angular velocities Q and () + §Q (assuming 5Q2<Q) is
2

_ Q3R "*/or) 50

(1—-0Q%R?
where R = — g,, /8., We see that the acceleration is the
same for all the observers (with 25¢ + 1/R) on a given
orbit if and only if dR /dr = 0 on this orbit. Note, that on a
free photon orbit we have u'u; = 0 and a; = 0. Therefore
Q = + 1/R and dR /Jr = Othere. Thus, we have formally
proved that observers (e.g., spacecraft) moving on a circu-
lar phonon orbit with different angular velocities have ex-
actly the same acceleration. It is not equal to the accelera-
tion of the photons (which is zero) because of the
assumption 2 # + 1/R one must make to derive formulas
(3) and (4).

In the special case of the nonrotating black hole with the
mass M:

8. =[1—(2GM /c’r)]c?, g,4 =P sin* @ (A5)

and the condition dR /3r = Oreduces to the formula for the
radius of the photon orbit quoted in the paper:

r.=3GM /c*.
The acceleration formula (3) gives
a, =c*/6GM ,

which is independent of the angular velocity.

One could have the impression that these results are not
covariant, that they are an artifact of the special coordinate
system used. This is not the case. It is easy to express all the
formulas presented here in terms of two Killing vector
fields, #° and £, which exist in the space-time with the
metric (A1) because of time and axial symmetries. These

(A4)

r b
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two Killing vectors in the special coordinates connected
with (A1) have the form:

=80, §'=80),
with & (k) being the Kronecker delta.

The formulas for angular momentum and angular veloc-
ity read:

1= (&'u;) 0= — 1(7177.)
(n*u,) (£°€x)

and the acceleration formulas take the form:
1 Vi("lk"lk) + \szi & kfk)

a,=u"V,u, = — , T
2 (7n,) + Q*(5%;)
QV.R* )
ba, = ——————, R’=—(E€)/ (9" .
a, T (€°6:)/ (™)
On the photon orbit one has V;R = 0 and the acceleration
a _1 VA&
2 (&%)

does not depend on the angular velocity. This proves our
point.
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An undergraduate experiment is described that illustrates the period doubling route to chaos in a
simple dissipative mechanical system, a bouncing ball subject to repeated impacts with a vibrating

table.

L. INTRODUCTION

The period doubling route to chaos has now been ob-
served in an lmpresswe number of expenmental systems.
Electrical,'® optical,” hydrodynamic,® chemical,® and bio-
logical systems can all exhibit period doubling instabilities.
A few recent articles in this Journal deal with the chaotic
dynamics of nonlinear systems.'"!? but recent discoveries
in nonlinear dynamics are still not well known at the under-
graduate level.

We have developed an undergraduate experiment that
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illustrates many of the ideas and methods used in describ-
ing nonlinear dissipative dynamical systems. The experi-
ment consists of two parts. In the first part the students
explore the “quadratic map”'® on a microcomputer. Many
aspects of the quadratic map are common to a large class of
systems showing chaotic behavior. By studying the qua-
dratic map, the students are introduced to the basic notions
of deterministic randomness (i.e., chaos), subharmonic bi-
furcations, strange attractors, and the like.

These ideas are immediately applied to a simple mechan-
ical system in the second part of the lab. The students ex-
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¢ ball Table height
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Fig. 1. Bouncing ball. A ball is free to bounce on a table which moves
sinusoidally up and down.

perimentally study the dynamics of a ball that is free to
bounce on a table which moves sinusoidally up and down
(Fig. 1). The dynamics of a bouncing ball subject to repeat-
ed impacts with a sinusoidally vibrating table appears to
have been studied first by Holmes'* who showed the exis-
tence of periodic and chaotic motions (i.e., strange attrac-
tors) for suitable parameter values and initial conditions.
The bouncing ball apparatus described here is simple, inex-
pensive, and exhibits period doubling. The students obtain
an estimate of the Feigenbaum delta'® from both the qua-
dratic map and the bouncing ball experiment. The Feigen-
baum delta measured from the latter consistently falls
between four and five.

II. QUADRATIC MAP

Nonlinear dynamical systems are studied in two comple-
mentary ways by mathematicians and physicists. The
mathematical goal of dynamical systems theory is to un-
derstand the asymptotic behavior of a dynamical process.
The set of asymptotic solutions is called an “attractor.”
Attracting sets come in many varieties: fixed points, limit
cycles, and strange attractors, to name a few. In physics, a
dynamical process is oftened modeled by a differential or a
difference equation, so the task before the mathematician is
to find where all the orbits go after a long time. Physicists
ask a more subtle (and ambiguous) question. One of the
physicist’s goals in nonlinear dynamics is to identify what
such systems have in common, irrespective of differences in
the underlying physics. A physicist seeks to discover those
properties that are experimentally measureable and com-
monly realized in physical phenomena. This is the quest for
universality. A familiar result is that a period doubling cas-
cade can culminate in chaos. Moreover, this doubling cas-
cade possesses certain universal, and experimentally real-
izable, scaling properties. These scaling laws were first
noticed by studying the “quadratic map.” For an eminent-
ly readable introduction to this, and related topics, see R.
D. Hofstadter’s “Metamagical Themas” in the November
1981 issue of Scientific American (Ref. 19).

The difference equation,

xn+l=’1xn(1_xn) (1)

is called the “quadratic map.” It is the simplest nonlinear
one dimensional map imaginable. Unlike the analogous
differential equation,

9 ax(1—x), )
dt

whose solution is simply
x(t) =xe*/[1 — xo(1 —e*)], (3)
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0

Fig. 2. The quadratic map. The first few iterates of x, are shown.

the solutions of the quadratic map can be astonishingly
complex. In fact, some aspects of the asymptotic orbits are
still not fully understood.

We can think of the quadratic map as a very idealized
model of some dynamical process. It has, in fact, been used
to model the temporal evolution of insect populations.'*'
The parameter A in this case may be a measure of the abun-
dance and availability of food supplies which affects how
large the next generation x,, , ; will be given that the pres-
ent population is x,. In the bouncing ball experiment, A
might be the amplitude of the platform’s oscillations, in
hydrodyamic experiments, it might be the Reynolds num-
ber.

Much is learned about the quadratic map by examining
the behavior of x,, starting from some arbitrary x,. (In the
following, we only examine the case where 4 > 1.) A par-
ticularly simple graphical method for iterating Eq. (1) is
illustrated in Fig. 2 (see Ref. 19) in which

fi(x)=Ax(1 —-x) (4)

is plotted against x. Starting from some x,, the value of x is
obtained by drawing a line segment parallel to the f; (x)
axis from x, and extending it until it intersects the graph at
A. The length of this line segment gives the value of x,. The
value of x, = f; (x,) is obtained by drawing a line segment
parallel to the x axis from A4 until it intersects the diagonal,
fi (x) = x, at B and then drawing the line BC. The height
of C above the x axis gives x,. All other future iterates,
X3y.0sX g5 may be similarly obtained.

The first thing to notice is that £, (0) =0. Thus if
x, = 0, all future iterates remain at 0 and x = O is a trivial
fixed point of the map. Next, if x, <0 or x,> 1, then the
future iterates of x, run away to negative infinity. There-
fore, the interesting dynamics of the quadratic map are
confined to the unit interval, {0,1]. Lastly, a nontrivial
fixed point exists whenever f;(x)=2x, ie., whenever
fi (x) intersects the 45° line. Note that when A < 2, nosuch
intersections occur and all initial conditions on the unit
interval converge toward x = 0 (x = 0 in this case is a sta-
ble fixed point) while for A > 2, initial conditions near
x = 0 diverge from it (x =0 becomes an unstable fixed
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10 XMAX = 250: YMAX = 179

20 INPUT "Enter lower lambda: "; llower

30 INPUT "Enter upper lambda: "; lupper

40  INPUT "Enter step size for lambda: "; lstep
50 HGR: HCOLOR = 3

60 FOR 1 = llower TO lupper STEP lstep

70 xplot = XMAX*(1 ~ llower)/(lupper - llower)
80 x = 0.5

90 FOR 1 = 1 TO 200

100 x = 1*x(1-x)

110 NEXT 1

120 FOR i = 1 TO 200

130 X = 1#x*(1l-x)

140 yplot = YMAX*(1l-x)
150 HPLOT(xplot, yplot)
160 NEXT i

170 NEXT 1

180 END

Fig. 3. Bifurcation diagram program. The user inputs a minimum and
maximum as well as a step size for lambda.

point) and all initial conditions seem to be attracted to
other points.

After similar introductory remarks, the students are en-
couraged to explore the dynamics of the quadratic map on
their own using a microcomputer. For instance, for various
values of x, between zero and one, and 4 between one and
four, the students can watch the future iterates of Eq. (1)
bounce around on the unit interval. They soon discover
that if 4 is between one and three then there exists only one
attracting (stable) fixed point inside the unit interval and
one repelling (unstable) fixed point at zero. That is, no
matter what x, they pick, future iterates always go to where
Ji (x) = x. However, a more exciting result is obtained if
A =13.9, say.

]
‘
'
'
1
t
'
'
t
]
i
|

Ay AyAg A,

Fig. 4. Bifurcation diagram for quadratic map. The first pitch fork begins
at ;. The second pitch fork (period 47) starts at A,.
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Now that their curiosity is aroused, the students are
guided to investigate systematically the dynamics of the
quadratic map by constructing a “bifurcation diagram.”
This is a plot of x,, (for large values of n) versus A. The
program listed in Fig. 3 will run on any Apple II computer.
(If hardcopy graphical output is desired, some graphical
screen dump capability is required.) The graphical output
is shown in Fig.4. The horizontal axis shows values of A
between 2.8 and 4. The vertical axis shows the attracting set
on the unit interval for a given A. The diagram was con-
structed by discarding the first two hundred iterates of x,
(the transient solution) and then plotting the subsequent
two hundred points. The bifurcation diagram displays how
the attractor changes as A increases.

Figure 4 illustrates the “period-doubling route to chaos”
via a series of pitchfork™ bifurcations. For each value of
A <A, the high-n limit set of the solution consist of a single
point, called a period one solution: there is only one attract-
ing fixed point. When 4, <4 <A4,, a “period two orbit” ex-
ists, the solution hops back and forth between the upper
and lower branches of the pitchfork. For 4, <4 < A,,a “pe-
riod four” solution exists. This period doubling continues
indefinitely, but the interval of a given periodic motion,
A, <A <A, ,, rapidly becomes more compact. A, soon
converges to a value A, that marks the onset of chaotic
behavior, at which point the iterates appear to randomly
hop around on a subset of the unit interval. As A is further
increased, windows of periodic motion can reappear. In
this regime, chaotic and periodic motion exist side by side.

Feigenbaum'>%° discovered that the dimensionless num-
ber defined by

8 =lm [(Ayry —An)/Ays — Anyr)] = 4.6692...
(5)

is independent of the details of the quadratic map. Further-
more, the convergence rate of Eq. (5) is quite rapid (qua-
dratic, in fact). Hence, 8, is well approximated by the first
few values of A,,. The students can obtain §;. close to that
given by Eq. (5) by using only the first few values of A,
(e.g., A,,42,4;) found in the quadratic map.

A remarkable feature of Feigenbaum’s delta is its univer-
sality. It seems to characterize every dynamical problem
that displays the period-doubling route to chaotic behav-
ior. This is illustrated by the bouncing ball experiment
which yields a value of 6 that agrees with Eq. (5) to with-
in roughly 10%.

——— ball position
height

table position

time

Fig. 5. Ball and table position. Periodic motion of period T is depicted.
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~—— ball position
height

table position

*-— 2T .

time

Fig. 6. Periodic motion of period 27.

II1. QUALITATIVE DESCRIPTION OF A
BOUNCING BALL

Imagine dropping a ball on top of a table that is oscillat-
ing in the vertical direction with a frequency @ and ampli-
tude 4 (Fig. 1). In the bouncing ball experiment we want
to study how varying the table amplitude A4 affects the
ball’s dynamics. The system is dissipative since the colli-
sions are inelastic. We therefore expect the table and the
ball to move in unison when 4 is small enough; no bouncing
occurs. However, for a fixed w and a large enough 4, the
ball will begin to bounce. As we shall see, the ball initially
bounces periodically until we reach a critical value of the
amplitude 4, at which point the ball bounces in a chaotic
manner. New periodic and chaotic motions can appear if
the amplitude increases further.

One way to visualize the ball’s motion is to graph both
the ball’s height and the table’s motion on the same plot.
Figure 5 shows the simplest periodic motion we can ima-
gine. The ball executes periodic motion with a period T
equal to that of the forcing period. In Fig, 6, a 2T periodic

voltmeter |—e—

—
- |
Q.
2
-} - e
2 «
£
E } oscilloscope =
[ t e
4+
o P
> T ball X
g N
o &
Q lens

speaker

Function Generator

Fig. 7. Apparatus for bouncing ball experiment.
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Fig. 8. Experimental output from the bouncing ball machine. A “7 " peri-
odic orbit is shown. The upper trace is the driving voltage to the speaker.
The lower display shows the direct output from the piezoelectric film due
impacts with the bouncing ball.

orbit is illustrated; the ball bounces high, then low, then
high again.

Studying the quadratic map showed us that the chaotic
solutions were preceded by a sequence of period doubled
solutions. Reasoning by analogy, we might guess that as we
increase the table amplitude A—which is analogous to the
parameter A in the quadratic map—we will see a sequence
of periodic orbits of periods T, 27T, 4T, 8T, 16T,... after
which the ball moves chaotically. Notice that if the analogy
is correct we will not see orbits of periods 37T, 5T, 6T, 77,...
in this sequence. Moreover, we can quantitatively test the
analogy by calculating the Feigenbaum delta for the ex-
perimental system.

IV. BOUNCING BALL APPARATUS

A schematic diagram of a “bouncing ball machine” is
shown in Fig. 7. A speaker driven by a function generator
serves as the vibrating table. A small steel ball bounces
against a concave lens glued to the speaker. The curvature
of the lens helps to keep the ball’s motion vertical. Fastened
to the top of the lens is a thin (28 um) piezoelectric film.'®
Every time the ball hits the lens, the film generates a vol-

Fig. 9. A “2T” periodic orbit.

N. B. Tufillaro and A. M. Albano 942



Fig. 10. A “4T " periodic orbit. The lower trace repeats itself at four times
the forcing period.

tage, which is readily detected by an oscilloscope. The oth-
er channel of the oscilloscope shows the voltage driving the
speaker. At impact, a sharp click is heard. The acoustical
patterns of different periodic and chaotic motions are easily
distinguished by the listener. The function generator is also
connected to a voltmeter so that the driving voltage at a
bifurcation value can be recorded.

V. BOUNCING BALL EXPERIMENT

With a frequency around 60 Hz, the students are asked
to slowly increase and decrease the driving voltage while
they practice listening for different periodic and chaotic
motions. Once they hear a periodic pattern, the oscillo-
scopes is adjusted to trigger properly off the periodic signal.
For small voltages, it helps to tap the speaker to start the
ball bouncing. The students should note that the system
displays hysteresis. The bifurcation points can differ for
increasing and decreasing sweeps through A4.

Actual experimental data of periodic motions of periods
T, 27, and 4T are shown in Figs. 8-10, respectively. The
upper trace displays the driving voltage fed to the speaker.
The lower trace shows the signal generated by the piezoe-
lectric film due to collisions with the bouncing ball. Presu-
mably, the pulse height is proportional to the force of im-
pact.

Once the students are familiar with the apparatus they
are asked to construct a “bifurcation diagram” for the
bouncing ball system similar to that shown in Fig. 11 by
placing the function generator near its maximum value and
then decreasing the amplitude noting for what voltages
(read from the voltmeter) chaotic and periodic motions
appear and disappear. The Feigenbaum delta can now be
calculated and compared to the quadratic map result.
Typical values (Fig. 11) give

Sp=(A;—A4))/ (45— A4,) =4.3. (6)

The lab concludes with a few questions. For example, the
students are asked to estimate the maximum separation
between the ball and the lens by elementary considerations
of projectile motion. Also they are asked to explain why
long (87, 16T,..) periodic orbits are not seen in the experi-
mental setup, i.e., why there is a trunction of the cascade.
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Type of Motion {Period)
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Fig. 11. Bifurcation diagram for bouncing ball experiment. Typical values
ared,=0.149V, 4,=0226 V, 4, =0.244 V.

VI. FUTURE WORK

A detailed analytic and numerical study of the bouncing
ball system is in progress. Such a realistic model is not
presented here in order to emphasize how much can be
learned about the system by studying its analogies with the
quadratic map. The more realistic model gives rise not to
an interval map, but rather to a certain two-dimensional
annular map.

In addition, we are currently engaged in a number of
experimental studies. For instance, we are collecting data
to calculate the fractal dimensionality'” and distribution
function of motion in the chaotic regime. The experimental
result will be compared to those obtained from computer
simulations. The bouncing ball system also provides a con-
venient system for testing new nonlinear phenomena such
as noisy precursors of bifurcations discussed by Weisen-
feld.'®
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Derivation of the potential energy for the inverse square force—

Without calculus
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A derivation is presented for the potential energy using the assumption of elliptical orbits for a
mass under the influence of a 1/7 force. This eliminates the need for a calculus-based derivation,
and is therefore, appropriate for a wide range of nonmajors’ introductory physics courses.

For the undergraduate who knows calculus, the deriva-
tion of the 1/r potential from the 1/7* force is exceedingly
simple: A single integration of 1/7* between distances 7,
and r, yields 1/7, — 1/r,. For the students in non-calculus-
based introductory physics courses, this simple derivation
is inaccessible, and most texts either state the result, or
impliclit_ly or explicitly invoke calculus as part of a “deriva-
tion.”

In this paper, I derive the expression for APE from ex-
amination of the properties of the elliptical orbit of a parti-
cle (charge or mass) subject to a 1/7° attractive force. The
only prerequisites are high school algebra and geometry,
and the concepts of angular momentum and energy.

Consider a mass m orbiting a fixed mass M. The gravita-
tional force F = GMm/r* produces an elliptical orbit, with
M at one focus, as shown in Fig. 1. The semimajor axis is a,
the semiminor axis is b, the eccentricity is e and the dis-
tances from M to the turning points arer, and r, (“perigee”
and “apogee,” respectively). Since gravity is a conservative
central force, any conclusions we draw about the energies
of m at r, and r, is true about any positions, not just the
turning points, and for any motion of m, not just elliptical.
Note from the geometry that

ri=a(l —e),

rn=a(l+4+e),
and
b=a(l -2, (1a)

(The distance from the focus to the intersection of the
ellipse with the y axis is also equal to a, because the constant
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“length of string” between foci is 2a). Thus
b= (rr)"?
and
a=(r,+r)/2. (1b)

We choose to investigate the motion of m at the turning
points, because at these positions, velocities v,, v, are per-
pendicular to distances r,, #,, and the motion is therefore

centripetal.
Writing APE = — AKE,

APE = PE(r,) — PE(r,) = m(v> — v?)/2. 2)

Now at r, and r,, m may be considered to be in a circular
orbit of radius 7, subject to the gravitational force (see Fig.
1):

v/ F=GM/r
and

v}/ F=GM/r; . (3)

(Note that 7is the same for both positions, since v,r, = v,7,
from angular momentum conservation. )
Thus, from (2) and (3)

APE = (GMm/2)F(1/F — 1/7). (4)

It now remains to determine 7. This can be done by com-
paring the expression for the circle of radius 7 centered at
(a —7,0) to that for the ellipse, as (x,y)—(a,0):

[x—(@—-P1+y=PF (5
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