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0 Time series

A time series is a collection of observations made sequentially in time. Exam-

ples include a sequence of measurements showing the position of an oscillating

pendulum, �(tn), the current, i(tn), or voltage, v(tn) in a circuit, or perhaps the

daily rainfall in West Lake Village.

1 Introduction

A dynamical system is a system which changes in time according to some rule,

law, or evolution equation. The two most commonly studied examples of dy-

namical systems are ows (or di�erential equations), and maps (or di�erence

equations). In ows, time, t, is a continuous variable indexing the the state of

the system, although measurements may occur at discrete times indexed by tn.

An example of a di�erentiable dynamical system|that is, a dynamical sys-

tem modeled by a set of di�erential equations|is the RLC circuit:

The RLC circuit is modeled by a second order linear di�erential equation:

CL
d2i

dt2
+RC

di

dt
+ i = u(t); u(t) = �!CE0 sin(!t) (1)

One very useful characterization of a linear RLC circuit is given by its Transfer

Function, which is (more or less) the frequency domain equivalent of the time

domain input-output relation.1 The causal relationship between the input (the

voltage) and the output (the current), is emphasized by adopting the input-

output terminology. Applying the Laplace transform to the time domain model

1Rolf Johansson, System Modeling and Identi�cation, Prentice-Hall (1993).
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and solving for the relationship between the input voltage and output current

gives the transfer function:

G(s) =
Lfi(t)g

Lfv(t)g
=

sC

s2LC+ sRC+ 1
(2)

The above transfer function might be called a \functional model" because

the physical parameters|resistance, inductance, capacitance|are prominent in

the transfer function and I can use this representation to design an RLC circuit

to perform a desired \function" or task. This type of model is also commonly

called a parametric model.

A behavioral model, on the other hand, can also be thought of as describing

the input-output behavior of a system, but unlike a \functional model" we do

not start from a detailed physical picture for the system. Rather I will start

from a more general assumption, namely, the device under test is modeled by a

di�erential dynamical system, i.e., a set of ordinary di�erential equations. Based

on this assumption I will be interested in the following issues:

1. How do we design input signals to e�ciently probe the di�erential struc-

ture governing the dynamical evolution of the device under test?

2. How can we construct a state space and dynamical models|based only on

measured time series|for systems driven by deterministic sources (e.g.,

sine waves, or combinations of sine waves) and/or stochastic sources?

I will outline a general approach to this problem for \low dimensional" dy-

namical systems|that is, components whose dynamics are governed by a few

di�erential equations. I would like to caution that this approach, although very

attractive theoretically, might not be the most practical solution for a given

set of problems. For instance, for \weakly nonlinear systems" a better practi-

cal solution might be a \describing function" approach or a \Volterra series"

approach.2

In a nutshell, the dynamical systems approach goes as follows, from the

measured input-output time series I will attempt to

(i) construct a minimal deterministic \state space" for the device under test,

and

(ii) attempt to estimate a \vector �eld" determining the evolution equations

for the reconstructed state space.

2The term weakly nonlinear is not very clear from a mathematical perspective, roughly it
seems to mean that the nonlinear terms in the governing equations are small, and that the
systems asymptotic behavior (the attractor) is close before and after the nonlinear term is
turned on. See footnote [1] for a brief introduction to describing functions and Volterra series.
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In the second half of this paper I will tell you one way to go about \recon-

structing" a state space and dynamical equations from measured time series.

The fact that such an approach is at all feasible might be startling at �rst, but

it is based on a mathematical theorem due to Whitney, with major contribu-

tions by Takens, Packard et. al., Ruelle, and Sauer et. al. among others, usually

called the embedding theorem.3 However, to really get some understanding for

this approach, and to see how it di�ers from what we do for linear systems (i.e.,

working in frequency space and using transfer functions), I would like to backup

a bit to discuss the following topics with some examples:

� General solution of linear ordinary di�erential equations (ODE's), or why

we can characterize linear devices,

� General properties of nonlinear systems from a \geometric" perspective,

� Why it might be sensible to try to estimate a state space and vector �eld

for the test and measurement of nonlinear components,

� Embedology, or how to reconstruct a state space model from measured

time series,

� Vector Field Estimation, or one approach to estimating the dynamical

rules,

� Possible extensions of current research to parameter dependent multiple

input-output systems.

2 Linear networks of circuit components

The connection between networks of circuit elements and di�erential equations is

almost immediate. Most circuit elements and networks, by design, are governed

by \lumped �nite systems" which, in a low noise environment, are governed by

a vector of ordinary di�erential equations,

_x = f (x(t);u(t); t); x(t0) = x0 (3)

where

x is the state vector in d-dimensions,4

u is the vector of inputs and,

3Tim Sauer et. al., Embedology, J. Stat. Phys. Vol 65 (3/4), 579-616 (1991); Tim Sauer
and James Yorke, How many delay coordinates do you need?, Int. J. of Bif. and Chaos. Vol
3 (3) 737-744 (1993).

4As usual, we are going to confuse the basis vectors x with the solution set. The \solution"
is better written as '(x).
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x0 is the initial (internal) state of the network or components.

To be complete I should also consider a (possibly nonlinear) measurement

function

y(t) = g(x(t);u(t); t) (4)

which formally at least gives us our outputs, y(t), in terms of our u(t) inputs.

In the case when the network of elements is governed by Kircho�'s law, and all

the individual components are linear, the above equations can be written in a

standard matrix form:

_x = Ax(t) +Bu(t) (5)

_y = Cx(t) +Du(t) (6)

for matrices A, B, C, and D.

The \linearity" of the above circuit network has two sources. First, the

components are assumed to be linear, but more importantly|it follows from

Kircho�'s laws|that the network's topology is \linear." Indeed, by a nonlinear

circuit we usually mean that the network's topology remains linear, but a few

individual components exhibit nonlinear behavior.5

My point here is just to emphasize that under normal test and measurement

circumstances the behavior of the circuit network is captured by some set of

ODE's.6. The somewhat abstract ideas we are about to embark on are very

relevant to modeling circuit behavior. When studying linear ODE's we need

tools and techniques dealing with linear spaces (linear algebra), when studying

nonlinear problems we need tools and techniques intrinsic to curved spaces (like

di�erential geometry).

3 A simple and sophisticated look at linear ODE's

Consider a low pass �lter which is governed by the �rst order di�erential equa-

tion

RC
dv

dt
+ v = u(t) (7)

Let's begin by considering the homogeneous equation (u(t) = 0):

RC
dv

dt
+ v = 0 (8)

5Ronald A. Rohrer, Circuit Theory: An introduction to state variable approach, McGraw-
Hill (1970); Martin Hasler and Jacques Neirynck, Nonlinear circuits, Artech House (1986)

6In a high frequency regime where \parasitic" wave e�ects come into play, it is possible
that an e�ective ODE model exists, but how well an empirical ODE model will work in this
regime is a question of current research.
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Let A � 1=RC, by simple integration we �nd

dv

dt
= �Av (9)

ln(v(t))jtt0 = v(t) � v(t0) = �A(t � t0) (10)

v(t) = e�A(t�t0)v(t0) (11)

Let gtt0 � e�A(t�t0), then

v(t) =
�
gtt0

�
(v0) (12)

gtt0 is called the \evolution operator" since it carries a collection of initial states

\v0" into the �nal state v(t). t. The form of our solution for the initial value

problem (IVP) consists of the application of the evolution operator on the initial

state producing the �nal state.

The notion of the solution of the IVP for a di�erential equation in terms of

an evolution operator is really at the heart of the theory of ODE's|linear or

nonlinear. The evolution operator has the following properties:

(gtt1 � g
t1
t0
) = gtt0 (13)

gt0t =
�
gtt0

�
�1

(14)

These properties formalize our notion of a two-sided deterministic process.

Assume that at the start, t0, the device is in a state x0. Then at another moment

the device is in another state x(t) = gtt0x0. By determinacy we mean that the

present state uniquely de�nes both the past and future. In addition, the new

states depend \smoothly" on both arguments t and x0. This last property is

formalized by saying the mapping is a \di�eomorphism" (both the space, and

functions on the space are di�erentiable).

Now consider the nonhomogeneous RC equation

A
dv

dt
+ v = u(t) (15)

To get a quick solution to this multiply by the integrating factor eAt,

AeAt
dv

dt
+ eAtv = eAtu(t) (16)

and notice that the left hand side is now a perfect di�erential:

d

dt
(eAtv) = eAtu(t) (17)Z t

t0

d

d�
(eA�v)d� =

Z t

t0

eA�u(� )d� (18)

eAtv(t) � eAtv(t0) =

Z t

t0

eA�u(� )d� (19)
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eAtv(t) = eAtv(t0) +

Z t

t0

eA�u(� )d� (20)

v(t) = e�A(t�t0)v(t0) + e�At
Z t

t0

eA�u(� )d� (21)

The last equation can be rewritten in a couple of ways. First, let's try to identify

gtt0 = e�A(t�t0) in the above equation, then I get,

v(t) = e�A(t�t0)v(t0) + e�A(t�t0)
Z t

t0

eA(t�t0)u(� )d� (22)

or,

v(t) = gtt0v(t0) + gtt0

Z t

t0

(g�t0)
�1u(� )d� (23)

I won't prove it here, but equation (24) is a formal solution not just to the

RC problem with arbitrary inputs, but also|and this is a bit of a leap|for all

linear inhomogeneous systems of ODE's. Speci�cally, if we consider a vector

di�erential equation,

_x = A(t)x(t) + u(t); v 2 Rn (24)

then it has a formal solution

x(t) = gtt0

�
x0 +

Z t

t0

(g� )�1u(� )d�

�
(25)

which for the homogeneous part can again be viewed as an evolution operator

acting on the vector of initial conditions. For the n-dimensional linear problem

A is now a matrix, and the ow operator, eAt, is the exponential matrix.

What does this have to do with the characterization of linear devices?

Let's go back to our �rst question|how to design inputs to e�ectively probe

the dynamics of the system. When the system is linear, equation

x(t) = gtt0x(t0) + gtt0

Z t

t0

(g�t0)
�1u(� )d� (26)

is very helpful in answering this question. The �rst term gtt0x(t0) is called (in

Control Theory) the zero input response term since it is the solution for the

unforced (u(t) = 0) case. The second term is called the zero state response

(x0 = 0) term. This decomposition of the dynamics of a system into transient

behavior (independent of forcing) and forced behavior (independent of initial

state) is generally not true for a nonlinear system. More to the point, equation

(27) really captures the essential features of an \input-output" theory of linear

systems. To \characterize" the system we need to design inputs that allow us
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to solve or approximate the evolution operator. Well, for a linear system, there

at lots of ways to do this.

For instance, I could turn o� all inputs, and just measure the systems re-

sponse from a nonequilibrium state. By repeating this sort of measurement

many times from many di�erent states I can approximate the evolution opera-

tor since (u(t) = 0 in eq. (27)),

(output) v(t) = gtt0v(t0) (input initial state) (27)

This procedure is sometimes called initial condition response. Additionally I

can wait for the system to settle down to its �nal state (v(t0) = 0) and then

\ding" the system with a unit impulse, i.e., a delta function, then the output is

(v(t0) = 0 in eq. (27)),

v(t) = gtt0

Z t

t0

(g�t0)
�1�(� � t0)d� (28)

= gtt0(g
t0
t0
)�1d� (29)

= gtt0 (30)

This is usually called impulse response analysis. Both techniques usually fall

under the heading of transient response analysis.

In the engineering world, this approach is extended in several signi�cant

ways. First, a Laplace transform is used to work not in the time domain but

the frequency domain. For linear systems, this is exactly the right thing to do

because a (complex) exponential (the inputs) passes right through the system

(the outputs) with only its amplitude and phase modi�ed, but not its fundamen-

tal frequency. Second, the theory of the Transfer Function (Laplace transform

on the zero response state) is built which e�ectively allows us to hide the un-

derlying state space model and deal only with the inputs and outputs of the

device in practical terms. Third, in non-ideal environments, when, for instance,

issues of noise come into play, it is very useful to try to estimate the evolution

operator from the cross-correlation of the inputs and outputs for a wider class

of input signals (collections of sines or stochastic). The important point to keep

in mind, though, is that in the linear theory it is usually possible to relate the

input-output signals back to the evolution operator in a direct fashion. This is

why issues of test and measurement are (at least at the theoretical level) usually

doable for linear systems.

Put another way, a priori structural information about linear systems can

be incorporated into a theory of test and measurement of linear devices in a

direct and useful way.

These issues are commonly discussed in a slightly di�erent fashion. Namely,

linear characterization is seen as a problem in the estimation of the \kernel of

an integral operator." Very quickly, another way to view the above solution of

IVP problem for linear ODE's is via a Green's Function which in the present
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example is,

G(t; � ) = e�A(t��) (31)

Rewriting equation (27) in terms of its Green's function shows

x(t) = G(t; t0)x(t0) +

Z t

t0

G(t; � )u(� )d� (32)

The above formula is an integral equation with Kernel G(t; � ). Thus, the char-

acterization problem in this context is one of designing inputs (u(t)) and mea-

suring outputs (x(t)) in order to estimate G(t; � ). This problem is called system

identi�cation.

4 Vector Fields

A vector �eld is a rule that assigns to each point in phase space a unique vector

in a smooth manner. It is an ordinary di�erential equation from a geometrical

perspective. Consider, again, the example

A
dv

dt
+ v = u(t) (33)

We �rst observe that when u(t) is described by a di�erential equation itself

(sines, or combination of sines are the simplest examples), then the above

\forced" equation can be rewritten as an autonomous equation. For instance, if

u(t) = B sin(!t) (34)

then let ( _u = &; �u = _&)

_u = & (35)

_& = �!2u (36)

so the periodically forced �rst-order system becomes a third-order autonomous

system,

_& = �B!2u (37)

_u = & (38)

_v =
1

A
(u � v) (39)

(40)

In matrix form the linear system is0
@ _&

_u

_v

1
A =

0
@ 0 �Bu2 0

1 0 0

0 1
A

�1
A

1
A
0
@ &

u

v

1
A (41)
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or, _x = fx. The matrix f assigns a unique vector to each point (&; u; v) of

the phase space. The vector �eld at the plane de�ned by u = 0|( _&; _u; _v) =

(0; 1;�1=A). The vector �eld tells the ow (locally) to go that-a-way. Knowing

the vector �eld is knowing the equations of motion.

In this example f is linear. This picture provides us with a quick explanation

as to why \linear �lters" preserve periodic motions. Since f is linear, it follows

that the transformation induced by f on phase space is also linear|that is

by gtt0 . Let us consider the image of u(t) under gtt0 in the autonomous phase

space.7 gtt0u(t) undergoes a (3-dimensional) linear distortion, but the period and

topology of the original orbit is preserved under all such linear transformations.

The \output," v(t), is the projection of the 3-dimensional phase trajectory onto

the v-axis. Thus, the output is a periodic orbit with the same period as the

input orbit, but with a shape distortion. The transfer function is just one way

to characterize this shape distortion.

5 Embedology

Nonlinear systems di�er from linear systems in several fundamental ways. For

a linear system we can speak of \the" solution since the system settles down to

a unique solution after the transient dies out. Nonlinear systems, on the other

hand, can have many di�erent coexisting solutions depending on the initial

state. These asymptotic states (what's left after the transient dies out) are

called attractors. There are four basic types of attractors: equilibrium states,

periodic orbits, quasi-periodic solutions (tori), and chaotic attractors. This

classi�cation scheme is based on the topology of the attractor.

In order to construct a nonlinear behavioral model we need to estimate either

(directly or indirectly) the evolution operator. One (simple minded?) approach

is to try to estimate a vector �eld directly from the observed input-output time-

series data. To build such a behavioral model will require the collection and

analysis of a good deal of data, but handling large amounts of data is now a

realistic possibility because of computer automation.

The techniques we describe for creating an (empirical) state space model and

estimating its dynamics have been applied to the attracting states of nonlinear

systems for several years. For engineering applications, they need to be extended

to handle transient solutions (approaches to attractors) and multiple collections

of input-output time series obtained under a range of operating parameters. We

will suggest some ways of handing these issues at the end of this paper. Here

we will focus on the basic ideas and techniques.

A procedure for creating an empirical model of the state space is straight-

forward. Assume that the device under test is governed by an d-dimensional

di�erential dynamical system. Consider a scaler time series generated by the

7In this particular example, the parametric form of the image is (q; u; v) =
(!B cos!t;B sin!t; B

A2+!2
(A sin!t� ! cos!t) + e�Atv0).
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device under test. The idea behind embedology is to change this scaler mea-

surement back into a vector measurement. There are lots of ways to do this.8

One useful way to accomplish this is to consider a time delay coordinate vector

formed by

x = (xt; xt�� ; :::; xt�(m�1)�) (42)

There are now several related issues.

What properties do I want my reconstructed dynamical system to preserve

from the original system? For behavioral modeling, I want a one-to-one cor-

respondence between the original system and the reconstructed system. That

is, I want to be able to uniquely predict future states from past states in the

reconstructed system. It turns out, at least in the ideal case of in�nite noise free

data, that if the original space has d dimensions, then it is possible to establish

a one-to-one correspondence if the reconstructed space has m dimensions, where

m > 2d (see Footnote [3]). Moreover, the trajectory in this reconstructed state

space preserves not only predictability, but also the \local di�erential struc-

ture," i.e., tangent vectors|the stu� vector �elds are made of. I won't dwell on

why this is so here, rather I will focus on the the practical procedures used in

uncovering both a state space model and it's vector �eld from time-series data.

In the nonideal case we will use a more pragmatic procedure. We will simply

go ahead and create both a state space and an empirical model, and then test

the model on (untrained) data sets. In numerical test cases the dimension of

the reconstructed phase space varies between d and 2d, so we can often get by

with a dimension less than that suggested by the embedding theorem.

How do I calculate m, the embedding dimension, and �1, the time delay from

scalar time series data? Let us assume we have sampled a trajectory from the

system which is not an equilibrium solution but is an attractor (i.e., away from

a transient solution). Then, it is likely the trajectory exhibits some degree of

recurrence.

If the trajectory is periodic (or if a fundamental period can be estimated

from the data), then a good rule of thumb is to take �1 to be some fraction,

say one fourth, of its fundamental period. Other, more sophisticated, rules of

thumb have also been suggested.

For instance, an estimate of �1 is provided by the �rst zero of the autocorre-

lation function (normalized to unity for zero delay),

R(� ) =
< x(t)I(t + � )� < x(t) >2

< x(t)2 � x(t) >2
: (43)

8I could, for instance, take (numerical) derivatives of the original time series to create a
vector. In practice this would not work well since numerical di�erentiation ampli�es noise.
When working with experimental data, though, di�erential and integral (e.g., Hilbert Trans-
forms) �lters of the original data often provide a useful alternative to straight time-delay.
The \engineering issues" associated with di�erent embedding techniques would be an area of
pro�table inquiry.
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The procedure I use is based on calculating the mutual information of the

time series with itself.9 The average amount of information between two vari-

ables is quanti�ed by the mutual information,

I(x; y) = H(x) +H(y) �H(x; y);

H(x) = �

Z
px(x) log(px(x))dx;

H(x; y) = �

Z Z
px;y(x; y) log(px;y(x; y))dxdy

which is the di�erence between their joint entropy and the sum of their scalar

entropies. To determine �1, let the time series for y (of size N) be a lagged

version of the original time series:

I(� ) = �

NX
xt=1

p1(xt) log2 p1(xt)�

NX
xt��=1

p1(xt�� log2 p1(xt�� ) +

NX
xt=1

NX
xt��=1

p2(xt; xt��) log2 p2(xt; xt�� ):

If the xt and xt�� are independent, then I = 0. On the other hand, if xt com-

pletely determines xt�� , then the mutual information equals the scalar entropy.

To calculate the embedding dimension,m, I simply create a trajectory vector

that is big enough to be consistent with a deterministic description. I can check

this with a number of statistics, in practice I �nd it su�cient to check for

false neighbors and false tangent vectors.10 Consider a piece of the trajectory

embedded in an m�1 dimensional space. If the embedding dimension is not big

enough, some points|false neighbors|will appear close in m � 1 dimensions

which fail to be close in m dimensions. As soon as m is big enough, the number

of false neighbors should be close to zero. In addition, we can check for false

tangents|points close in the reconstructed phase space should have tangents

that are close. Again, to ensure determinism we need to increase the size of

the embedding space until there are no false tangents|thus ensuring that a

estimate of the tangent vector at point of phase space is at least possible. More

details with examples are found in the footnote.11

Our next goal is to try to estimate a vector �eld from reconstructed deter-

ministic data.

9A. M. Fraser and H. L. Swinney, Independent coordinates for strange attractors from
mutual information, Phys. Rev. A 33, 1134-1140 (1986); A. S. Weigend and N. A. Gershenfeld
editors, Time Series Prediction, Addison-Wesley (1994).
10M. B. Kennel, R. Brown, and H. Abarbanel, Determiningminimumembedding dimension

using a geometrical construction, Phys. Rev. A 45, 3111-3118 (1992)
11N. B. Tu�llaro et. al., Topological time series analysis of a string experiment and its syn-

chronizedmodel, Phys. Rev. E 51 (1), 164-174 (1995); N. B. Tu�llaro et. al., An experimental
approach to nonlinear dynamics and chaos, Addison-Wesley (1992).
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6 Vector �eld estimation

In considering the problem of vector �eld estimation it is helpful to think of a

simple Euler estimation for the numerical solution of the initial value problem.

One way to estimate (for small t) the next state is to start at the current state

and move in the direction of the tangent vector. There are two simple ways to

calculate the �nal state, via an explicit Euler integration scheme,

x(n+ 1) = x(n) + �tf (x(n)) (44)

or, an implicit scheme,

x(n + 1) = x(n) + �tf (x(n+ 1)): (45)

Unlike the numerical problem, in our case x(n + 1) and x(n) is given, and the

task is to estimate f . If we know the form of f then a least squares estimation

will usually su�ce in �tting the parameters. However, in the case of our recon-

structed state space we do not know the form of the vector �eld, and the best

we can hope for is to expand f is some basis,

f (z) =

NpX
I=0

p(I)�(I)(z) (46)

In this equation �(I)(z) denotes the set of basis functions and the p(I) are the

parameters whose values must be determined by the modeling procedure. I is

a vector index used to identify a particular parameter or basis function.

In practice we are confronted with number of problems. How do we go about

picking a basis set for the vector �eld expansion? How do we go about truncating

any basis set we pick, and how do we �t both the basis set parameters and

numerical integration parameters? For that matter, what numerical integration

should we try to �t to? How do we test the goodness of �t of the model we

generate? And, are there any nice algorithms for answering some or all of these

questions?

We will briey cover one approach to these issues described by R. Brown for

the case of chaotic attractors.12 We are currently working to extend these tech-

niques to include state space and vector �eld estimates based on multiple time

12See, Reggie Brown, Nikolai F. Rulkov, and Eugene R. Tracy, Modeling and synchronizing
chaotic systems from time-series data, Phys. Rev. E 49 (5), 3784-3800 (1994), for a much
more extensive coverage of this issues. Some additional papers of interest are: M. Giona,
Functional reconstruction and local prediction of chaotic time series, Phys. Rev. A 44 (6),
3496-3502 (1991); R. Brown, V. In, E. Tracy, Parameter uncertainties in models of equivariant
dynamical systems (preprint, 1995); R. Brown and R. Rulkov, Synchronization of chaotic
systems: transverse stability of trajectories in invariant manifolds (preprint, 1996); R. Brown,
N. Rulkov, and N. Tu�llaro, Synchronization of chaotic systems: the e�ects of additive noise
and drift in the dynamics of the driving, Phys. Rev. E 50 (6), 4488-4508 (1994); U. Parlitz
et. al., Reconstructing physical variables and parameters from dynamical systems, Int. J. Bif.
and Chaos 4 (6), 1715-1719 (1994).
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series taken over a range of internal parameters in order to construct a behavioral

model. This class of models and �tting problems is studied in the control litera-

ture where it is called structure identi�cation of linear-in-parameters nonlinear

dynamic models.13 The issues of model �tting and optimal model truncation

can be handled with ideas from statistical inference, namely, the methods of

maximum likelihood (ML), and minimum description length (MDL), respec-

tively.

The choice of the basis set depends on the speci�c problem. For instance, if

the dynamics on the attractor are of interest (i.e., no transients), then Brown

argues that a basis set orthonormal on the natural measure (which is relatively

straight-forward to construct by Gram-Schmidt orthongonalization) is a good

choice based on considerations of numerical stability. Other authors report using

(perhaps nonorthogonal) polynomial or trigonometric bases.14

Given a basis set for the vector �eld f , one possible method of integration

is the Adams predictor-corrector method (which should provide better �ts for

less data than a straight Euler method),

x(n+ 1) = x(n) + �t

MX
j=0

a
(M)
j f (x(n+ 1� j)) (47)

where a
(M)
j are the implicit Adams predictor-corrector coe�cients, and M is

the order of the method. In our case, we keep the standard predictor-corrector

coe�cients, we are given the x(n), and our task is to �nd f .

Brown shows that the maximum likelihood method (which is just least

squares in this instance) gives a �tting function of the form (see footnote [12]

for more details),

�2ML =
1

2N�2

NX
n=1

������x(n+ 1)� x(n)��t

MX
j=0

a
(M)
j

NpX
I=0

p(I)�(I)(x(n+ 1� j))

������
2

:

(48)

The �tting equation leads to a unique solution once the order of the polyno-

mial and the order of the Adams method is speci�ed. Clearly, by taking both

of these parameters to be large, a good �t can be achieved, but the number of

parameters could easily be as large as the original data set. What we would

like is an objective way of truncating the models. One answer to this kind of

question is provided by the minimum description length principle, which is an

extension of the maximum likelihood principle.

13R. Harber and H. Unbehauen, Structure identi�cation of nonlinear dynamic systems|A
survey on input/output approaches, Automatica 26 (4), 651-677 (1990)
14T. Eisenhammer et. al., Modeling experimental time series with ordinary di�erential equa-

tions, Biol. Cybern. 65, 107-112 (1991).
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Let X denote the entire data set, and � the parameter set. The ML principle

selects a model by minimizing

�2ML = � log2 [P (Xj�)] ; (49)

where P (Xj�) is the joint probability of obtaining X and �. The size of the

model is a given in ML. The MDL principle selects a model by minimizing

�2MDL = � log2 [P (X ;�)] ; (50)

where P (X ;�) = P (Xj�)P (�) is the joint probability of obtaining X and �,

and P (�) is the probability of obtaining �, which uses the joint probability for

obtaining the optimal size of a model. Roughly, the MDL principle tries to �nd

the smallest encoding of the data and the vector �eld. Brown shows that this

leads to a modi�ed �tting functional of the form

�2MDL = �2ML +
Mp

2N

�
ln(2�eN=Mp) + ln(k�k2)

�
: (51)

The new term is a penalty function for the size of the model. Rissanen has shown

that this type of MDL �tting function has a unique minimum, thus (assuming

the numerics can be evaluated) we can uniquely select a truncated model to

encode the data.

The modeling procedure just outlined has successfully been applied to a

number of experimental systems including the string experiment, chemical re-

actions, and discrete nonlinear circuits.

Empirical models constructed by these methods can be validate by a number

of conventional (i.e., model error and residual analysis) and novel (synchroniza-

tion and topological organization) methods. For instance, if the accuracy of the

models for short term prediction is of interest, the relative prediction error,

�E =

�������
1

N

NX
n=1

���x(n+ 1)� x(n) ��t
PM

j=1 a
(M)
j f (x(n+ 1� j))

���2
jx(n+ 1)� x(n)j2

�������
1=2

(52)

is calculated. This is the di�erence between the measured and model prediction

normalized by the jump size taken by the integration step.

7 Current Research

To extend these techniques to behavioral modeling a number of technical and

practical problems must be addressed. Here, I will mention the problems and

pathways toward solutions.

1. How to handle multiple input signals?

14



If the input signals are generated by a deterministic process, then consider a

higher-dimensional equivalent autonomous system. As a practical matter, the

most straightforward way to proceed is to sample the input signals and create

an embedded version of the input signals. Then tack this input space onto our

model for the output space. This should create a deterministic model of the

combined input-output space. A similar procedure should also be useful when

the input signal is stochastic.15

2. How to handle (internal) parameter dependence?

Again, \parameter" dependent systems can be viewed as parameter free systems

at the cost of higher dimensionality. Parameters become variables for training

purposes. There are (di�cult?) technical issues associated with e�ciently train-

ing these larger dimensional models.

3. How to train on multiple data sets including transients?

The ML and MDL �tting functions can be modi�ed to handle multiple data

sets. Same problem as before, evaluating the new �tting function e�ciently. Is

there any \natural" choice for a basis set here?

4. How to design \optimal" input signals?

Currently, the procedure is to over sample the state space and \interpolate."

One approach to designing a more e�cient procedure would begin by considering

the Fisher information matrix M ,

M = E

 
@ logP (Xj�)

@�

�
@ logP (Xj�)

@�

�T!
(53)

and to choose the experimental input U so that the Cramer-Rao lower bound

M�1 is minimized under the input constraints.

5. Can these procedures be automated?

Yes. The real question is, does the class of problems solved justify the expense

of automation? For components modeled by a few (< 7?) ODE's, automation

would represent a \nonlinear network analyzer." The success of a linear net-

work analyzer, from an engineering point is view, is based, in a large measure,

to the degree to which it buries the state space description. Can a similar the-

ory/procedures be developed for this class of models? Probably not. But we

can incorporated more analysis and functionality into instruments to bury the

theoretical elements of these state space procedures.

Daniel Usikov and coworkers have recently developed a program that demos

the automation of some of these modeling techniques.

15M. Casdagli, A dynamical systems approach to modeling input-output systems, in Nonlin-
ear modeling and forecasting, edited by M. Casdagli and S. Eubank (Addison-Wesley, 1992).
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6. Are there other alternatives?

Certainly, however for systems that can be accurately modeled by (almost sta-

tionary, low noise, low dimensional) di�erentiable dynamical systems, this mar-

riage of dynamical systems theory and statistical inference theory would seem to

be a good framework for addressing both the theoretical and practical questions

associated with building nonlinear models.

This technical report describes the ground work for our nonlinear modeling

technologies. Future technical reports will go into detail about the speci�c

solutions we are developing to build accurate models for nonlinear (electronic)

systems directly from input-output measurements.
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