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Chapter 7

Behavioral Modeling from the Perspective
of Nonlinear Dynamics

John Wood and David E. Root
Worldwide Process and Technology Centers,
Agilent Technologies, Inc., Santa Rosa, California

Nicholas B. Tufillaro
Agilent Laboratories,
Agilent Technologies, Inc., Palo Alto, California

7.1 INTRODUCTION

Over the past two decades, advances in nonlinear simulation techniques
have enabled the efficient numerical solution of problems important in the
design of new microwave and RF integrated circuits. Some key advances
have been the development of modern harmonic balance simulators, and
more recently, of transient envelope simulators. Harmonic balance [1]
allows the efficient simulation of large-signal steady-state circuits in the
frequency domain, achieving great efficiency gains over traditional time-
domain simulators like SPICE for steady-state problems with large
numbers of frequency components. Such multisine problems are often
found in the design of microwave circuits. The recent availability of
transient envelope simulators [2, 3] has allowed the efficient simulation of
problems for which the typical spectra can be represented by a set of
several discrete tones and time-dependent modulation around them. This
modulation is a common characteristic of modern communication circuits.
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Even so, modern microwave and wireless communications systems are
nowadays too complex to permit the complete simulation of the nonlinear
behavior at the transistor level of description. The combination of a large
number of nonlinear devices — the transistors in the circuits — and a
complex signal modulation mean that the number of nonlinear equations
that must be solved at each iteration step in the simulation is prohibitively
large. The memory requirements alone discourage all but the most
determined (or desperate), and even then the combination of the multiple
nonlinearities in the whole system will generally preclude the simulation
from reaching convergence. And it may take several hours for the
simulation finally to crash. This problem presents a significant product-
ivity bottleneck for system and subsystem design engineers. A solution to
this design productivity bottleneck is to design at a higher level of
abstraction at each level in the system hierarchy.

A typical system design and modeling hierarchy is depicted in Figure
7.1. At the bottom is the device, and at the top is the complicated module
or subsystem. A “top-down” design methodology propagates
specifications down the hierarchy. Conversely, “bottom-up” verification is
the process of validating overall system performance based on the
performance of lower-level components and their configuration. |

At the bridge between the three-dimensional (3-D) physical device |
simulation and the transistor circuit is the circuit model for the transistor i
device. This model is often devised using simplified physical equations, |
or phenomenological equations that describe the terminal behavior of the |
transistor in terms of physical parameters or observables, such as the
dimensions of the device and the charge carrier (electron) properties such
as mobility. This simplified physical description for the transistor's
electrical behavior enables the simulation of fairly complex circuits within
reasonable time and computer resources that would be impossible using
the 3-D physical model, which is based on partial differential equations
that require involved and time-consuming solution techniques.

Similarly, at the bridge between the transistor circuit and the multichip
module or RFIC is the behavioral model, which is used to describe the
nonlinear circuit blocks or ICs in the system. The behavioral models are
simplified models of the essential nonlinear behavior of the complex
subcircuits; this simplification means that these models will execute more
quickly, and use much less memory than if an entire complex subsystem
was simulated at the transistor level. The critical need for nonlinear
modeling techniques is a recent development driven by the increased size
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A modeling hierarchy, starting at the bottom with a device model described by the detailed semiconductor
physics; this is abstracted to a circuit-level transistor model that describes the terminal behavior through

equivalent-circuit or phenomenological equations. The transistor model is used to design circuits and ICs
efficiently in circuit simulators, but is too complex to use in the system level simulation at the top of the
hierarchy. To bridge circuit and system simulation environments, we use a behavioral model of the circuit.

Figure 7.1
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and complexity of ICs in the RF regime, as well as the adoption of more
complex signal modulation techniques. The availability of such nonlinear
modeling techniques will enable designers to make use of the advances ip
the simulation technology at higher levels of the design hierarchy.

In this chapter we describe a new and systematic methodology for
generating nonlinear behavioral models that is based on observing the
nonlinear dynamics of the device or IC. Our approach to what is a
fundamentally nonlinear discipline has a sound theoretical background in
system identification and computational geometry. These behavioral
models arise from a black-box approach, where we are concerned only
with describing the dynamical behavior of the circuit that is observed at its
accessible terminals. This is in contrast to the traditional white-box
approach, where detailed knowledge of the device physics or circuit
configuration and operation is used to minimize the number of equations
that describe the essential properties of the circuit or device. Indeed, we
advocate this black-box approach even when such details are known, as it
is based on the observable dynamics of the system, which are generally of
much lower order than the number of degrees of freedom as may be
inferred from the physics of the device.

Our approach provides a systematic framework for creating black-box
behavioral models that can be applied in a general wayj; it is not an ad hoc
black-box modeling approach. This methodology also provides a
framework for understanding other modeling approaches such as the
application of dynamic neural networks (DNNs) to the behavioral
modeling of RFICs, as described in Chapter 6.

The pervading themes of our methodology include the notion of
describing the relationships between signals or waveforms, encompassed
by functional analysis; the reconstruction of the observable nonlinear
dynamics of the device from the measured data, and the choice of the
excitations required to enable the observation of these dynamical
behaviors.

We will illustrate our methodology by creating and validating a model of
a real microwave IC amplifier. The modeling procedures that we outline
are very general: the test signal design, analysis, model generation, and
simulator implementations are generic and can be applied to amplifiers,
mixers, modulators, and other microwave components or subsystems. The
resulting models are:
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(1) “transportable” [4] — in other words, usable in a range of system and
simulation environments, and not restricted to a limited domain of
applicability;
(2) “cascadable” [5] — so that the cascade of two (or more) behavioral
models performs faithfully with respect to the performance of the cascade
of the respective transistor-level circuits.

Since cascading nonlinear components can create a wide variety of
environments for the individual behavioral models, ‘“cascade-ability”
implies a certain degree of transportability.

7.2 NONLINEAR DYNAMICS

The origin of dynamical nonlinearities can be seen using a relatively
simple example from semiconductor physics: the field-effect transistor
(FET). The FET device can be described in three dimensions (see Figure
7.1, for example) using fundamental physical concepts including the
quantum theory of matter, electromagnetism, and thermodynamics,
resulting in a set of coupled partial differential equations that govern the
electrical behavior of the device under consideration. By using pheno-
menological approximations such as field-independent mobility, the
gradual-channel approximation, and utilizing the symmetry of the
structure, the constitutive equations that describe the currents and charges
(or capacitances) can be derived [6]:
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From these relations a simple intrinsic model of the FET can be derived,
shown in Figure 7.2, from which the terminal equations reveal the
following dynamical relations:
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Figure 7.2  Simple intrinsic FET model schematic.

The capacitance expressions yield time-dependent currents that depend
on the time rate of change of the applied voltage signals — these describe
the dynamic nature of the terminal behavior. The current is dependent not
only on the applied voltage, but also its time derivative: the current is
dependent on the shape of the voltage waveform,

1) = f(v(t), d:i(tt)j (7.3)

7.2.1 Functional Analysis

Fundamental to our approach is the notion that the behavioral model
relates waveforms to waveforms. That is, the output signal is not an
instantaneous function only of the input signal. Rather, the output depends
upon the shape of the input waveform, or equivalently, the output depends
on the value of the input and past values of the input, and even past values
of the output itself: the concept of memory. We write this in functional
notation according to (7.4). Here we assume the voltage signal is the input

and the current is the output:

I(t)= FIV(t)]  or, as an implicit functional, ~ F[V' (1), I(n]=004
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How we write the details of this functional depends on the nature of the
system or component being modeled. Take, for example, a nonlinear
resistor: the current is given by the instantaneous value of the applied
voltage. The details, or the shape. of the voltage signal are unimportant
there are no dynamics in this system. In this case, the current-voltagej
relationship can be expressed as a simple algebraic function:

I0)=7 (V) (7.5)

If we now place a capacitor in parallel with the resistor, the current flow
depends on both the instantaneous voltage (across the resistor) and also the
time derivative of the voltage (across the capacitor). The detailed shape of
the voltage signal is now important. The current is now expressed as a
functional of the voltage signal, as given by (7.6):

1) =FIV ()]= f(F (0,7 () (7.6)

This is an example of what is termed a static functional: the output
depepds upon the input signal only, which is known as a static
relationship. But the output depends on the shape of the voltage signal, as
expressed through the time derivative of the voltage, and therefore ';his
functional describes the dynamics present in the system: a dynamical
model.

Now consider a series connection of the resistor and capacitor (either or
both of which may be nonlinear components). It can be shown fairly easily
that the current through the RC network depends on the time derivative of
the applied voltage and the time derivative of the current itself:

1@y = f(V(0).10)) (7.7)

T_his is a more complicated class of models, known as a feedback model
Since an output quality is required in the solution of the output itself?
Feedback models depend on an internal state of the system, and also
embody the notion of memory. We can write this as an implicit
relationship — a functional of the current and voltage signals.

FIV(n), I{n]=0 (7.8)
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Again, this is a dynamical model as the functional relationship requires the
output /(#) to be found in terms of time derivatives of the input and outpyt
signals.

7.2.2 Dynamical Effects and Implications

By properly including the dynamical behavior in the model, the
description of non-quasi-static effects can be handled accurately, and the
limitations of quasi-static nonlinear models can be overcome. Examples of
such dynamical behaviors include: electrothermal interactions in semi-
conductor devices, where the temperature of the device affects the RF
gain; trapping effects in semiconductors; and bias circuit effects, where the
impedance that is presented to the device varies with frequency. This latter
effect may also include other frequency-dependent impedance variations,
such as different termination impedances at various harmonics of the RF
fundamental, for improving power amplifier efficiency, for example. The
above effects relate the device behaviors at very different frequencies, or
time-scales, and require sophisticated modeling techniques to describe
fully. Simple quasi-static models cannot describe these phenomena.

The impact of such dynamical effects can be illustrated using an
example of a resistor with a temperature-dependent resistance; the I-V

relation is simply:

I(t) =V (t)/ R(T) (19)

and clearly, the resistor is electrically constant at a fixed temperature, T,
yielding a linear I-V relationship.
The thermal constitutive relation for the resistance is given by

R(T)=Ry+A-(T~Ty) (7.10)

indicating that the resistance increases linearly with increasing
temperature.

The dynamical equation that relates the temperature of the resistance 10
the input (dissipated) power, the electrothermal coupling equation, 1§
written as the following nonlinear differential equation:
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tT()+(T()-Ty) =Ry, (1Y () (7.11)

where Ry, is the thermal resistance, and the V.7 product is the instantaneous
power dissipated in the resistor. The time constant zis a characteristic time
of the resistor, describing how quickly the resistor can react to changes in
the input power. While these equations yield a nonlinear ODE for 7{r), this
can be solved exactly for simple cases, providing insight into the
dynamical behavior. For example, solutions of (7.11) for a single-tone
input voltage yield the following results:

(1) For input signal frequency f > 1/z , the output (¢) is linear in W(¢),
because the resistor temperature cannot change at the signal frequency.
(2) For input signal frequency /' < 1/7 , the output /(?) is a square wave,

that is, nonlinear with ¥(¢). The voltage is changing so slowly that the
resistor temperature, and hence resistance, can track the voltage waveform
exactly.

These waveforms are illustrated in Figure 7.3. This simple example
illustrates that the nonlinear system can look linear under certain
excitations, and so the excitation signals must be rich enough to stimulate
the relevant dynamics that will be encountered in conditions of actual use,
and enable accurate determination of the system dynamics. In this
example, a single-tone high-frequency signal is unable to provide
information about the slow thermal dynamics. While this may seem
reasonable for a system that will only be used at high frequencies, if the
system is excited with a two-tone signal with a tone separation of the order
1/t , then the intermodulation product £, — f; will heat up the resistor and

cause the resistance to change, thereby affecting the signals at the high
frequencies. This coupling of the slow and fast dynamics can only be
realized with a full nonlinear dynamical model.

A further example of the importance of including fully the dynamical
behavior can be found in nonlinear modeling of FETs. In particular, it is
noted that the small-signal RF transconductance g, and output
conductance g, are not equal to the derivatives of the DC I-V relations for
the device. Both g, and g, exhibit dispersion with frequency, and so the
Quasi-static model is incorrect. The implication of this is that the
intermodulation and distortion products are not simply related to the
higher-order derivatives of the static constitutive relations, but depend
upon the time- (frequency-) dependent dynamics as well.
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Figure 7.3 Current waveforms through the temperature-dependent resistf)r,
for a single-tone sinusoidal drive voltage. (a) If the drive
frequency is much greater than (1/7), the current follows the
voltage and the resistor appears linear. (b) If the drive frequency
is much smaller than (1/), the resistor temperature and hence
resistance can track the voltage, and the current is a square wave
— nonlinear at this time- or frequency-scale. T is the thermal time
constant of the resistance.
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7.3 BEHAVIORAL MODELING METHODOLOGY

The motivation for our approach to nonlinear systems identification goes
under the rubric of nonlinear time series analysis (NLTSA) [7]. The
suggestion to use this approach for describing input-output systems is due
to Casdagli [8]. The key idea is to embed the measured or simulated
stimulus and response variables in a higher dimensional space built not
only from the measured data but also transforms of the measured data, in
our case, their time derivatives that describe the local history of the signal.
Due to a theorem of Takens, extended to the driven case by Stark [9], these
embedded models can be faithful to the dynamics of the original system.
In particular, deterministic prediction is possible from an embedded model
that will mimic the dynamics of the actual system.

The models are formulated as implicit nonlinear ordinary time-
differential equations, which are easily implemented in commercial
microwave simulators, in the embedded variables:

S (#0101 (0), s (D), 90, 5(2),...) = 0 (7.12)

The goal of the modeling process is thus to determine the significant
embedding variables of the function, f, and then to find an efficient basis
for the function approximation.

7.3.1 State Space Analysis

We can write the dynamical description of a nonlinear system in terms of a
set of nonlinear ordinary differential equations.

0= F(30),51)

. e (7.13)
i(t) = h(X(1),%(1))
Each x in the vector ¥(7)is a state variable of the system, and the

Number of state variables describes the order of the system. The observable
Output variable i(#) is a function of the states of the system, and the
external drive signal v(f). This drive is also generally observable. The
internal states ¥(f) are not observable. If the state equations are known a

Priori, the value of the output i(f) can be determined for every time ¢. This
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solution describes a time-parameterized path or trajectory in the multi-
dimensional space of the state variables known as the “phase space.” The
observable output is a projection of this trajectory onto a single axis, the i-
axis, and this describes the time-evolution of the output value i(¢): plotted
as a function of time, this is a time series.

An example is the Lorenz system of equations, see (7.14) which are state
equations in (x, y, z). The Lorenz equations were derived in 1963 as a very
simplified model of convection rolls in the upper atmosphere:

)'c=0'(y—x)
y=rx—y-—xz (7.14)
z=xy—bz

Figure 7.4 The Lorenz chaotic attractor in 3-D phase space.

The solution of this system of equations, for certain values of the
parameters (o, r, b), is a set of trajectories that never approach a stable
limit cycle, yet never diverge to infinity: the trajectories describe a chaotic
attractor, shown in Figure 7.4. Whereas the Lorenz attractor when
observed in three dimensions clearly has a well-defined structure, the time-
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series produced by a projection onto (say) the y-axis, shown in Figure 7.5,
looks completely random, and yet is completely deterministic, being
defined by the Lorenz equations.

Behavioral modeling is the reverse problem to this. In our black box
modeling method we start with time series data, from measurement or
from simulation, and seek to develop a trajectory from this data in a
suitable model phase space. We then obtain the state equations to describe
this model system and implement these ODE:s in the simulator. That is, we
attempt to reconstruct the phase subspace (the set of reduced state
variables) and a suitable flow operator (a set of differential equations on
this subspace) directly from a collection of measured or simulated data.
We use the data itself to infer a model.

o
i

1@ Al
’I

Figure 7.5 The projection of the Lorenz trajectory shown in Figure 7.4 onto
the y-axis, yielding the time series.

7.3.2 Embedding

Embedding is both a simple procedure and a profound insight into the
behavior of the system [10].

Given a time series of some observable i(f), a trajectory in a model phase
space can be constructed using a process known as embedding. A common
embedding procedure is to use delayed values of the observable output.
This set of quantities constitutes an embedding. The actual system
trajectory (of i(f)) and the trajectory we create from this time-delay
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embedding will differ by no more than a smooth and differential change of
coordinates — the transformation relating the actual and model trajectorieg
is a diffeomorphism. In other words, the trajectory in the model space
preserves the dynamics of the original system. What we have done is uge
an observable output to retrieve explicitly the unseen internal degrees of
freedom of the system — its internal state variables or their analogs. We
can do this provided we take enough delays (or time derivatives, in the
method described here) [7, 9].

We make use of a geometrical relationship to determine how many
delays are needed. The Whitney embedding theorem states that an
N-dimensional manifold can always be embedded in a Euclidean space of
not more than 2N+1 dimensions. For an example, consider a sheet of paper
— a two-dimensional object. We can fold and attach the ends of the paper
and get a Mobius strip, which requires three dimensions to describe it. If
we then join the other ends we get a Klein bottle, which requires four
dimensions to describe it. But locally, on the piece of paper, the geometry
is still 2-dimensional — in the plane of the paper.

The “N-dimensional manifold” that we consider in behavioral modeling
is the actual or observable system state space. The embedding theorem
provides an upper bound on the number of dimensions that we will need in
our model state space. The utility of this approach is that in practical cases
there is an orders-of-magnitude reduction in the number of variables
(dimensions) required to describe the observed behavior of the system.

How many variables will we need in the embedding? The algorithm that
we use for choosing which of the dynamical variables are used for the
embedding is based on the technique of false nearest neighbors [11], which
can be computed using algorithms from computational geometry. We use a
method described by Rhodes and Morari [12] for input-output systems.
The algorithm uses the data itself to determine the optimal set of
embedding variables, resulting in a compact and efficient model of vastly
lower complexity than the original nonlinear system. The principle of this
algorithm is illustrated in the following.

Consider the simple system comprising an observable output i(¢) and a
single drive signal w(f), which yields the response shown in Figure 7.6.
Clearly the output is not a single-valued or unique function of the drive
signal. For instance, the two points A and B on this curve share the samé
input value, but yield different outputs. So, if we sample the output i(f) in
terms of the drive signal v(), then both samples A and B fall into the sam¢
“bin” from v to v+Av: the points A and B are known as false nearest
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i)

v(t)

Figure 7.6 An example i(f)-v(¢) relationship: the current is not unique-
valued function of the drive voltage. (From: [13]. © 2004 IEEE.
Reprinted with permission.)
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Figure 7.7 The same example function now unfolded in a higher dimensional
space, of the embedding { v(¢), v(¢) }; the current is now a single-
valued functional of the embedding. (From: [13]. © 2004 IEEE.
Reprinted with permission.)
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neighbors because they are close in the input space, but are from
temporally disparate locations on the response curve. The point C, which
is close to point A on the response curve — a true nearest neighbor — alsg
falls into the same bin. The number of samples in each bin will therefore
be large.

We can expand the number of embedding dimensions in this example by
noticing that the direction of travel around the response curve means that
the first time derivative of v(¢) will be different at points A and B. We now
plot the response i(f) as a function of the drive v(f) and the time derivative
of the drive, and in this simple example the response curve has unfolded
into a single-valued path or trajectory, Figure 7.7. Sampling i(¢) in the new
embedding space {v(f), v(¢)}, we see that the points A and B fall into

separate bins, and the true nearest neighbor point C and point A still fall
into the same bin. The number of counts in each bin has fallen.

This is the basic principle of the false nearest neighbors approach. We
sample the observable output variable in the embedding space, initially
assuming that most of the counts will be false nearest neighbors. As we
add embedding variables the state space is unfolded into higher and higher
numbers of dimensions. At some point the output response curve will
unfold into a single-valued trajectory, and the only points in each bin will
be true nearest neighbors. If the data is sampled appropriately, this will be
a small number. We monitor the density of false nearest neighbors as a
function of the number of dimensions, and when this falls to a small value,
this is the embedding dimension. This approach leads to fewer ad hoc
assumptions, such as model order, compared with other recently published
time-domain techniques [13, 14].

The immediate differences between this approach and our application
are that we are considering a driven system, which operates over a wide
bandwidth. Clearly, a constant time-delay embedding is inadequate to
cover the wide timescales (bandwidth) of the excitation signal used here
for the amplifier. Instead of delays, we use time derivatives of the inputs
and outputs for embedding the data, yielding an expression of the general
form:

i(t) = f(v(t),fz(t),...,v('")(t),...,z:(t),i"(t),...,i(")(t)) (7.15)

Equation (7.15) is a feedback model of the type represented by (7.12)-
These behavioral models can therefore handle systems with memory-
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Equation (7.15) essentially defines an implicit, nonlinear differential
equation for the behavioral model. The function f is defined by suitable
multivariate approximation methods.

7.3.3 Nonlinear Function Fitting

We now have a single-valued function relating the observable output and
the embedding variables. The relationship between these variables is a
nonlinear one, so we seek a multivariate nonlinear function fitting method.
Multivariate polynomials [15], radial basis functions (RBFs) [16], and
artificial neural networks (ANNs) have been used [13, 14, 17]. ANNs are
preferred, due to their asymptotic properties (i.e., they don’t diverge like
polynomials do) and because they give very smooth results for
approximating discrete measured and simulated data. ANNs and their
application to nonlinear behavioral modeling are described in detail in
Chapter 6. Here we outline the procedures that we followed in our
modeling example.

We use the basic structure shown in Figure 7.8. The inputs are
connected to the nonlinear processing units through a set of linear weights.
The nonlinear units sum all their inputs, and produce an output when this
sum is above a certain threshold, which can be adjusted by the bias. The
transfer function for the processing units is a “sigmoid” function —
hyperbolic tangent. The nonlinear behavior is captured in these functions.
The outputs from all the processing units are summed through weights at
the output.

A fundamental mathematical attraction for using ANNSs is found in the
universal approximation theorem [18] which states that, given enough
neurons in the hidden layer, a neural network of the form shown can
approximate any continuous, bounded function to any accuracy that we
care to specify.

Another feature of ANNs is generalization — the ability of a suitably
trained network to predict correctly a response to a (set of) inputs that it
has not seen before. In some cases the network can be trained to fit the
target data extremely well, but performs poorly on other data of a similar
class — the network has “memorized” the target data and generalizes
poorly. This is a symptom of overtraining.
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Figure 7.8 Artificial neural network structure with a single hidden layer.

Key to the design of the ANN for function approximation is the number
of neurons in the hidden layer. Since the numbers of inputs and outputs are
fixed — the former by the embedding procedure — the number of hidden
layer neurons determines the number of weights that must be optimized
during the training process to obtain the best function approximation. The
values of the weights are obtained through backpropagation, a procedure
where the network neuron outputs are used to update the neuron input
weight values through a minimization algorithm [19]: the Levenberg-
Marquardt nonlinear optimization algorithm is used. This minimization
proceeds from the output of the network — comparing this with the target
training value — to the input, hence the terminology. The mean square
error — the difference between the ANN output and the target value — 15
often used as a measure of the quality of the function approximation.
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Techniques for improving the generalization of the ANN include
regularization [19], and early stopping [19, 20]. Regularization uses other
measures in the error term that is to be minimized, such as the sum of the
squares of the weight values, to reduce the potential for over-training of
the network. Early stopping techniques use an additional set of data, a
validation set, against which the ANN output is compared. If the error on
the validation set begins to rise, even though the error on the training data
set continues to fall, then this is an indication of a loss of generalization,
and is an indicator to stop training the network. Cross-validation
techniques [19, 20] use multiple data sets for training and validation, to
improve generalization using early stopping criteria. Bayesian techniques
have been employed for weight selection to improve regularization [21],
and these can be used to indicate the optimum network size. Early
stopping and Bayesian regularization methods work well on large ANNs,
though this does not lead to parsimonious models, and may lead to poor
convergence in a simulator environment.

7.4 NLTSA BEHAVIORAL MODELING PROCEDURE

The modeling procedure is outlined in flow diagram of Figure 7.9. This
illustrates the general flow of activities that we need to perform to extract a
behavioral model, from either measured or simulated data [13, 17], and
falls broadly into three activities:

e The generation of data by simulation or measurement, which
requires the design of suitable excitation signals;

e The system identification and function fitting to generate the
behavioral model;

e The implementation and validation of the model in the target
simulator.

7.4.1 Excitation Design

While the modeling methodology so far described is seductive in its
promise to retrieve explicitly the internal dynamics of a system from an
observable output, it is necessary to apply a rich enough set of signals to
the system so that these dynamics are excited, and are there to be retrieved.
The goal here is to choose (a set of) input signals such that all the
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Figure 7.9 NLTSA black-box modeling procedure. The shaded region
identifies those functions that have been created using MATLAB.
A suitable interface between MATLAB and the Agilent-EEsof
ADS simulator has been devised to generate the SDD instance,
enabling the nonlinear model to be described in the simulator.
(From: [13]. © 2004 IEEE. Reprinted with permission.)

observable nonlinear behavior of the device in a typical application is
exercised. It is not necessary to design a signal that will excite all possible
internal states in the device: indeed, some of these states will not be
observable under the conditions of use, and in general we do not know
what the internal state space of the device is. Only the observable
nonlinearities are of interest in the modeling process.

A further objective relates to generalization: the excitation must include
enough conditions to cover the typical operating range, as well as state Of
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phase space of the device or IC. We can then expect to be able to predict
the behavior in this space, even if we have not measured directly under
those signal conditions. The operating range of the DUT is generally
specified in a datasheet. Typically we will try and cover the power and
frequency span of the DUT.

We have used several classes of excitation signals for the extraction of
the behavioral models. These excitations include a single-tone power and
frequency sweep, which is the simplest excitation. We have augmented
this by applying an additional signal at the output — this is similar to a
hot-S», measurement — in an attempt to excite the large signal dynamics
at the output port. This can also be thought of as a synthetic load-pull
experiment, so the amplifier sees a range of load conditions, and the
resulting model is more likely to be transportable. We have used this
excitation successfully for modeling transistors and simple amplifiers [15,
22].

We have also added a further tone at the input. This can, in principle,
excite low frequency dynamics and permit study of long-term memory
effects. We have used this “two-source-two-tone” excitation as a means of
covering the state space of the amplifier more efficiently than with a
single-tone excitation. These signals generate multiple internal states due
to the nonlinear behavior of the transistors in the IC, and hence a
significant number of observable states from which the model can be
created.

Other excitation signals can be used, including multitone inputs and
modulated signals using simple FM or complex CDMA modulation [15].

The model data can be generated either by simulation of the transistor-
level circuit of the amplifier, or by direct measurement of the time-domain
waveforms using a large-signal vector network analyzer (LSNA) [15, 23].
As stated earlier, the attraction of measurement-based modeling is that a
low-order model of a complex component can be derived using this
methodology, without knowledge of the internal circuitry or topology of
the component.

A general theory of excitation design and optimal excitation design in
this framework is still an open question. To date, we often apply an
interactive procedure where we first identify an embedded phase space for
model order reduction and then examine the coverage (by examining the
density of the excitation signals) on this phase space. We can then modify
our excitations signals in an attempt to provide a relatively uniform
coverage of the phase space.
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7.4.2 Behavioral Modeling Toolbox: System Identification and
Function Fitting

The measured or simulated stimulus and response data is imported into 3
prototype  MATLAB-based behavioral modeling toolbox, where we
perform the modeling procedures.

We typically use the DUT terminal voltages and currents and their time
derivatives up to second order or more as the candidate variables from
which to build the models. Typically, reported methods for building an
embedded phase space from a nonlinear time-series usually assume that
there is a single input and single output, that the system can be described
by a single characteristic timescale, and that new variables are created by
delays [7]. Identifying which variables to use in the model is not a
problem; a unique set of model variables is created from the delayed
embeddings. Our problem differs in that we have multiple signals, and we
have chosen to use time derivatives as candidate embedding variables, to
enable us to describe the wide frequency range covered by the DUT. From
this candidate set of model variables we need to select a subset from which
to build a deterministic model. We start by using the false nearest
neighbors method outlined earlier to identify a suitable set of embedding
variables from these candidates. A nearest neighbors search algorithm
from the 7SToolbox [24] is used. Time-correlated samples from the time
series are excluded from the search for a given sample: only data points
that are beyond a time interval that is found from the autocorrelation or
mutual information of the signal are used in the search. All possible
combinations of the voltages, currents, and their time derivatives are
submitted to the search, and the false nearest neighbors returned as a
percentage for each. For all candidate sets with a low percentage score, we
fit a cubic polynomial to the nonlinear function and estimate the residual
error. The most promising candidate set(s) is chosen, using compactness of
the candidate set and minimum residual error as guides in this choice. This
is an informal application of a minimum description length criterion [25].

Once the embedding has been identified, the nonlinear function
approximation is carried out. As indicated earlier, we have tried
polynomials, and radial basis function approximations, but typically use
feedforward artificial neural networks. We use the MATLAB Neural
Network Toolbox [26]. The embedding variables — voltages, currents aqd
their time-derivatives — are inputs to the network. The network training 15
carried out using backpropagation and Levenberg-Marquardt optimization:
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the training is stopped manually once the training error reaches a minimum
and begins to plateau. While this often gives good results, the ANN may
be less than optimal [27], finding a local rather than global minimum of
the function approximation. More sophisticated training methods including
regularization [19] and cross-validation [20] are under investigation.

7.4.3 Implementation of the Model in ADS

The mathematical model in MATLAB is then exported as a text file to the
nonlinear circuit simulator, Agilent-EEsof Advanced Design System
(ADS). A proprietary piece of software code is used to convert this file
into an instance of the symbolically-defined device (SDD), as illustrated in
Figure 7.10. The SDD also performs the scaling and calculates the time
derivatives of the variables at each time step in the simulation. Validation
of the model against measurement or simulation of the transistor-level
circuit is then carried out in ADS. Accuracy and speed of simulation are
figures of merit for the behavioral model: the goal of a much shorter
simulation time indicating that a reduced-order model compared with the
full transistor-level circuit has been created.

7.5 BEHAVIORAL MODEL OF A MICROWAVE
AMPLIFIER IC

The device under test (DUT) is a wideband microwave IC amplifier:
Agilent Technologies, Inc HMMC-5200. This is a dc-20 GHz, 10 dB gain
amplifier with internal feedback, which is designed to be used as a
cascadable gain block in a variety of microwave circuit applications. It
consists of eight heterojunction bipolar transistors (HBTs) configured as a
compound modified Darlington feedback pair operating in Class A. The IC
also contains biasing and feedback resistors, on-chip bypass capacitors,
and so forth. The IC has many nodes and connections, and hence has many
internal degrees of freedom. One of the key assumptions of this
methodology is that only few of these internal states are important features
of the observable signal. The resulting model should therefore be quite
compact.
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Figure 7.10 The implementation of the NLTSA behavioral model in Agilent-
EEsof ADS using a symbolically-defined device (SDD). The
time-derivative embedding variables are calculated “on the fly”
by the SDD. The model equations for the currents are expressed
as neural network expressions, at ports 1 and 2.

The power bandwidth specification of the microwave amplifier was used
to determine the range of powers and frequencies for the set of excitation
signals that were used to produce the data for the behavioral model
generation. The excitation signal applied to this DUT was two offset tones
at the amplifier input, and a further tone at the output port, swept over the
frequency range from 1.2 to 10.2 GHz, and from small-signal to the P-1dB
compression point: 0 dBm for each tone. The signal applied at the output
port was identical in power to the input tone, and therefore about 10 dB
below the output generated by the IC. The tone separation used was 600
MHz, as employed in the LSNA instrument. We performed a harmonic
balance simulation using ADS; nine harmonics for each individual tone,
and mixing (intermodulation) tones up to nine orders were considered. The
amplifier requires a dc bias to be applied through the RF output port, via a
load resistor and choke (dc feed component), and also requires dc blocks
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on the input and output ports. The voltages and currents, including dc
contributions, were monitored at the amplifier’s RF input and output ports.
The harmonic balance voltage and current data were converted into time
series signals using the fast Fourier transform function in ADS.

A model was created using the current (output signals) and voltage
(drive signals) at both ports, and all time derivatives of up to second-order
as embeddings for the port 1 and port 2 currents. While these gave small
residuals in the polynomial fit, they are not necessarily the most compact
embeddings: more work is being performed on the system identification
aspect. Artificial neural network models, with a single hidden layer of 40
neurons, were used for the function fitting of the input and output currents
for these embeddings.

The verification procedure in ADS included:

e Single-tone power sweep harmonic balance simulation, over 1-11
GHz frequency range and to at least P—1 dB; in addition to the
power magnitude and phase responses, observe harmonic distortion
performance;

e Two-tone power sweep simulation, over the same power and
frequency range as for the single-tone test, with a tone spacing of
100 MHz;

e Small-signal (S-parameter) frequency response;

e Transient simulation.

In addition to the above microwave performance of the behavioral model
itself, we verified its performance as a cascade of amplifiers, thereby
demonstrating the suitability of this approach for creating behavioral
models for use in large system simulations.

Different power levels and frequencies to those used in the data/model
generation were used for validation. In addition, we investigated the
limiting cases of linear or small-signal behavior, using S-parameter
simulation, and dc behavior. Again, it is important to note that neither
small-signal nor dc data were used in the model generation procedure:
only large-signal RF data were used.

In Figure 7.11, the single-tone gain compression characteristic
.reproduced almost exactly by the behavioral model. The frequency range
Is 1 to 11 GHz, the operating bandwidth of the amplifier. In Figure 7.12
phase is reproduced faithfully also.

In Figure 7.13 we show the response up to the seventh harmonic for a
single-tone input at 3 dBm, which is the P-1 dB compression point. There
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are some deviations but this quality of prediction is not obtained from
simple models or heavily-truncated (i.e., practical) Volterra-based models,
The even harmonics are reproduced well here; this is not the case with
simple power out-power in models which can only predict odd-order
harmonics. Second order correctness is important, especially for long-term
or slow memory effects, dc offsets, and so forth. Note also that the dc leve]
is reproduced exactly by the behavioral model, even though no dc
measurements were used in the model construction.

The model and circuit S-parameters are also in excellent agreement over
the frequency range 1 to 10 GHz, as shown in Figure 7.14, indicating that
the fully nonlinear model reduces to the correct linear behavior under
small-signal conditions.

The two-tone performance of the behavioral model is also very accurate.
This is shown in Figure 7.15, for fundamental input signals of 2.0 and 2.1
GHz, at 0 dBm each tone, corresponding to about 1 dB of compression.

The time-domain output voltage waveforms for the two-tone input are
shown in Figure 7.16. The RF signal is modeled accurately, and the
envelope signal at 100 MHz is also reproduced well. Again this is an
excellent performance as no low-frequency IF signals were used in the
creation of the behavioral model.

In the above verification, the behavioral model SDD and the full
transistor-level circuit model were simulated in ADS. The simulation times
for the circuit model and the SDD model were found to be approximately
comparable: the SDD model executed in about 25% less CPU time on a
PC than the full circuit model. It is expected that a compiled model with a
neural network evaluation function would be significantly faster than the
SDD implementation. Further, a more compact set of embedding variables
could be chosen, and more compact neural network structures can be
achieved by using more sophisticated training and pruning algorithms.
Both strategies will also improve simulation speed.

The NLTSA behavioral model also operates successfully in transient
simulation (Figure 7.17), as well as harmonic balance. The input signal
level here is very high — above the P-1 dB test level. The model is
predicting hard limiting behavior correctly. This is often difficult for
dynamical models to predict well, especially Volterra models.
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Figure 7.11 Single-tone power sweep comparing the gain compression
characteristic of the NLTSA behavioral model in gray and the
transistor-level circuit model in black. (From: [13]. © 2004
IEEE. Reprinted with permission.)
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training signals. (From: [13]. © 2004 IEEE. Reprinted with
permission.)
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While the accurate agreement between the behavioral model results and
those from the transistor-level circuit are an essential first step in
validating the behavioral model, the usefulness of this model is pertinent in
the simulation of a module or system containing several components. To
demonstrate that the behavioral model of the amplifier can be used in a
system-level simulation, we place two models in cascade, and compare the
results with two transistor-level circuit models in cascade. The simulation
results for the gain compression characteristic are shown in Figure 7.18(a).
Excellent agreement between behavioral model and transistor-level circuit
is observed, and similar results are found for the harmonic performance of
the cascade, as shown in Figure 7.18(b).

7.6 CONCLUSIONS

We have presented a new, general, and systematic time-domain
methodology for generating nonlinear behavioral models, based on well-
established techniques from nonlinear dynamics, system identification, and
computational geometry. The modeling technique we have described is
general, systematic, and scalable. The order of the model is contained in
the embedding dimension and the ANN structure, and is vastly smaller
than the number of internal degrees of freedom of the DUT.

A prototype behavioral modeling toolbox has been developed in
MATLAB, that reads measured or simulated time-domain data and
generates a model file that can be imported into the Agilent-EEsof ADS
nonlinear microwave circuit simulator. With this toolbox we have
generated a behavioral model from simulated data using a transistor-level
circuit model of a wideband microwave IC amplifier. The behavioral
model faithfully reproduces the circuit model electrical behavior in a wide
range of validation exercises, including single-tone and two-tone power-
frequency sweeps over the operating space of the amplifier, DC
conditions, and S-parameter simulation. The cascading of two microwave
amplifiers is also modeled accurately, indicating that these behavioral
models can be used in system-level simulations of modules containing
several amplifiers.
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