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Phase space reconstruction using input-output time series data
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In this paper we suggest that an extension of a procedure recently proposed by Waylandet al. @Phys. Rev.
Lett. 70, 580 ~1993!# for recognizing determinism in an autonomous time series can also be used as a
diagnostic for determining an appropriate embedding dimension for driven~‘‘input-output’’ ! systems. We
compare the results of this extension to the results produced by the extensions to the method of false nearest
neighbors put forward by Rhodes and Morari@Proceedings of the American Control Conference, Seattle,
edited by The American Automatic Control Council~IEEE, Piscataway, 1995!# and the method of averaged
false nearest neighbors by Caoet al. @Int. J. Bifurcation Chaos8, 1491~1998!#. @S1063-651X~99!12510-8#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

In this paper we suggest that an extension of a proced
recently proposed by Waylandet al. @1# for recognizing de-
terminism in an autonomous time series can also be use
a diagnostic for determining an appropriate embedding
mension for driven~‘‘input-output’’ ! systems. We compar
the results of this new diagnostic with the results of tw
other diagnostics recently proposed in the literature@2,3#.

The paper by Casdagli@4# is a common starting point fo
many researchers when faced with the problem of apply
nonlinear dynamics techniques to the modeling of syste
using input-output time series data. The main idea dra
from this paper is that an extended phase space can b
constructed from the input and output time series. If we
note the output time series byy(t) and the input time serie
by u(t) then an extended reconstructed phase space for
autonomous systems can be formed with vectors

z~ t !5@y„t2~k21!s…, . . . ,y~ t2s!,y~ t !,

u„t2~ l 21!s…, . . . ,u~ t2s!,u~ t !], ~1!

wherek is the embedding dimension of the output time ser
and l is the embedding dimension of the input time seri
We have assumed that the time delays is the same for the
input and the output time series although this need not be
case. In the following we assume that an appropriate t
delay has been found. An appropriate value for the time
lay can be found using methods such as autocorrelation@5#
or mutual information@6#. In addition we will normalize all
time series~to lie in the range22 and 2) for reasons to b
discussed later.

For a given time delay the problem is to design a dia
nostic to find appropriate values fork and l from time series
data. Rhodes and Morari@2# have extended the false neare
neighbor algorithm of Kennelet al. @7# to determinek and l.
More recently Caoet al. @3# have suggested an alternativ
method by extending the work of@9#. The work of@9# is in
itself an extension of the false nearest neighbor met
called averaged false nearest neighbors. In this paper w
PRE 601063-651X/99/60~4!/4008~6!/$15.00
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gue that the method of Waylandet al. @1# can similary be
extended to provide such a diagnostic.

The outline of this paper is as follows: In the next secti
we describe the Wayland method for detecting determin
in a time series, and explain why it can be used as a d
nostic for determining an appropriate embedding dimens
for phase space reconstruction. We reinforce our conten
with an example using data from the chaotic Lorenz syste
We then introduce our scheme for reconstruction us
input-output time series data by extending the Wayla
method. To illustrate our technique we apply it to data fro
Duffing’s equation and to data obtained from a model o
bipolar junction transistor~BJT!. We compare our results
with those obtained from an implementation of the metho
of @2# and @3#.

II. WAYLAND METHOD

According to Waylandet al. @1# a time series is said to b
deterministic if the reconstructed vectors

x~ t !5@y„t2~k21!s…, . . . ,y~ t2s!,y~ t !#

can be modeled as the iteration of a continuous functionf. A
test for continuity can be developed based on the fact
points close together will map to points close together un
a single iteration of the mapf.

Let x0 be a reference vector chosen fromx(t),t
51,2, . . . ,N, and letx1 ,x2 , . . . ,xm be them nearest neigh-
bors of x0 chosen fromx(t),t51,2, . . . ,N. In addition, we
ensure that none of these points are~strongly! temporally
correlated. Lety0 ,y1 , . . . ,ym be the images of the vectorx0
and its neighbors respectively. If the data is determinis
and correctly embedded we expect the translation vector

v j5yj2xj

to be nearly equal provided the near neighbors are withi
small region of phase space. Waylandet al. quantify this
insight by computing the translation error
4008 © 1999 The American Physical Society
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Etrans5
1

m11 (
j 50

m iv j2^v&i2

i^v&i2
,

where

^v&5
1

m11 (
j 50

m

v j .

This local translation error is extended to a more global m
sure of translation error by choosingNr random reference
vectors fromx(t),t51,2, . . . ,N. For each reference vecto
we compute an associatedEtrans and then calculate the glo
bal translation errorE5median(Etrans).

In addition to the embedding dimensionk and the time
delays there are two other free parameters. These areNr the
number of reference vectors andm the number of near neigh
bors. We will remove the parameterNr by using all embed-
ded data points as reference vectors just like the extens
in @2# and@3#. In so doing we will takeE to be the average o
Etrans rather than the median.E is thus a function of embed
ding dimension. Following Cao@9# we will calculate the
quantity

e~k!5
E~k11!

E~k!
.

The translation errorE(k) will generally decrease with in
creasing embedding dimension. Ask increasese(k) will
typically rise; however, there will be a marked change~a
decrease! in the slope ofe(k) when a suitable embeddin
dimension is attained. This change is distinctive and thek at
which it occurs is what we will choose as the embedd
dimension. There is even the possibility of an increase
E(k) for largek due to decorrelations in the embedded da
In this casee(k) will begin to decrease and the decrease
slope will correspond to a local maximum ofe(k). We will

FIG. 1. Plot of e(k) for various numbers of near neighbor
d –m55, * –m510, andx–m520. We notice that a maximum o
e(k) occurs atk54 for all curves. We thus conclude thatk54 is a
suitable embedding dimension, which is consistent with known
sults.
-
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n
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study how robust this prescription is to the observatio
noise level in the data and the numberm of neighbors chosen
in the calculations.

III. INPUT-OUTPUT DIAGNOSTIC

The above diagnostic can be extended to input-out
time series data in a simple manner. The scheme is es
tially the same but the method of determining nearest ne
bors is modified. The nearest neighbors of a vectorx0 are
instead determined in the extended reconstructed space
the vectorsz(t) @see Eq.~1!#. The vectorx0 is associated
with a vector z0. Let z1 ,z2 , . . . ,zm be the ~decorrelated!
nearest neighbors ofz0. We denote bywj the images of these
near neighbors. For eachzj , j 51,2, . . . ,m we project down
to the ‘‘x’’ subspace, i.e.,xj5Czj and yj5Cwj where C
picks out the parts ofz(t) constructed using the output tim
series. We calculate the translation error as before with th
vectors.

We note that the inputs can possibly be deterministic
stochastic. For deterministic inputs continuity in input-outp
space can be assured by an application of Taken’s theore
this extended phase space. The case of stochastic forci
more subtle but results of Starket al. @8# can be applied. A
simple minded explanation of the scheme is based on the
that vectors close in reconstructed phase space subje
similar inputs should end up in the same place.

The choice of the near neighbors in this extended rec
structed space may be dominated by closeness in re
structed phase space or closeness in the reconstructed
phase space. For example two vectors may be deemed
in the extended phase space because their distance ap
phase space masks the difference in the inputs. The two
tors although close in phase space could be subjecte
vastly different inputs thus compromising the translation
rors. To avoid this eventuality we suggest normalizing t
output and input time series.

Once again following the paper of Caoet al. @3# we cal-
culate

e~k,l !5
E~k11,l !

E~k,l !
.

To distinguish between different values ofl we choose the
e(k,l ) for which k1 l is a minimum. We also favor values o
k and l where l .k. For example ife(k,l ) suggests two
choices (k,l )5(2,2) and (k,l )5(1,3) say, we will choose
the latter. A reason for this choice comes from our interes
modeling electronic device components@10# for the purpose
of simulations. We believe a model with as little feedback
possible, i.e., smallk, should be more stable under iteratio
than a model with largek.

IV. EXAMPLES

We present an example illustrating the effectiveness
the method when applied to output time series data. T
output data is obtained by integrating the chaotic Lore
equations. For this example appropriate embedding dim
sions are known from studies elsewhere~see for example
Abarbanelet al. @11#!. We study how robust our prescriptio
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is to observational noise in the data and the number of n
neighbors in the diagnostic.

We present two examples to illustrate the effectivenes
our extension to the Wayland scheme to accomodate in
output time series data. In the first example we consider d
from Duffing’s equation. Once again we study the robustn
of our method to observational noise on the input and ou
time series, and the number of near neighbors on the d
nostic. We also compare the results of our method to
results produced by using the methods suggested by Rh
and Morari @2# and Caoet al. @3#. The second data set w
study using our method is obtained from simulating a mo
of a bipolar junction transistor~BJT!, the Ebers-Moll model
@12#.

A. Output time series

The Lorenz differential equations are

u̇5s~2u1v !,

v̇5ru2v2uw,

ẇ52bw1uv,

where fors510, r 528 andb5 8
3 chaotic solutions are gen

erated. We generate time series data by integrating the
renz equations using a variable step-size Runge-K
method: matlab’sode23 routine, and output theu coordi-
nate every 0.01 time units after transients have diminish
~That is, we integrate long enough for the dynamics
evolve on the attractor.! We obtain a 10 000 point time se
ries, and determine a lags535 by choosing the first mini-
mum of the average mutual information function@6#.

We apply the Waylandet al.diagnostic for different num-
bers of neighborsm55, 10, and 20 and with a decorrelatio
interval of 10. The results are shown in Fig. 1. We see tha
an embedding dimension of 4 the slope ofe(k) decreases
and for all curves we actually obtain a local maximum. Th
an embedding dimension of 4 is suggested consistent

FIG. 2. Plot ofe(k) with m510 for data sets corrupted wit
observational noise.d50%, *55%, x510%, o520% and1
540%. We see that the decrease in the slope ofe(k) at k54
persists for noise levels upto 10% but then degrades thereafte
ar
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known values. We also notice that this value appears to
sist with respect to the number of near neighbors used in
diagnostic. We have obtained similar results for even hig
numbers of nearest neighbors, and so to reduce the num
of figures we shall henceforth present only the results
m510.

To see how robust the diagnostic is to noise in the data
add observational noise at various levels. The noise adde
zero mean Gaussian with standard deviations
5%,10%, 20%,and 40% the standard deviation of the cl
Lorenz signal. In Fig. 2 we show howe(k) varies for m
510 on each of the noisy data sets. As the noise level in
data increases we no longer see a local maximum atk54.
All curves, however, show a decrease in their slopes a
embedding dimesion of 4 although there is a grace

FIG. 3. Plot of e(k,l ) for l 51, . . . ,5. d- l 51, * –l 52, x–l
53, o–l 54, and1 –l 55. We see that choosingk52 andl 51 is
a suitable and minimal choice for embedding the Duffing inp
output time series data.

FIG. 4. Plot ofe(k,l ) for l 51, . . . ,5. d –l 51, * –l 52, x–l
53, o–l 54, and1 –l 55. We see that the effect of the noise h
been to increase the dimension suggested by the diagnostic. E
ining the figure we see that the embedding strategy (k,l )5(3,1) is
suggested.
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dropoff in performance for noise levels above 10%. Th
despite the dropoff in performance the diagnostic appear
be robust against the effects of high levels of noise.

B. Input-output time series

The first example we use to study our method is Duffin
differential equation. This equation is given by

u̇5v,

v̇5u2u32ev1g cos~vt !.

We use parameter values that generate chaotic solutions
e50.25, g50.3, andv51.0. We consider the system as
driven system with the inputg(t)5cos(vt). We generate a

FIG. 5. Plot of the percentage of false nearest neighbors fl
51, . . . ,5. d –l 51, * –l 52, x–l 53, o–l 54, and1 –l 55. We
see that consistent with our diagnostic the method suggests em
ding with (k,l )5(2,1).

FIG. 6. Plot of Caoet al. E2 statistic for l 51, . . . ,5. d –l
51, * –l 52, x–l 53, o–l 54, and1 –l 55. We see that consis
tent with our diagnostic this method suggests embedding w
(k,l )5(2,1).
,
to

s

.e.,

10 000 point output time series by integrating the differen
equations and outputing theu component every 0.05 time
units after transients have diminished. The input time se
is obtained by evaluatingg(t) every 0.05 time unit. We use
a lag ofs526 by locating the first minimum of the averag
mutual information function applied to the output time s
ries.

In Fig. 3 we show the result of applying our diagnos
with m510 to clean input and output data. We see that
the casel 51, i.e., embedding using one input, there is
marked decrease in the slope ofe(k,l ) at k52. Since all
other curves do not show this decrease our diagnostic

ed-

h

FIG. 7. Ebers-Moll transistor model.

FIG. 8. Plot ofe(k,l ) for l 51, . . . ,5. d –l 51, * –l 52, x–l
53, o–l 54, and1 –l 55. We see that choosingk53 andl 51 is
a suitable and minimal choice for embedding the BJT input-out
time series data.



ts
o

d
w
em
e
-

-

o

a

a
e

ho
to

ly
c
n

d

0

nal

tic
e

he
all

ion
e
ed

e two
ith

ure

as a
en-

ro-

for
the
ard

or

b

-
ith

4012 PRE 60DAVID M. WALKER AND NICHOLAS B. TUFILLARO
gests embedding the output data in two dimensions (k52)
and using one input (l 51). To see how this answer persis
in the presence of noise we show in Fig. 4 the results
applying our diagnostic withm510 to data corrupted with
10% observational noise atboth the inputs and outputs. In
this case we notice that the effect of the noise has cause
suggested embedding dimension to increase, but even
such noisy data it was still possible to detect a suitable
bedding dimension. All curves show a marked decreas
the slope ofe(k,l ) at k53. Since we favor embedding pa
rameters with as small a value ofk1 l as possible, our diag
nostic suggests embedding usingk53 andl 51.

For comparison we show in Figs. 5 and 6 the results
applying the Rhodes and Morari scheme and the Caoet al.
scheme to the clean data respectively. In the Rhodes
Morari scheme the values ofk ~andl ) for which the percent-
age of false nearest neighbors drops to zero, or plateau’s
noise floor, are taken as the embedding parameters. The
bedding parameters suggested by the Caoet al. scheme are
those for which the curves plateau atE251. We see that
both schemes suggest embedding with (k,l )5(2,1), which is
consistent with the values suggested by our diagnostic.

The second example we study to compare our met
uses input-ouput data obtained from a nonlinear transis
We consider the Ebers-Moll model@12# for a BJT shown
schematically in Fig. 7. We obtain time series data by app
ing voltages across the base and emitter, and across the
lector and emitter. We integrate the circuit equations a
obtain the currents atI c and I b . For the purposes of this
study we will consider the currentI c as the output data an
the voltage across the collector and emitter,Vce as the input
data.

We integrate from time zero to time 1e26 outputing
every 1e210 steps. This generates approximately 10 0

FIG. 9. Plot of the percentage of false nearest neighbors fl
51, . . . ,5. d –l 51, * –l 52, x–l 53, o–l 54, and1 –l 55. We
see that consistent with our diagnostic the method suggests em
ding with (k,l )5(3,1).
f
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input-output data points. The voltageVbe consists of a fixed
dc-offset plus an amplitude modulated signal given by@1
1m sin(vmt)#Vc sin(vct), where m54/5, Vc55V, vm
550 MHz andvc55 GHz. The voltageVce ~our input se-
quence! consists of a fixed dc-offset and a one-tone sig
f 520 sin(50pt/T), whereT51e26s.

In Fig. 8 we show the results of applying our diagnos
with m510. ~We used a lag of 5 obtained by locating th
first minimum of the average mutual function applied to t
output data.! Studying the figure we see that the slope of
curves of e(k,l ) begins to decrease atk53. Once again
since we favor using a smallest total embedding dimens
as possible, a suitable embedding strategy is to choosk
53 andl 51. In Figs. 9 and 10 we show the results obtain
by using the diagnostics of Rhodes and Morari and Caoet al.
We see that the embedding strategies suggested by thes
diagnostics are consistent with the results we obtained w
our method.

V. CONCLUSION

We have demonstrated that an extension of a proced
originally proposed by Waylandet al. to recognize determin-
ism in an autonomous time series can also be used
diagnostic for determining an appropriate embedding dim
sion for a driven~‘‘input-output’’ ! system. We have shown
that the diagnostic is robust to the effects of noise and p
duces results consistent with those of other diagnostics.
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FIG. 10. Plot of Caoet al. E2 statistic for l 51, . . . ,5. d –l
51, * –l 52, x–l 53, o–l 54, and1 –l 55. We see that consis
tent with our diagnostic this method suggests embedding w
(k,l )5(3,1).
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