation of a Poincaré map, 307
solution of ordinary differential equa-

tions, 302

Ode, 302
orbit, 15, 60, 189
orbit stability diagram, 75
ordering relation, 106, 278
ordering tree, 278
orientation, 104
orientation preserving, 211
oriented knot, 252
outset, 137, 150

parabolic map, 66
parametric oscillation, 124
partition, 105
pedagogical approach, 8, 9, 55, 123
pendulum, 184
perfect set, 95
period, 14
period doubling, 41

bifurcation, 82
route to chaos, 43, 84, 175

period one orbit, 40
periodic orbit extraction, 243

C program, 309
periodic point, 68, 194
periodic solution, 14
phase plane, 135
phase space, 11, 24, 190

experimental reconstruction, 166
phase-locked loop, 165
piezoelectric film, 24, 52
Pirogon template, 271
PLL, 165
Poincaré map, 16, 141, 191
Poincaré section, experimental, 163
Poincaré, Jules Henri, 1, 109, 140, 211, 265,

323
Poincaré-Bendixson theorem, 13
point attractor, 137
positive cross, 253
power spectrum, 172

preimage, 102
primary resonance, 128, 143
principle of superposition, 4
pruning, 288

quadratic map, 56, 60, 188
bifurcation diagram, 78
bifurcation diagram program, 77
C program, 61

qualitative analysis, 137
qualitative solution, 5
quasiperiodic motion, 146, 174
quasiperiodic route to chaos, 161, 177
quasiperiodic solution, 14

recurrence, 5, 194, 197, 265
criterion, 245
plot, 245

recurrent point, 195, 245
Reidemeister moves, 253
relative rotation rate, 262

arithmetic, 283
C program, 309
calculation, 281
Mathematica package, 314

repeller, 14, 196
repelling, 68
resonance, 128, 142
response curve, 148
ribbon graph, 259
rotating-wave approximation, 181
rotation matrix, 191
rubber sheet model, 64

saddle, 13, 137, 206
saddle point, 135
saddle-node bifurcation, 80
SAM, 307, 330
Sarkovskii’s theorem, 90
secondary resonance, 145
self-rotation rate, 262
self-similarity, 18
semiconjugate, 99
semideterministic, 11
semiflow, 191
sensitive dependence, 2, 44, 92, 100, 233
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separatrix, 135
sequence space, 96
shadowing, 244
shift equivalent, 227, 280
shift map, 92, 96, 226
sideband, 172
Simple Theorem of Fermat, 118
sine circle map, 188
sink, 13, 66, 137, 206
slowly varying amplitude, 147
Smale horseshoe, 219
Smale, S., 17, 219, 325
Smale-Birkhoff homoclinic theorem, 266
solid torus, 140
solution curve, 190
source, 13, 66, 206
spectral signature, 172
spectrum analyzer, 172
square knot, 251
stability, 204

diagram, 75
in one-dimensional maps, 68
of a periodic point, 68

stable manifold, 209
of a map, 211

stable node, 206
stable space, 208
standard insertion, 274
standard map, 34
state, 11, 190
static, 138
strange

attractor, 14, 41, 152, 163
repeller, 14
set, 152

strange vs. chaotic attractor, 163
stretching and folding, 64
stroboscopic map, 141
subharmonic, 145
suspension, 142, 193
swinging Atwood’s machine, 307, 330
symbol space, 226
symbolic

coordinate, 101
dynamics, 96, 101

future, 101
itinerary, 101, 225

tangent bifurcation, 80
tangent bundle, 232
tangent manifold, 232
tangle, 213
Taylor expansion, 205
template, 241, 270
tent map, 117
time delay, 167
time series, 24, 57
time-T map, 191
topological chaos, 108
topological conjugacy, 99
topological entropy, 107
topological invariant, 254
topology, 12
torus attractor, 158
torus doubling route to chaos, 161
trajectory, 11, 190
transcritical bifurcation, 83
transient

behavior, 196
precursor, 174
solution, 47

transverse vibrations, 124
trapping region, 36, 140
tree, 278
trefoil, 251
triggering circuit, 165

ultraharmonic, 145
ultrasubharmonic, 145
unimodal map, 109
unit interval, 63
universality theory, 87
unknot, 251
unstable manifold, 209

of a map, 211
unstable node, 206
unstable periodic orbit, 79
unstable space, 208

vector field, 11, 189
Verhulst, P. F., 56
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von Neumann, J., 326

wandering point, 196
Whitehead link, 251
winding number, 160

z, 165, 175


