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We present a theoretical and experimental study of a “bouncing ball” system, where the effect of a near-resonant
perturbation is to suppress the onset of the first period doubling bifurcation. Near the bifurcation point, the full dynamical
equations are reduced to a discrete-time map governing the dynamics on a slowly oscillating center manifold. The derivation
emphasizes the geometry of the phase-space dynamics, and serves to clarify several points of a recently proposed theory
regarding the effects of strong near-resonant perturbations. Our experimental results agree with the simple theory for moderate
perturbations; for larger perturbations, higher order effects must be included.

1. Introduction

When poised near the onset of a dynamical
instability, any physical system becomes sensitive
to even small perturbations. This sensitivity has
both negative and positive ramifications. In
laboratory experiments, the effects of external
noise become particularly great near these bifur-
cation points, leading to new structure in the
observed power spectra which obscures the mea-
surements [1-4]. On the other hand, it is possible
to take practical advantage of this sensitivity in a
simple way to make high-gain parametric
amplifiers 3, 6]. For example, any T-periodic sys-
tem which exhibits a period doubling bifurcation
at some parameter value A=A_ will amplify
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coherent signals for A near A, provided the signal

has period close to 2T [1, 5]. This fact has been

demonstrated in a variety of experiments, using
superconducting Josephson junctions [7-9], semi-
conductor lasers [10], NMR lasers [11], and a
mechanical “bouncing ball” system [4].

The theory of small-signal amplification near
the onset of dynamical instabilities predicts a sim-
ple scaling law for the power gain

A2

S ~ =3,
(w) p.2+A2

(1.1)

where A is the amplitude of the perturbation, u is
the bifurcation parameter (p~A—A_), and A is
the detuning frequency (i.e. signal frequency minus
half the fundamental). The Lorentzian response
law holds for small enough perturbations A, but is
known to break down for larger perturbations. It
was observed [12] that the breakdown of eq. (1.1)
coincided with a variety of curious phenomena. In
particular, the presence of the signal caused a shift
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Fig. 1. Schematic representation of the effect of near-resonant
perturbations on the onset of period doubling. The solid
(dashed) curve represents the points in parameters space A |-\,
where the period-one solution loses stability in the absence
(presence) of the perturbation A.

of the bifurcation point A, away from the unper-
turbed value A . Remarkably, the shift was always
such as to stabilize the system, as depicted sche-
matically in fig. [This observation pertains
specifically to nonautonomous systems which are
in addition externally perturbed, so that frequency-
locking phenomena are automatically ruled out.]
By turning on the perturbation, it was possible to
drive a system from the period doubled state to
the undoubled stated (P2 — P1), but not vice versa.
The suppression of period doubling via near-reso-
nant perturbation has also been observed in ex-
periments on magnetostrictive ribbons [13] and in
digital simulations of the driven damped pendu-
lum equation [14].

The bifurcation shift was explained by a simple
theory [12] that was motivated by the notions of
the Center Manifold Theorem and normal forms
familiar from bifurcation theory [15-17]. Essen-
tially, it was argued that the crucial dynamics were
captured by the first-order ODE

X =px— x>+ AcosAt, (1.2)

where the scalar x(¢) represents a slowly varying
envelope function for the full (vector) dynamical

varlable X € R". In fact, by studying the reduceq

eq. (1 2), not only can one explain the power law

shift of the bifurcation point

A —A

x =~ < a AY3 (1.3) il

¢

but also all of the other observed phenomen, i

associated with strong, near-resonant perturba.
tions [12].

The main purpose of this paper is to clarify the
origin of the “normal form” eq. (1.2) and the
underlying dynamical picture, by explicitly reduc.

ing the full perturbed dynamics of a specific physi.

cal system, namely a ball bouncing on a v1bratmg
table [4, 18-25]. We show that eq. (1.2) is the
continuous-flow approximation to a one-dimen-
sional discrete map; moreover, we can explain
both qualitatively and quantitatively the observa-
tional fact [12] that successive iterates of the
Poincaré return map lie on highly eccentric el-
lipses, rather than along a (curved) line-segment.
We also present experimental results for the
bouncing ball system, testing two of the predic-
tions of ref. 12, namely the bifurcation shift law
(1.3) and the curious “squaring” effect of the
output as the detuning 4 is diminished.

2. Background

In this section we review the essential dynami-
cal features of a resonantly perturbed system near
the onset of period doubling. The situation is
depicted in fig. 2. We assume that there is a stable
T-periodic solution Xy(t)€R" to the unper-
turbed dynamical system. This implies that there
is a closed orbit in phase space, as illustrated in
fig. 2a. We assume this orbit undergoes a super-
critical period doubling bifurcation at parameter
value A=A_.

The effect of a periodic perturbation can be
understood best by considering first the response
to an impulse perturbation. Suppose the system is
kicked off of the limit cycle to the point go:
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subsequently, the trajectory through g, relaxes
pack toward X,. This trajectory will intersect the
section P transverse to X, at points ¢;,4,,...,
asymptotically approaching ¢, =X,N P. Since
the phase space is N-dimensional, the section P is
(N— 1)-dimensional. In general, the {q;} will ap-
proach g, in some haphazard way, with no dis-

X

Fig. 2. Phase-space dynamics. (a) Unperturbed orbit X, cut
by transverse section P. Far from bifurcation, orbit through go
relaxes toward g,, =X, NP in a haphazard way. (b) Near
period doubling, ¢; quickly collapse to the one-dimensional
¢enter manifold, then approach ¢, in an alternating fashion.
(©) Projection of transient orbit. Average near-resonant per-
lurbation over time 27T contributes term at beat frequency 4,
3 described in the text.

cernable pattern. However, for parameter values A
near A, a tremendous simplification takes place
(fig. 2b): after the first few intersections, all of the
g, fall on a (nearly straight) one-dimensional curve;
moreover, the ¢g; approach g, in the alternating
fashion shown. (This is precisely the reason that
the period doubling bifurcation is also called the
“flip” bifurcation.)

Why is it that the dynamics of P effectively
reduce from N — 1 to 1 dimension near the bifur-
cation point? In general, one can assign a set of
relaxation rates p,, one for each (independent)
direction in phase space. Near the bifurcation
point, one of these rates tends to zero, so that
asymptotically orbits approach g, along the corre-
sponding “eigendirection.” The crucial point is
that, when a continuous-time perturbation is pres-
ent, the system’s response is dominated by the
dynamics along this slow-relaxing direction [2, 5].

Going back to the phase trajectory that gener-
ates the {gq;}, we see that for A near A, the
transient orbit slowly spirals into X; with period
twice T, owing to the flip behavior. By analogy
with linear oscillators, we anticipate that—in the
presence of a periodic perturbation — there will be
resonance phenomena for perturbations with
period close to 27. This resonance behavior is easy
to observe experimentally, and has been reported
in studies using electrical circuits [5, 12], NMR
lasers [11] magnetostrictive ribbons [13], and the
bouncing ball system [4]. The theory is essentially
a nonlinear dynamical perspective on parametric
amplification, and one can ask whether previous
experiments demonstrating parametric amplifica-
tion are related to this picture. Sure enough, the
high-gain parameter values for superconducting
Josephson junction parametric amplifiers [7-9, 26,
27] and semiconductor sideband parametric
amplifiers [10] are very close to the parameter
values for the onset of bifurcations (either period
doubling [7-10] or saddle-node bifurcations [26,
27]). More recently, small-signal amplification has
been observed near the onset of a Hopf bifurca-
tion in the electrical conductivity of barium-
sodium-niobate single crystals [28].
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There is a nice “geometric” way to understand
why the perturbation at frequency w, = 7/T gives
rise to a resonant response having a characteristic
time-scale at the beat frequency A= (3wy— w;).
The idea [29] is to look at the transient (unper-
turbed) trajectory that generates fig. 2b — this orbit
X is essentially a slightly modulated circular
trajectory (see fig. 2c)

X =[r+ecos(Lwyt)]#

F=CoSwyte + sinwyle,,

where the modulation frequency is w, due to the
proximity of the flip bifurcation. We have ne-
glected the (slow) decay of the amplitude e. The
periodic perturbation F is taken to be a vector of
constant direction é;:

F=}\cos(%9 +A)té1.

We compute the effect of the perturbation aver-
aged over the time-interval 27"

1 fto+2T A fnt2T w,
ﬁf X Fdf—ﬁj;o (I‘+ECOS—2—I)

o

w
Xcoswotcos(TO +A)tdt.

For small A, we can treat cos At as constant over
the range of integration, with the result

il—T—j;:°+2TX-th = %—e— cos At,.

This notion of averaging the dynamics over two
periods of the unperturbed orbit corresponds to
looking at the second iterate of the return map,
and will recur at the end of section 3. A similar
averaging procedure was employed in the original
derivation of eq. (1.2) [12].

The theory of perturbed dynamical systems is
particularly simple in the vicinity of a simple (i.e.
codimension-one) bifurcation. This is because the
crucial dynamics is typically low-dimensional near
criticality — indeed, the number of relevant phase-

space dimensions depends on the class of instabj).
ity involved, rather than the (possibly largey
number of dimensions of the full phase space. Fo;
the case of period doubling, the dynamics redycs
to a one-dimensional map (fig. 2b); for a periodj,
orbit undergoing a Hopf instability—typicany
leading to motion on an invariant 2-torus - the
return map dynamics reduce to a two-dimensionga]
manifold; and so forth. This low-dimensiona]
manifold is the so-called center manifold, and the
mathematics behind the effective reduction of dj.
emsnion at the bifurcation point is contained ip
the Center Manifold Theorem [15-17].

[The idea that the slow-relaxing variables are

key in determining the dynamics of a system is

familiar to laser physicists, under the rubrik of -
“adiabatic elimination”, enunciated by Haken [30}, ;;
The procedure finds its formal mathematical :
counterpart in the Center Manifold Theorem, and -

related developments [15-17].]

The sequence of steps leading from an N-
dimensional “flow” (i.e. generated by an ODE for - :§
N < o0, by a PDE otherwise) is illustrated sche- = i}
matically in fig. 3, for the case where the center |

manifold is one-dimensional, as in the period dou-
bling situation. The techniques for calculating the

appropriate reduced dynamics are well-known - :
[15-17), though as a rule explicit construction of
the (N — 1)-dimensional return map is difficult to :"7?'?
achieve, especially for physically realizable sys-.

tems. Happily, the bouncing ball system is an
exception to this rule.

One would like to carry out this reduction pro-
cedure in the presence of a near-resonant forcing,

by introducing the perturbation to the full N-
dimensional dynamical equations. What was .

achieved in ref. 12 was to start with the one-
dimensional map of the unperturbed system, and

introduce “by hand” the appropriate perturbation *
and nonlinear terms at that level. By employing an - .
averaging method, the second iterate of this map

was approximated by the first order flow, eq. (1.2)-

The strength of the analysis of ref. 12 is that it
was based on general properties of phase-space
dynamics and geometry of period doubling orbits.
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Fig. 3. Rigorous reduction scheme from N-dimensional flow
to one-dimensional map. The “normal form” eq. (1.2) is at-
tained by an approximation to the second iterate of the center
manifold map.

The calculation in the next section is both more
and less ambitious: though carrying out the com-
plete reduction scheme of fig. 3, it focuses on a
specific dynamical system. Since we recover eq.
(1.2), we suspect that a general derivation of eq.
(1.2) is possible.

3. Center manifold reduction for the bouncing ball

In this section, we consider the specific dynami-
cal system illustrated in fig. 4a. A ball, constrained
to move vertically in a gravitational field, bounces
on a vibrating table with height s(7) = A4 cos wyr +
Bcos(wt + ¢). The collisions are not perfectly
elastic, but are characterized by a coefficient of
restitution a, 0 < a < 1. [This system with a =1 is
a modification due to Pustylnikov [31] of a model
introduced by Fermi [32] representing cosmic ray
accelerations.] This “bouncing ball” system has
been studied by a number of people [18-25] for
the case in which the table oscillates at a single

(a)
g\L won
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©
(b)
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Y\J\/\/\./\_/ i
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Fig. 4. The bouncing ball system. (a) Ball bounces vertically
on a table oscillating at two frequencies: s(¢)=Asinwyt+
Bsin(wg +¢), A> B. (b) Unperturbed (B=0) period-one
solution: ball impacts table at same phase each bounce. (¢)
Unperturbed period-two solution: ball alternates between high
and low bounces.

frequency w,. Pieranski and Malecki have also
studied the case of two frequencies [4], which is
directly relevant to the problem treated here.

Consider first the “unperturbed problem”, with
B =0. For fixed w,, there is a range of amplitudes
A€ (A, A;) for which the ball executes equal-
height bounces with frequency w,, as illustrated in
fig. 4b. Physically, the bounce occurs with the
upward bound table, and the ball gains just enough
energy to offset that lost by the inelastic collision.
As A is increased beyond A4,, there is a period
doubling bifurcation: the ball makes alternatively.
high and low bounces, so that its motion repeats
with frequency w,/2. For still higher A4, further
period doublings occur, leading to chaos; but we
want to focus on parameter values in the vicinity
of the first period doubling, 4 = A4,.

This dynamical system has the rather unusual
properties that (i) the periodic solution for 4 €
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(Ag, A,) can be explicitly constructed, and (ii) the
Poincaré return map can be analytically developed
from the governing differential equations. These
features make this an ideal system to carry out the
proposed center manifold reduction.

The dynamical state of the bouncing ball system
is specified by three variables: the ball’s height x,

its velocity v, and the time ¢ (which specifies the -

table’s vertical position s(z)). Let ¢, be the time of
the kth table-ball collision, and v, the ball’s veloc-
ity immediately after the kth collision. Then the
system evolves according to two equations:

Uk_jk=_a[vk—-l_g(tk_tk—l)_jk]’ (3.1)

2
se=Se 1+ o (t—1) = 38(t—1,_1)",

(3.2)

where s, = s(z,). The first of these is the so-called
impact relation, which states that the relative
ball-table speed just after the kth collision is a
fraction a of its value just before the k th collision.
(The overdot denotes differentiation with respect
to time.) Eq. (3.2) determines ¢, - given ¢, _, - by
equating the table position and ball position at ¢,:
specifically, ¢, is the smallest solution of eq. (3.2)
such that ¢, >, _,.

Note that we have already passed to a discrete-
time map in egs. (3.1), (3.2), in effect having
integrated Newton’s 2nd Law for the ball between
impacts.

It is convenient to introduce an approximation
at this point: we suppose that the table’s oscilla-
tion amplitude is much smaller than the ball’s
maximum height. Then, egs. (3.1), (3.2) become

2
b= glk-1% h (3.3)
and ,
vy =av,_;+ (1 +a)s,. (3.4)

(The ensuing derivation can be carried out without
making this “high-bounce” approximation; how-
ever, the expressions thus obtained are far more
cumbersome, and add no insight to the essential
geometry involved.)

We specify the table’s position to be the sum of
a large oscillation and a small oscillation

s(t) =Asinwyt + Bsin(wg+¢), B<A4,

(3.5)

we have in mind the situation where w, = lw,. It

- is natural to introduce dimensionless time and

velocity variables,

in terms of which eqgs. (3.3), (3.4) become

T =Wi 1+ T s (3.6)

w,=aw,_, +cost, +Acos(27,+¢), (3.7
where

2w}

g -

The derivation that follows is divided into two
parts. First, the unperturbed system (A =0) is
analyzed: we find the bifurcation point I, de-
termine the center manifold dynamics precisely at
I, and then unfold the dynamical equation so
that it is valid in a range of parameter values I
around I,. All of these steps are standard [15].
The second part allows for the presence of a small
perturbation (A # 0) at frequency £ =1/2, and
the same analysis is carried through. We show that
the perturbation alters the reduced dynamics in
two essential ways: the dynamics along the center
manifold are driven by a time-dependent term,
and the center manifold itself is now explicitly
time-dependent. Although this last feature of a
time-varying center manifold is not standard, it
follows naturally and is consistent with the reduc-
tion procedure.

8

= (1+a)d, A= o

3.1. The unperturbed system (A = 0)

We begin by finding the first period doubling
bifurcation of the unperturbed system. It is a
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qmple matter to find the period-one solution
(r*. wi): the ball bounces once per table oscilla-
jjon. 8O T, — T, =2m, or

= 2ak + 15*. (3.8)
From eq. (3.6), this implies
wir=2m. (3.9)

As expected, taking time t modulo 2w, the peri-
odic solution is a fixed point of the discrete map-
ping. The constant 75* follows from eqs. (3.9) and

3.7),
1.* = arccos [2—7ﬂr——a-)—] (3.10)

Now look at the dynamics near this solution. Let
X =27k + 15" +a,

wk=w*+bk,

with a, and b, regarded as small. Substitution of
these into egs. (3.6), (3.7) gives evolution equa-
tions for a,, b;:

A 1 1 a,
b..| |-Isint* a—Tsint*||b,

0

—gcos'ro*(ak+bk)2+ —2—‘sin‘ro’"(a,(%—b,()3

+0(4), (3.11)

where ((4) stands for terms quartic and higher in
ag. by.

The stability of the period-one solution is
determined by the linear part of eq. (3.11). A
period doubling bifurcation occurs when one of
the eigenvalues of the matrix is —1. For fixed a,
this occurs when I reaches its critical value

sin 7,

(3.12)

Yae(X)

X

Fig. 5. Transformed coordinates (a, b) = (x, y). Dynamics
relax rapidly in the y-direction toward the center manifold
vs(x). Dynamics evolve slowly along the center manifold,
which is tangent to the x-axis at the origin.

‘The next step is to make a linear change of
variables such that, at the bifurcation point I, the
linearized dynamics is diagonal. This is readily
achieved, with the result

xk+l) ( -1 0 Xk
(.yk+l 0 —a)(yk
o[ T
g (= 1)) F eos i (x, 4 any)’
Xk
S
Yk
the transformation matrix S being given by

1 1
s=( ) (3.16)

-2 —-l1-a

T
+?°Sin1'0*(xk+ayk)3]. (3.14)

=( k), (3.15)
b,

The important point here is that, to linear ap-
proximation, trajectories evolve quickly toward the
line y = 0, and are neutrally stable along the x-axis,
(i.e. at the bifurcation point, the dynamics along

i iR 3 A ot At

R i R B TR
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the center manifold are governed entirely by non-
linear terms). This is illustrated schematically in
fig. 5. Note that the “eigendirections” x and y are
not orthogonal (see eq. (3.15)).

When we include the nonlinear terms, we find
that trajectories collapse quickly to a center mani-
fold which is tangent to the x-axis at the origin. A
power series expression for the center manifold

Ya(X)

Va(x,) =cx}+dx;+0(4) (3.17)

can be developed as follows. The fast-relaxing
dynamics is governed by (see eq. (3.13))

Ay=y == -1+ a))’k+gk(x» y)+0(4).
(3.18)

On the center manifold, Ay = 0, so that
0= —(1+a)yue(xy) + 8 (xp, yalx,)) +0(4).
(3.19)

It is a straightforward matter to determine the
coefficients ¢ and d, by combining egs. (3.14),
(3.17), and (3.19):

c=cott*/(a—1), (3.20)

d=2ac?+ (3a—-3)"" (3.21)

Substitution of eq. (3.17) into eq. (3.13) yields an
equation for the slowly-evolving dynamics along
the center manifold

X1 = =%~ 8i(x4s yalx,)) + 0(4),
so that

Xpo1= =X, +px}+qx;+0(4), (3.22)
where

p=0+a)cot*/(1-a)

and

_l+afl  2acot’s
1= 1T-a|3 " " 1-a

Observe that the coefficients in eq. (3.22) depeng
on the value of ¢, but not on d- that is, only (he
quadratic behavior of the center manifold effe,
the dynamics along the center manifold, tq this
order.

Eq. (3.22) holds precisely at the bifurcatjoy
point I'=I.. The final step is to extend the analy.
sis to values of I' not quite equal to I, but nearly
so. To do this, introduce the small “unfolding
parameter” u, such that

a—1

F—FC=(W)IJ" (3.23)

with p ~ @(2). (The factor in parentheses is simply
for notational convenience.) We proceed exactly
as in the case of I' =TI ; the Poincaré dynamics i,
the (x,, y,) coordinate plane is now

X1 —l+4p ap Xk
Yi+1 K e L
— 8k
+
8k
where g, is given by eq. (3.14) with I, replaced by
I'. The center manifold y, is now a function of

both x, and p, and can be expanded as the power
series

+0(4), (3.24)

V(X p) =cx}+cp+dx}+dux, +0(4).
(3.25)

The coefficients are determined by substitution of
(3.25) into the second component of (3.24), and
setting y,., — ¥, = 0(4) on the center manifold.
One finds

’

¢’=0, d'=—(a+1)"", (3.26)
and c, d given by egs. (3.20) and (3.21), respec-
tively. Finally, evaluating the equation for x, ., in
(3.24) on the center manifold yields

X1 = —(L+p)x, +px}+qxi+0(4), (3.27)
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which differs from (3.2) solely by the linear term
px;- (Note that the coefficients p and g can still
pe evaluated at the bifurcation point; the unfold-
ing leads to higher order corrections only.) The
reason why u is properly an @(2) quantity is clear
if one computes the second iterate of eq. (3.27):

xe2=(1+2p)x,— 2(pr+q)xi+0(4).
(3.28)

Thus, the terms quadratic in x, cancel exactly, so
that a balance between the (unfolded) linear term
and the dominant nonlinear term is achieved for
p~0Q).

One final remark before proceeding to the per-
turbed calculation. Egs. (3.27), (3.28) illustrate the
familiar point that, if one wants to pass from a
discrete mapping to a continuous time approxima-
tion near a period doubling bifurcation, it is the
second iterate that should be modified, rather than
the first iterate. Of course, when eq. (3.27) under-
goes a period doubling, eq. (3.28) describes a
symmetry-breaking (or pitchfork) bifurcation.

3.2. The perturbed system (A # 0)

We can carry out an entirely parallel analysis in
the presence of the perturbation at frequency §2.
Eq. (3.11) is modified by the addition to the
right-hand side of a nonautonomous term:

0

. (3.29)
Acos [2(15* + 2mk +a, + b, ) + ]

As we have seen in eq. (3.28), the dominant non-
linear contribution to the 2nd-iterate dynamics on
the center manifold is cubic, which sets the scale
for the balanced competition between linear and
nonlinear terms. We want the leading contribution
of the perturbation to also be of this order: this
means that A ~ @(3), and so expression (3.29)
reduces to

/ 0

+0(4).
Acos [2( 7 + 27k) + o]

In terms of the eigenbasis x,, y,, the dynamical
equations become (see eq. (3.13))

Xk+1 -1 0 Xk — 8k
= +
Yi+1 0 o\ Vi 8k
=&
+A , (3.30)
&
where
cos [ Q(1* +2mk) + ¢
£, = [ (Ol—a ]. (3.31)

We turn next to the determination of the center
manifold y,. From the fast-relaxing dynamics, we
set (compare eq. (3.19))

0=—(1+a)yelx,) + g (x4, ya(x))

+A¢ +0(4). (3.32)
We can satisfy eq. (3.32), provided we allow y, to
depend explicitly on k:
ye=cxg+dxi+e,+0(4). (3.33)
Combining egs. (3.14), (3.31)-(3.33) yields the
same expressions for the coefficients ¢ and 4 as
before (egs. (3.20), (3.21)), and
e, =(1+a) AL, (3.34)
so that the center manifold just oscillates at the
perturbation frequency. We will return to this
effect at the end of the section.

The slow dynamics along the center manifold
follows from eqs. (3.33) and (3.30):

X1 = —(1+p)x, +pxi+gxi— Af, + 0(4),
(3.35)

where p and ¢ are the same as for the unper-
turbed problem, and we have included the unfold-
ing parameter p, as before. Note that this equation
does not depend on the @(3) pieces of the center
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manifold - that is, the fact that the center mani-
fold depends on time does not affect the dynamics
along the center manifold.

Finally, we look at the second iterate of eq.
(3.35):

X =(1+ 2p)xk—2(p2+q)x,f

+A(¢E - &L ) (3.36)

Up until now, no restriction has been replaced on
the perturbation frequency §2. At this point, we
take 2=1/2+ A, with A ~ 0(1). It follows that

&4 — &por = {cos [R(r* + 27k ) + ¢]
—cos [Q( 15t + 27k + 27) + 9]} /(1 — a)
=(-)* -2cos (2mAk + Q1 +¢)/(1 — ).

Consequently, the forcing term A(§, —§,,,) in
eq. (3.36) has the bear frequency A. Moreover, the
overall sign of this term is negative for odd iterates,
and positive for even iterates. If we pass to the
continuous-time approximation of the second
iterate,

Xpv2 =™ X Ax P
4z =ar

and translate the time origin, we recover the so-
called normal form [12] eq. (1.2), up to simple
rescalings

X=(E)x— (‘ph+q)x3+ 17(1A— 2) cos At.

kg ™

(3.37)

We close this section with two remarks. First,
note that because the oscillations of the center
manifold superpose with the periodic trajectories
along the center manifold, iterates of the return
map fall on an (elongated) ellipse on the x-y
plane. In fact, since the two frequencies (parallel

and perpendicular to the center manifold) are the -

same, the iterates form a discrete set of points that
do not fill in the ellipse. Moreover, our analysis
leads to a new prediction regarding the way the

major and minor axes scale with blfurCauOn
parameter p. The center manifold oscillates w;,

amplitude &, of order A (see eqgs. (3.33,34), while

the maxjmum displacement along the center map;.
fold &, is order A /u (see eq. (3.37)). The Predic.
tion for the expected aspect ratio R is thus

8,
REE——~1/“

1

(3.33)

(In an N-dimensional system, all N -1

axes of the Poincaré hyperellipsoid should scaje u
8, sy
The second remark is that the most basic pre-
diction of eq. (3.37) - the shift of the period doy.
bling bifurcation point -is easily obtained by the
following heuristic argument. Essentially, the yg.
perturbed bifurcation point p=0 is shifted tq
p = py — the bifurcation occurs when there is 5
balanced competition between the three terms o
the right-hand side:

x| ~ %] ~ |Acos At],

so that py ~ |x?|, A ~ |x3|, and thus

e~ A (3.39)

4. Experimental set-up and results

In this section, we report measurements check-
ing the prediction eq. (1.3), regarding the degree to
which near-resonant perturbations suppress the
onset of period doubling. We also demonstrate the
curious qualitative effect of the “squaring” of
the output as the perturbation amplitude grows.
Both effects are easily observed in a bouncing ball
apparatus constructed with an ordinary loud
speaker, function generator, and ball bearing.
Pieranski [19] appears to be the first to construct
this simple mechanical system. Our apparatus in-
cludes two improvements: we employ a piezoelec-
tric film as a detector, and also some additional
digitizing electronics.
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Fig. 6. Experimental realization of the bouncing ball machine.

Function Generator

An experimental realization of the bouncing
ball machine is depicted in fig. 6. A 12” audio
speaker, driven by a function generator (Wavetek
model 182A), serves as the vibrating table. For
two frequency work, the output of two function
generators is summed and then supplied to the
speaker [33]. A small ball (between 1/4” and
5/8”) bounces on a concave lens glued to the
speaker — the curvature of the lens helps keep the
ball’s motion vertical. Fastened to the top surface
of the lens is a thin piezoelectric film that gener-
ates a voltage spike every time the ball hits the
lens [34]. The voltage spike is monitored on an
oscilloscope to detect period doubling and other
types of bifurcations. The forcing frequency is
read from a frequency meter connected to the
function generator. Similarly, the relative forcing
amplitude can be read from a voltmeter. The
output from the piezoelectric film is processed by
shaping electronics that generate a logic level pulse
at each impact between the ball and the lens. The
shaping electronics can also be used to plot strange
attractors on a storage oscilloscope as described in
a previous publication [22]. The logic level pulses
are then set to a commercially available event
timer and digitizer that are part of the Bench Top
series, a real-time data acquisition system for the

Macintosh computer [35]. The Bench Top analog
subsystem records the time between pulses in mi-
croseconds and stores a permanent record of the
time-series on the Macintosh.

It is often desirable to measure the actual am-
plitude of the speaker’s oscillation. This is done by
mounting a micrometer across the top of the
speaker so that the tip of the micrometer lightly
impacts with the lens (the impacts are easily de-
tected by the piezoelectric film). By gently sliding
the micrometer vertically and looking for the ini-
tial impact between the tip and the lens, it is
possible to determine the speaker’s actual ampli-
tude and phase of oscillation. Typical speaker
oscillation amplitudes are between 0.01 and 2 mm.

Often times the apparatus exhibits what we call
a “rolling instability.” Instead of moving in the
vertical direction, the ball sometimes tends to roll
slightly back and forth, exciting motion in the
horizontal direction. This behavior can be mini-
mized and often eliminated by isolating the sys-
tem from mechanical vibrations and carefully
experimenting with lenses of many different curva-
tures. Our apparatus is located in a very quiet
room and the speaker itself sits in a heavy metal
case that rests on a vibrationally isolated table.
The rolling instability can be difficult to eliminate
at times, but once removed the system appears to
be truly one-dimensional. Also, the piezoelectric
film, being essentially a capacitive device, is very
sensitive to 60 Hz and other stray pick-up. How-
ever, simply grounding the piezoelectric film out-
put to the speaker case appears to remove this
noise source.

The onset of period doubling is defined as the
point at which the power spectrum first shows a
peak at frequency jw,. An equivalent signature —
and the one used here - can be found by monitor-
ing directly the time-intervals I,=7,—1,_, for
successive n. In the absence of the perturbation,
such a time-series would fall on a single horizontal
line below the bifurcation point, and on a pair of
horizontal lines after the bifurcation (see the
dashed lines of figs. 7a and 7b, respectively). With
the perturbation turned on, the subcritical time-
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Fig. 7. Experimental time-series of intervals T, =1, —1,_,
versus n. (a) Before the bifurcation point: odd-n iterates fall
on a slowly oscillating envelope, which is symmetric about
T, = 0. Ditto for even-n iterates. (b) After period doubling:
slowly oscillating envelopes are no longer symmetric about
T,=0.

BIFURCATION SHIFT (V)
o
T

Q.01 L ,T. 1 i

00! ol | 10
PERTURBATION AMPLITUDE (V)

Fig. 8. Experimental results for the bifurcation shift. For
smaller perturbation amplitudes, the shift fits a power-law with
exponent 0.67 + 0.07, while for larger amplitudes, the data fits
to an exponent of 0.33 + 0.02.

series shows a modulation about the single line
(see the dotted line of fig. 7a): the even-n iterates
fall on a slowly-varying envelope of frequency 4,
as do the odd-n iterates. Each of these slowly-
varying curves is symmetric about its mean value.
In contrast, the post-critical (i.e. period-doubled)
time-series fall on two slowly-varying curves which
are not symmetric with respect to the mean value

of T, (fig. 7b). A moment’s reflection reveals
this is an example of a well-known fact: 3 pan
doubling of an iterative map corresponds
symmetry-breaking of the second-iterate map,

To test the power law, eq. (1.3), we need
measure the amplitude 4 of the forcing oge ®
and the perturbation amplitude B (propo rtional
A) at the bifurcation point. We found it easier 4
measure the driving voltages to the speaker, Tathey
than the actual oscillation amplitudes at the jag
frequencies w, and w,. We verified experi
that the driving voltages are directly proporg
to the table’s displacement amplitudes iy’
parameter regime considered. ,

Our results, shown in fig. 8, verified that &
perturbation always served to suppress the
of period doubling. The vertical axis plotg the
voltage difference V, — ¥, where V, and ¥, are the
critical values for the onset of period doubling iy
the perturbed and unperturbed system, respes.
tively. The horizontal axis plots the perturbatiog *
voltage amplitude. The result indicate two disting
scaling regimes: for small perturbing amplitudes .
up to about 4% of the larger driving vol
V, — the results are consistent with the 2/3-power
law; for somewhat larger perturbations, (5% o
10%), the data fit very well a 1 /3-power law

o

shift a (perturbati0n)0.3310.02 %

Although we have no theoretical explanation for
this new scaling behavior, we can understand why
the 2/3-power law breaks down where it does, as
we now describe.

The perturbation theory picture relies on the
system being near the onset of a single period
doubling bifurcation. As can be seen from fig. 7a.
the effect of the near-resonant perturbation is to
give the dynamics a slowly-modulated period dou-
bled character, even below the bifurcation point
Now, for large enough perturbations, the observed

. output can show intervals of period-4 behavior, as

well, and even higher-period behavior and chaos
This is illustrated in the experimental time-senes
of fig. 9, which shows about two full cycles of
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Ta

Fig. 9. Digitized time-series from the bouncing ball apparatus
of T, versus n, for perturbation amplitude about 10% of the
main drive amplitude. The slowly varying envelope passes
through intervals of period-two, period-four, and chaos, then
back again. The complete orbit is nonetheless period-one: a
power spectrum of this sequence yields no power at frequency
wy/2. wo =060 Hz, w, =31 Hz, B/4 =0.1.

(a)

(b)

n

Fig. 10. The “squaring” effect observed in the experimental
time-series. (a) For moderate detuning (£ = 0.53) the slowly
varying envelope is nearly sinusoidal. (b) For smaller detuning
(£ =0.51) the response resembles a square-wave, in addition
to being greater in amplitude. The uncertainty in the phase is
caused by a rolling instability.

output. During the slow modulation at frequency
A, the output passes through clearly recognizable
intervals of period 2, period 4, and (possibly)
chaotic behavior. The deviation in fig. 8 from the
2/3-power law coincides with the onset of these
higher-period intervales. This picture suggests two
things: first, that the reduced equation (1.2) will be
quantitatively valid provided the period doubling
bifurcation of the unperturbed system is not too
close to the onset of a second bifurcation; second,
that the unexpected 1/3-power law for larger per-
turbations may very well not be generic to period
doubling systems, insofar as the observed behavior
is likely to depend crucially on “global” bifurca-
tion properties of the unperturbed system.

We turn next to the “squaring” effect, which is
easily observed in the bouncing ball system. Fig.
10a shows a time-series of a perturbed subcritical
orbit with moderate detuning, (3w, — w;)/w,~
3%.] The slowly-varying envelope looks sinusoidal.
However, as the detuning is decreased (to about
1%), the output develops a square-wave character,
as seen in fig. 10b. This squaring effect is particu-
larly dramatic if one observes directly the return
map dynamics (z,,v,), egs. (3.3), (3.4). (In our
work, we found it more convenient to monitor a
different but equivalent plane, namely the
(7,,T,,,) plane.) In the presence of the perturba-
tion, one observes two points - corresponding the
odd-n and even-n iterates of fig. 7a — which move
slowly, on the time-scaling of the detuning
frequency A. For moderate detunings, the two
points rhythmically pass through one another.
However, for very small detunings, the two points
appear stationary over several hundred oscilla-
tions, and then suddenly switch places, only to
appear stationary again.

We were also able to observe, in agreement with
theoretical predictions [12], that decreasing the
detuning enhances the suppression of period dou-
bling. Lastly, we remark that the effects of a
rolling -instability can be observed by comparing
the time-series in figs. 7a and 10a: the presence of
a rolling instability in the latter causes a larger
uncertainty in the phase of impact.
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5. Summary

This paper has addressed the problem of period
doubling suppression via periodic (near-resonant)
perturbations. We focussed on a particular physi-
cal system — the bouncing ball - which is amenable
to both theoretical and experimental study.

Theoretically, we were able to perform an ex-
plicit center manifold reduction for the case where
the table oscillates at two frequencies, the large-
amplitude component having nearly twice the
frequency of the perturbing component. In order
for the analysis to parallel the usual procedure
familiar from bifurcation theory, it was necessary
to introduce a time-dependent center manifold.
The resulting one-dimension equation for the dy-
namics on the center manifold agrees with the
“normal form” of ref. 12. As anticipated, this
normal form, eq. (1.2), is the continuous-time limit
of the second iterate of the reduced Poincaré
return map. In addition, our analysis leads to a
new prediction governing the aspect ratio of the
elongated ellipses traced out by iterates of the
Poincaré map.

Our experiments focussed on two effects: the
bifurcation point shift, and the dramatic “square-
wave” nature of the output near the shifted
bifurcation point. (Aside from electrical analog
simulations [12], this represents the first experi-
mental measurements on these phenomena; how-
ever, we emphasize that parallel experiments are
being performed simultaneously by Pieranski and
Malecki [36].) The “squaring” of the output for
increasing perturbation strength is a qualitative
effect which is easily observed (fig. 10). The bifur-
cation shift followed the 2/3-power law for per-
turbation amplitudes up to ~4% of the main
driving amplitude - for larger perturbations our
measurements suggest a crossover to another scal-
ing regime with observed power law p, o A%33 02,
We have no formal theoretical explanation for this
new behavior, though we suspect is may not be
generic. For perturbations larger than ~ 10%, the
effects of higher periodic orbits — and even
chaos — are evident, and complicate the dynamics

beyond the scope of the low-order
analysis of section 3.

The present study was motivated direct]y by the
success of ref. 12, and represents an 3de’lnc-c
sofar as it carries out the scheme of fig. 3, ralhl:;
than introducing the perturbation by hand aliey
reducing the unperturbed dynamics. On the other
hand, we studied a particular example o)
whereas ref. 12 made a general analysis Vluc,i.
suggested that the phenomena associated with
near-resonant perturbations of period doubk
bifurcations are generic. The next step, then, ig go
extend the present analysis to the general case,

Perturbay o
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