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We present the results of a preliminary investigation of
the use of nonlinear reconstructions to the modelling of input{
output time series data obtained from a nonlinear circuit. We
use radial basis function approximations and the extended
Kalman �lter is utilised to estimate the model parameters.
A circuit model of a GaAs FET oscillator is integrated to
generate the time domain data used to study our methods.

I. INTRODUCTION

In this paper we will attempt to reconstruct the dy-

namics of a nonlinear electric circuit model from data

using extended Kalman �ltering (EKF) and radial basis

function approximations. The problem of reconstructing

the dynamics of the nonlinear circuit, to be described

shortly, requires the modelling of input{output data. We

therefore suggest modi�cations to exisisting nonlinear

modelling techniques to account for modelling of input{

output data. The work described here is a preliminary

investigation of our methods to handle nonlinear systems

with inputs and outputs and we thus present the results

of various approaches whether good or bad.

The outline of this paper is as follows. In Section 2 we

introduce concepts from nonlinear dynamics which are

useful for reconstructing models from time series. The

functions we use to reconstruct the dynamics of the ex-

ample circuit are radial basis functions, and so we de-

scribe these functions in this section. The tool we use

in the following to estimate the parameters of our mod-

els is the extended Kalman �lter. We do not derive the

EKF, instead we quote the �nal algorithm and explain

how it can be used for parameter estimation in Section

3. In Section 4 we introduce the nonlinear circuit under

consideration. (We derive the governing equations in the

Appendix.) We choose a nonlinear circuit to test and

develop our methods since nonlinear circuits model real

physical devices and so our methods can ultimately be

tested experimentally. In Section 5 we reconstruct the

dynamics of the nonlinear circuit from output data ob-

tained by integrating the circuit model equations. We

reconstruct the dynamics for the case of zero driving,

i.e., no inputs, and for the case of non-zero driving. We

introduce a new class of models from those previously

studied which attempts to reconstruct the dynamics us-

ing input{output data. Finally we discuss the results in

a concluding section.

II. RECONSTRUCTION OF TIME SERIES

In this paper we report the results of a preliminary

investigation involving the nonlinear modelling of input{

output time series data for the purposes of short{term

prediction, simulation and ultimately characterisation of

nonlinear devices. (These are quite lofty goals but we

will be satis�ed with models that can be simulated for

a reasonable length of time, and this in itself is quite a

challenge.)

In the following we assume that we are given a scalar

output time series y(t); t = 1; 2; . . . ; N and a scalar input

time series v(t); t = 1; 2; . . . ; N . (The methods we present

are easily extended to deal with vector time series.) We

further assume that the output and input time series have

been embedded with a time delay embedding with lag

s to form an extended reconstructed phase space with

vectors

z(t) = [x(t); u(t)]

= [y(t); y(t � s); . . . ; y(t � (k � 1)s);

v(t); v(t � s); . . . ; v(t� (l � 1)s)]:

The paper of Casdagli [1] says this is a sensible way of

dealing with input{output data. We have proposed a di-

agnostic to determine the embedding parameters k and

l [2]. Rhodes and Morari [3] and Cao et al. [4] have also

developed diagnostics for �nding suitable embedding di-

mensions. In the above we have assumed that the inputs

are embedded with the same lag as the outputs although

this is not necessary. The output lag can be found by

standard methods such as choosing the �rst minimum of

the average mutual information function [5,6]. As yet

we have not developed a diagnostic which can �nd an

alternative lag for the inputs and so we use the same

embedding lag that is used for the outputs.

Our aim is to �nd a functional relationship (possibly

nonlinear) so that
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y(t + 1) = F [z(t)]

= F [x(t); u(t)]:

The functional relationship we study in this letter is a

radial basis function model. A radial basis function ap-

proximation is given by

y(t + 1) =

MX
i=1

!i�(ri);

where ri = kci � ztk. The !i are called the weights and

the ci are called the centres. The function � is the ba-

sis function, and common choices for � include Gaussian

functions and cubic functions. The basis functions we

will use here are Gaussian functions:

�(r) = exp(�
1

2
r
0��1

r)

Another function which may prove useful from an en-

gineering point of view is what we refer to as \Coshy"

functions given by

�(r) =
1

1 + cosh(��r)
:

We note that the \Coshy" functions can be readily re-

alised on a silicon chip using a simple analog circuit con-

sisting of a di�erential ampli�er followed by an analog

multiplier with bipolar transistors [7]. This suggests that

a hardware implementation of radial basis behavioural

models can be built into a \product". The Gaussian

function is not so tractable. Despite the possibilities of

using \Coshy" function models we present our results us-

ing Gaussian functions. (The results using \Coshy" func-

tions should be similar and may even be better. This is

a topic of future research.)

Radial basis functions are global function approxima-

tions with local features due to the location of the cen-

tres. The parameters to be estimated in a radial basis

approximation are the weights and the location of the

centres. The determination of the values for the weights

and the locations of the centres is a nonlinear optimisa-

tion problem. However, if the centres are chosen a priori

we reduce the problem to a least squares approximation

to �nd the weights. The scale parameters � can also be

estimated.

The other problem of radial basis function approxima-

tion is to determine an optimal number of basis functions

to use. If too few basis functions are used then impor-

tant dynamics may not be captured by the model. Too

many basis functions, however, can cause the model to

over�t the data, i.e., �t the noise as well as the dynamics.

Models which over�t the data tend to have poor predic-

tion performance when tested on unseen data sets from

the same source. We use the EKF in association with

description length ideas to determine a suitable number

of centres [8].

It is advantageous to consider a�ne terms in the radial

basis function approximation so that

y(t + 1) = � + �z(t) +

MX
i=1

!i�(kci � z(t)k):

III. EXTENDED KALMAN FILTER ALGORITHM

In this section we briey recall the extended Kalman

�lter update relations and system model before showing

how the algorithm can be used for parameter estimation.

The EKF is a statistical state estimator. Given a se-

quence of observations y(t), not necessarily scalar, the

EKF algorithm returns an estimate for the state x(t) and

an associated error matrix. The EKF is applied to sys-

tem models of the form

x(t + 1) = f(x(t)) + �(t)

y(t) = c(x(t)) + �(t)

where f and c are (possibly) nonlinear functions, �(t)

and �(t) are random variables assumed to have normal

distributions P (�(t)) � N (0; Q) and P (�(t)) � N (0; R)

respectively.

The EKF is derived under the assumption that all dis-

tributions are normal without proving prior normality

implies posterior normality. (This is true for linear sys-

tems but is only approximately true for small-noise non-

linear systems.) It is further assumed that the noise is

small enough so that Taylor's theorem can be used to

estimate the e�ects of the noise and consequently the

distributions all remain normal to su�cient accuracy.

The EKF update relations are [9]

Prediciton

m(t) = f(�(t � 1))

S(t) = Q+ A(t� 1)�(t� 1)A0(t� 1)

Correction

�(t) =
�
S(t)�1 +C

0(t)R�1
C(t)

�
�1

K(t) = �(t)C0(t)R�1

�(t) = m(t) +K(t)(y(t) � c(m(t)))

where A(t � 1) = (Df)�(t�1) and C(t) = (Dc)m(t). We

have assumed that the state x(t) is a random variable,

and the estimate of the distribution of x(t � 1) given

information up to time t� 1 is normal:

P (x(t� 1)jy(1); y(2); . . . ; y(t � 1))

� N (�(t� 1);�(t� 1)):
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Initially, P (x(0)) � N (�(0);�(0)). If f and c are lin-

ear functions the above update relations constitute the

Kalman Filter, and the resulting state estimates are op-

timal in a mean squared sense.

To see how the EKF can be used in the context

of parameter estimation, consider the following one{

dimensional example

x(t+ 1) = ax(t) + �(t)

y(t) = x(t) + �(t)

with a a known constant. This is one of the simplest

examples of state estimation, and the Kalman �lter is an

optimal state estimator. Now, suppose that a is unknown

but still assumed to be constant. We can use the Kalman

�lter, or more correctly the EKF, to simultaneously es-

timate the states x and the parameter a. The standard

way of doing this is to augment the parameter a with the

state vector. The system equations are now

x(t+ 1) = a(t)x(t) + �(t)

a(t+ 1) = a(t)

y(t) = x(t) + �(t)

Initially, the parameter a is assumed to be normally dis-

tributed with mean a(0) and covariance P (0). Observe

that there is no noise term in the equation for the evolu-

tion of the parameter. Our reason for not including such

a term is the stationarity assumption on the parameter

a. In many settings, however, the parameter equation is

written as

a(t+ 1) = a(t) + �(t):

N. B. Treating the parameter as a state variable makes

the system equations nonlinear, and so an EKF is used.

There is another way of tackling the problem of param-

eter estimation with the EKF. Suppose that the states

x(t) are known for each t. We can apply the EKF to the

following:

a(t+ 1) = a(t)

y(t) = a(t)x(t) + �(t):

The states x(t) are known, and it is only the parameter

a that requires estimation. The observation function is

here being regarded as a regression equation.

The above example illustrates two ways in which the

Kalman �lter can be used for parameter estimation. The

general system models are

Method 1

x(t+ 1) = f(x(t); a(t)) + �(t)

a(t+ 1) = a(t)

y(t) = c(x(t); a(t)) + �(t)

Here, simultaneous parameter and state estimation is in-

volved. The second system model is

Method 2

a(t + 1) = a(t)

y(t) = c(x(t); a(t)) + �(t)

In this case, the states x(t) are known and treated like

control inputs. This latter case seems more readily appli-

cable to our examples involving time{delay coordinates,

where we already have the embedded states. In general

these embedded states are constructed from noisy scalar

data, and so are themselves noise corrupted. That is, the

scalar time series is

y(t) = ŷ(t) + �(t)

where ŷ(t) is the true value but y(t) is observed. From

these we construct the time{delay vector z(t), which we

assume can be written as

z(t) = ẑ(t) + �(t)

where ẑ(t) is unknown and is constructed from the un-

known clean ŷ(t).

Since the known states x(t) are typically \noisy" the

latter method which assumes they are clean does not

cover the full problem of state and parameter estimation.

Whence the proposal of the �rst method to overcome this

noisy state problem.

We shall use the EKF with the set{up of method 2 to

perform parameter estimation to assumed function mod-

els c, for example, radial basis models. The set-up of

method 1 attempts to answer the much harder problem

of simultaneous parameter and state estimation and we

will not dwell further upon it here.

Since we are only going to consider the system mod-

els of method 2, we can simplify the EKF update equa-

tions somewhat. The evolution of the conditional mean

is �(t+ 1) = �(t) which means that (Df)�(t) is an iden-

tity matrix. Also the dynamic noise �(t) is not present so

Q is a zero matrix. Thus the prediction step can be com-

bined with the correction step, and with a little algebra

we can rewrite the EKF equations as:

K(t) = �(t� 1)C(t)0
�
C(t)�(t � 1)C(t)0 +R

�
�1

�(t) = �(t� 1) +K(t)(y(t) � c(�(t � 1)))

�(t) = �(t� 1)�K(t)C(t)�(t� 1)

We will use the EKF algorithm to esimate all parame-

ters of a Gaussian radial basis model. The system model

is given by

�(t + 1) = �(t)

�(t+ 1) = �(t)

c(t+ 1) = c(t)
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�(t+ 1) = �(t)

y(t) = �(t) + �(t)z(t) +

MX
i=1

!i(t)�(kc(t)� z(t)k) + �(t)

The EKF algorithm is applied to the above systemmodel.

IV. A NONLINEAR CIRCUIT MODEL

The electric circuit we study is a model circuit for an

oscillator. The transistor model used in the model circuit

is a simpli�ed version of a nonlinear GaAs FET (Gallium

Arsenide Field E�ect Transistor) model �rst proposed by

Curtice and Ettenberg [10]. The circuit model is similar

to the circuit models studied by Huang and Chu [11], and

also Liao and York [12]. A circuit diagram of the model

circuit is shown in Figure 1.
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FIG. 1. A nonlinear circuit model of a GaAs FET oscillator.

The model circuit elements consist of resistors, induc-

tors, and capacitors. Some of these elements have non-

linear characteristics, and hence the model circuit is non-

linear [13]. The nonlinear elements are the capacitances

Cgd and Cgs, the conductances Ggd and Ggs, and the

current element Ids.

The characteristic of Ids is described by

Ids = (a0 + a1v1 + a2v
2
1 + a3v

3
1)tanh(vds)

where

v1 = vgs(1 + �(vds0 � vds));

and where vds is the drain{source voltage, vgs is the gate{

source voltage, and the remaining terms are constants de-

termined by engineering measurements and experience.

The above model for the characteristic of Ids is known

as the Curtice-cubic model and was �rst described by

Curtice and Ettenberg [10].

The nonlinear capacitances are modelled by [14]

Cgd = Cgd0(1�
vgd

vbi

)�
1

2

Cgs = Cgs0(1�
vgs

vbi

)�
1

2 :

vgd is the gate-drain voltage and the remaining unde�ned

terms are constants.

The nonlinear conductances are modelled by

Ggd =
Is

vgd

(exp(
vgd

vnt

) � 1)

Ggs =
Is

vgs

(exp(
vgs

vnt

)� 1):

The new terms Is and vnt are constants, and also deter-

mined by engineering practice.

The linear elements have characteristics described by

Resistor:

v = Ri

Inductor:

v = L
di

dt

Capacitor:

v =
1

C

Z
idt

The dynamic behaviour of the circuit can be investigated

by studying the circuit equations derived from Kircho�'s

Laws. A detailed derivation of the circuit equations for

the circuit of Figure 1 is presented in the Appendix.

Using the parameter values speci�ed in the Appendix

the nonlinear circuit exhibits self{oscillations under zero

driving for certain values of the drain-voltage as we can

see from the bifurcation diagram shown in Figure 2. This

suggests that a Hopf bifurcation occurs for some value of

vD between 0:6 and 0:8 volts. The bifurcation diagram

was obtained by \brute-force". That is, we integrate the

dynamical system for a particular value of vD for a long

time to ensure transients have diminished and record the

values of the state after this time. We integrated the dy-

namical system using a variable step size Runge-Kutta

solver { Matlab's ode23 routine. After the initial tran-

sient we output the state of the system every 1:0 time

steps.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4

5

6

7

drain voltage

u(
1)
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FIG. 2. A bifurcation diagram of the nonlinear circuit
equations using the drain-voltage vD as a bifurcation param-
eter value. We see that for certain values of vD the circuit
exhibits self{oscillations which suggest that a Hopf bifurca-
tion has occured.

Initially, we attempt to reconstruct the dynamics of

the circuit model from three data sets. The �rst data set

is obtained by integrating the dynamical system under

zero driving, i.e., �ac = _�ac = 0, when vD = 1:0V . At

this parameter value the dynamical system exhibits self{

oscillations. We integrate the dynamical system from

time zero to time 200 with sampling time 0:01 time units.

The initial condition was ui = 0; i = 1; . . . ; 6. We ob-

serve the u3 coordinate. This generates 20; 000 data

points and we retain the last 10; 000 points to ensure

transients have diminished. A 500 point section of the

time series is shown in Figure 3(a). We refer to this data

set as the zero drive data set.

The dominant period in the above data is approxi-

mately 80 data points, i.e., T = 0:8 time units. If we

drive the dynamical system with sinusoidal driving at

frequency approximately 2�
T
� 7:85s�1 we can generate

resonant data. The second data set is obtained by inte-

grating the dynamical system as before but we include

a sinusoidal driving term of �ac = sin(7:85t)V . We refer

to this data set as the fast drive data set. A 500 point

section of the u3 time series is shown in Figure 3(b).

The third data set we generate is a slow drive data set.

This data set is obtained by integrating the dynamical

system with vD = 1:0V and a driving term of �ac =

sin(0:785t)V . A 3; 000 point section of the u3 time series

of this slow drive data set is shown in Figure 3(c).
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FIG. 3. (a) A section of the zero drive data set. (b) A
section of the fast drive data set. (c) A section of the slow
drive data set.

In nonlinear modelling it is important to reconstruct

an appropriate phase space in which to study the data.

As mentioned above we will use a time delay embedding

of the input and output time series data.

Analysing the zero drive data set by locating the �rst

zero of the linear autocorrelation function we �nd that

embedding the data with a lag of 18 is appropriate. We

use this lag for the fast drive data set and the slow drive

data set.

Using the method of false nearest neighbours [6] on

the zero drive data set with a lag of 18 we �nd that an

embedding dimension of 4 is suggested. We embed the

fast drive and slow drive data sets with this embedding

dimension.

We note that we have not considered the question of

how many past inputs and corresponding lags should be

used? We discuss our choices in the next section.

V. EKF RESULTS

In this section we will present the results of our at-

tempts at reconstructing the dynamics of the model cir-

cuit using output and input{ouput data.

A. Models from output data

We attempt to reconstruct the dynamics of the model

circuit using the zero drive output data, the fast drive

output data, and the slow drive output data. That is,

we do not use any knowledge of the input data. The
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purpose of this exercise is to demonstrate that the non-

linear dynamics of the circuit can be reconstructed from

data, and so it is appropriate to apply our methods to

this problem.

As mentioned above we use the EKF algorithm in the

guise of method 2 to reconstruct the dynamics from the

zero drive data set. We assume that the dynamics can

be adequately reconstructed using a radial basis function

model with Gaussian basis functions. We estimate all

parameters of the model, i.e., the constant, linear and

nonlinear weights, plus the location of the centres and

the Gaussian scales. In Figure 4(a){(b) we show a plot

of the Schwarz criterion and description length respec-

tively [8] to give a guide to the number of basis functions

to use. Examining these �gures we choose to reconstruct

the dynamics with 20 basis functions. We also recon-

struct the dynamics of the fast and slow drive data sets

using 20 basis functions.
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FIG. 4. (a) The Schwarz Criterion for increasing number
of centres. (b) The MDL Criterion for increasing model size.

We use the �rst 5; 000 points of the data set to estimate

the parameters of the models, and we use the second half

(the �nal 5; 000 data points) of the data set to perform

an error test. We only cycle through the training data

once.

The modelling errors of the model reconstructed from

the zero drive data set were RMS = 1:6158� 10�5. The

test error was RMS = 1:5827� 10�5. In Figure 5(a) we

show a 500 point section of a (noise{free) simulation of

the model. The appropriate section of the data is also

shown on the �gure. We see that the simulation follows

the original time series very well.

We repeat the above process for the fast and slow

drive data sets. The modelling errors of the model re-

constructed using the fast drive data set were RMS =

1:7979� 10�4, and the test error was RMS = 1:8009�

10�4. A 500 point section of a simulation of the model is

shown in Figure 5(b). We see once again that the simu-

lation follows the original data very well.

The modelling and test errors for the slow drive data

set were RMS = 3:6342�10�4 and RMS = 3:741�10�4

respectively. A simulated time series is shown in Fig-

ure 5(c). In this case, however, we see that the simulated

time series is not representative of the original data. This

suggests that more care should be taken in choosing the

reconstruction parameters, e.g., the time delay, embed-

ding dimension, number of basis functions etc. Indeed, by

examining the �rst zero of the linear autocorrelation for

the slow data set a lag of 200 is suggested rather than the

lag of 18 we used. Nevertheless, even with this inappro-

priate choice of time delay we have achieved satisfactory

one{step prediction errors.
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FIG. 5. (a) A section of the simulated data and the zero
drive data set. (b) A section of the simulated data and the
fast drive data set. (c) A section of the simulated data and
the slow drive data set. The simulated data is represented by
the solid line and the original data by the dashed line.

We have demonstrated that the dynamics of a nonliner

circuit model subject to di�erent drives can be recon-

structed satisfactorally using radial basis function mod-

els. The parameters of the nonlinear model were esti-

mated from output data alone, and no information about

the input data was used. This is �ne, however, a new

model of the dynamics had to be reconstructed for each

drive. We would like to use one model for all drives. We

try to address this problem in the next two sections. The

failure of the simulated orbit of the slow drive model also

suggests that it would be bene�cial to reconstruct the

dynamics by taking into account the inputs.

B. Output data models and input data

As a �rst attempt to reconstruct the dynamics of the

circuit using the fast drive input{output data we consider

an additive drive term to the model reconstructed using

the zero drive output data. That is, we assume the time

series can be modelled by

yt+1 = f0(xt) + L(ût); (1)

where yt is the output data, xt is the reconstructed out-

put time series, and ût is the reconstructed input time

series. f0 is the radial basis model reconstructed using

the zero drive time series. L(ût) is a linear model of the

input time series ut. The states ût are reconstructed us-

ing the same embedding strategies used to reconstruct

the states xt from the output time series yt.

We have chosen to use the same embedding strategy to

embed the inputs as we used to embed the output time

series. We know that reconstructing the correct phase

space is important, i.e., the choice of the embedding di-

mension and the time delay is very important for accurate

reconstruction of the dynamics. The same should be true

for the inputs. Indeed extensions to methods such as false

nearest neighbours have been proposed to determine the

number of past inputs to use and what the appropriate

time delay should be [3,4,2].

As mentioned above we shall use the same embedding

strategy to embed the inputs as we used to reconstruct

the states from the output data. We bear in mind, how-

ever, that improvements to our results may be possible

by utilising another embedding strategy.

We have also chosen to reconstruct a linear model for

the e�ect of the inputs. A nonlinear model such as a

radial basis function can also be considered.

Examining the di�erential equation (3) we see that the

drives are additive and of the form

u(t) =
1

CARA

_�ac:

For the fast drive data,

u(t) =
7:85

CARA

cos(7:85t);

and for the slow drive data set

u(t) =
0:785

CARA

cos(0:785t);

where t is sampled every 0:01 time units starting from0:0.

These are the inputs we use to form the reconstructed

inputs ût.

We use the EKF algorithm of method 2 to estimate

the parameters of L(ût). The EKF system model is

at+1 = at

yt = f0(xt) +

k�1X
i=0

atiut�i� + �t:

In the above, xt, ut, yt, and f0 are known and avail-

able. The term �t represents Gaussian noise with zero

mean and covariance R. � is the time delay and k is the

embedding dimension.

We will use the �rst half of the fast drive data set

to estimate the parameters ai. Using the reconstructed

fast drive states and assuming zero inputs the initial �t

of (1) had an error of RMS = 0:005 and the test error

was RMS = 0:005. After estimating the ai parameters

using the fast drive inputs we �nd the �tting errors to be

RMS = 0:001 and the test error to be RMS = 0:001.

As a second test we investigate how the reconstructed

model (1) generalises to a di�erent drive. Testing the

model using the parameters ai estimated above on the

slow drive data set and the slow drive inputs we �nd

an error of RMS = 0:0009. The error assuming zero

inputs is RMS = 0:001. This demonstrates that the in-

put model of (1) is suitable for short{term prediction of

input{output data and models reconstructed using one

type of drive can be used for accurate prediction of data

produced by a di�erent drive. Unfortunately, the simu-

lated (driven) orbits of (1) do not produce similar time

series to those produced by driving the nonlinear circuit

equations and so a di�erent approach is called for.

C. Models from input{output data

We have been able to reconstruct the dynamics of the

circuit under zero driving. A real physical circuit is

nearly always subject to driving. That is, under nor-

mal operating conditions the circuit is subject to input

forcing, and so the data to reconstruct the zero drive

dynamics is not available.
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Therefore, the approach followed in the previous sec-

tion is not apt. It may be possible to use, say, the fast

drive data as a new reference for the zero drive dynamics

and proceed as above. We shall not develop this idea

further here. Instead we shall attempt to reconstruct the

dynamics using input{output data at the same time.

The most obvious approach to follow is to append the

reconstructed output and input data to form new recon-

structed states. That is, the appended state is

zt = [xt ût];

where xt are the reconstructed output states and ût are

the reconstructed input states.

We shall reconstruct the dynamics using a radial basis

function approximation, so that,

yt+1 = � + �zt +

mX
i=1

!i�(rti); (2)

where rti = kci � ztk. We use the EKF algorithm to

estimate all parameters.

The data we use is the fast drive data set. We use

the �rst half of the data to estimate the parameters of

the model, and keep the second half for a test set. We

use the same embedding dimension and time delay as

before and reconstruct a model with 20 basis functions.

The embedding strategy for the outputs is the strategy

used to embed the inputs. The modelling errors for the

model were RMS = 3:869�10�4 and the test errors were

RMS = 3:866� 10�4.

A simulated (driven) orbit of the above model is shown

in Figure 6. We see that after an initial transient the

simulation begins to track the data but soon after settles

to a periodic orbit with period similar to the data but

not amplitude.
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FIG. 6. A simulated (driven) orbit of the nonlinear radial
basis model reconstructed using the input{output data of the
fast drive data set. The original output data is the dashed
line and the simulated orbit is the solid line. We see that after
an initial transient the simulated orbit has the same phase as
the original data but the amplitudes do not match.

The model can be used for one{step ahead predictions

on the slow drive data set, and reasonable performance is

observed. Driving the model with the slow drive inputs,

however, we do not produce a simulation representative

of the slow drive data sets.

D. Models from input{output data measured at the

nodes

In the previous sections we have regarded the nonlin-

ear circuit model as a dynamical system described by the

di�erential equation of (3). In so doing, we were able to

read{o� from the di�erential equation what the inputs

were, and obtain the output data by numerically inte-

grating the di�erential equation. The output data was

simply taken to be one of the solution coordinates of the

state of the dynamical system. That is, the system was

easily decomposed into a drive system and a response sys-

tem. The drive system was independent of the response

system.

In a test and measurement situation, however, it is the

node voltages which are measured. Referring to the cir-

cuit diagram of Figure 1 we would measure the voltage

at node 4 and consider these as the inputs. The outputs

would be obtained by measuring the voltage at, for ex-

ample, node 2. That is, the input time series would be

a sequence of measurements of e4 = u3 + vS , and the

output time series would be a sequence of measurements

of e2 = u1 + u3 + vS .

We observe that these time series are obtained by in-

tegrating the di�erential equation (3). Since the source{

load (drive) is a part of the nonlinear circuit there is a

feedback coupling between the drive and the response

system. That is, the drives are not independent of the

responses. There is thus a subtle issue as to what the

inputs actually are for the test and measurement of non-

linear devices.

In this section we will reconstruct the dynamics of the

circuit given the input{output time series obtained by

making measurements at the nodes 2 and 4. The output

time series is the voltage at node 2, i.e., e2, and the input

time series is the voltage at node 4, i.e., e4. We study

both fast and slow �ac driving as before. Figures 7(a){

(b) show sections of the fast and slow drive data sets

respectively. In both �gures the output time series is the

dashed line and the input time series is the solid line.
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FIG. 7. (a) A section of the fast drive node voltage data
sets. (b) A section of the slow drive node voltage data sets.
The solid line represents the voltage at node 4 (input) and
the dashed line represents the voltage at node 2 (output).

We will attempt to reconstruct the dynamics by using

radial basis input{output models described by (2). We

will use a lag of 18. In Figure 8 we show the results of a

false strands calculation applied to the output time series

data. An embedding dimension of four is suggested. The

embedding strategy used for the input data will be the

same as used for the output data. For comparison we

show in Figure 9 the results of applying the diagnostic we

developed as an extension to the Wayland scheme [15] for

detecting determinism to determine appropriate input{

output embedding dimensions [2]. The lag we used in this

case was 44 obtained by estimating the �rst minimum of

the average mutual information function. We see that the

outputs should be embedded in four or �ve dimensions

and two or three past inputs should be used.
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FIG. 8. A false strands calculation applied to the output
time series embedded using a lag of 18. We see that embed-
ding with an embedding dimension of four is appropriate.
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FIG. 9. A plot showing the results of our input-output di-
agnostic. The outputs should be embedded in four or �ve
dimensions and two or three past inputs should be used. The
lag used in the calculation was 44, chosen as an estimate to
the �rst minimum of the average mutual information function.

We �t a radial basis model with 20 Gaussian basis

functions. The EKF algorithm is used to estimate the

parameters. The modelling and test errors of the model

reconstructed using the fast drive node voltage data were

RMS = 0:0546 and RMS = 0:0544 respectively. The

model and test errors of the model reconstructed using

the slow drive node voltage data were RMS = 0:0273

and RMS = 0:0272 respectively. Figure 10(a){(b) shows

(driven) simulations of the fast and slow drive models re-

spectively. Once again we see that despite reconstructing

a model with good one{step ahead predictions the simu-

lations do not fully capture the behaviour of the original

data. For the slow drive simulation, however, some fea-

tures of the original data are apparent.
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FIG. 10. (a) A simulated (driven) orbit of the nonlinear
radial basis model reconstructed using the node voltage data
of the fast drive data set. (b) A simulated (driven) orbit of
the radial basis model reconstructed using the node voltage
data of the slow drive data set. The original output data is
the dashed line and the simulated orbit is the solid line.

VI. SUMMARY

We have demonstrated that the dynamics of a nonlin-

ear circuit model can be reconstructed from output data

and input{output data. We studied the model under dif-

ferent driving conditions to produce three data sets: a

zero drive data set, a fast drive data set and a slow drive

data set. We found that models with excellent short{

term prediction performance and good long{term simu-

lations could be reconstructed using output data alone,

although the simulation of the slow drive model was not

very good.

We also suggested two methods of reconstructing the

dynamics using input{output data. The �rst method is

applicable when the dynamics can be reconstructed from

data under zero driving conditions. The model consisted

of a radial basis model describing the zero drive dynam-

ics and a linear model of the inputs. (A nonlinear model

of the inputs can also be considered.) We found that al-

though accurate short{term prediction could be achieved

with this approach, long{term simulations produced time

series which were not representative of the data.

The second approach to nonlinear modelling of input{

output data was to reconstruct an appended state con-

sisting of the reconstructed output states and the recon-

structed input states. We used these appended states in

a radial basis function model to model the output time

series data. We found that the method was e�ective in

producing models with accurate short{term prediction,

and the simulated time series of the models were more

representative of the original data than the simulations of

the models produced by the �rst method of input{output

modelling.

The above methods demonstrated that the dynamics of

the nonlinear circuit can be reconstructed using data, but

further study is required in order to be able to use the re-

constructed models for simulation. The question of how

the dynamics reconstructed by a model using data from

one particular drive signal is representative of the dynam-

ics produced by the circuit subject to di�erent driving

also needs to be addressed.

We also pointed out that in a real test and measure-

ment process for electrical devices the response circuit

and the drive circuit are feedback coupled. This raises

the subtle question of what the inputs really are. Since

the voltages of the nonlinear circuit can only be mea-

sured at certain points (the nodes) we considered the

node voltages as input and output time series. For the

particular nonlinear circuit under study (Figure 1) we

chose the voltage at node 4 as the input and the voltage

at node 2 as the output. We demonstrated that accu-

rate short{term prediction was achievable using nonlin-

ear models reconstructed from input{output data. We

saw once again that long term simulation of the models

did not produce time series representative of the data,

although some features were reconstructed.

APPENDIX

The derivation of the circuit equations for the circuit

model shown in Figure 1 requires the construction of a

circuit graph [16]. A circuit graph for the circuit diagram

of Figure 1 is shown in Figure 11.
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FIG. 11. The circuit graph for the nonlinear circuit model.

If we denote the voltage at node i to be ei, and choose

node 6 as the datum-node so that e6 = 0, Kircho�'s

current law at nodes 2, 3, and 4 give the following system

of equations.

�i1 + i2 + i3 = 0

�i2 � i4 + i6 = 0

�i3 + i4 + i5 = 0

Substituting for the currents using the characteristics of

the elements, and making the change of variables fu1 =

e2 � e4; u2 = e3 � e4; u3 = e4 � vSg we �nd that the

system becomes

�

1

L1

Z
(vD � u1 � u3 � vS)dt+ Cgd( _u1 � _u2) +

Ggd(u1 � u2) + Ids +Cds _u1 = 0
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�Cgd( _u1 � _u2)� Ggd(u1 � u2) + Cgs _u2 +

Ggsu2 +
1

L2

Z
(u2 + u3 + vS)dt = 0

�Ids �Cds _u2 �Ggsu2 +
1

LA

Z
u3dt+

CA _u3 +
u3 � �ac

RA

= 0

Di�erentiating to remove the integrals, and converting to

a �rst order system we arrive at the following dynamical

system

_u1 = u4

_u2 = u5

_u3 = u6

_u4 =
CgdH+(Cgd+Cgs)F

CgdCds+CgsCgd+CgsCds

_u5 =
(Cgd+Cds) _u4�F

Cgd

_u6 = 1
CA

(F +G+H)

(3)

where

F = � _Ids �
1

L1
(u1 + u3 + vS � vD)�

( _Cgd + Ggd)(u4 � u5)� _Ggd(u1 � u2)

G = _Ids + ( _Cgs + Ggs)u5 + _Ggsu5 �
u6 � _�ac

RA

�

u3

LA

H = �

1

L2
(u2 + u3 + vS)� ( _Cgd +Ggd)(u5 � u4)�

_Ggd(u2 � u1) � ( _Cgs + Ggs)u5 � _Ggsu2

The drain{source, gate{drain, and gate{source voltages

are given by vds = u1, vgd = u1 � u2, and vgs = �u2

respectively.

For zero driving, i.e., �ac = _�ac = 0 the above dy-

namical system has an equilibrium solution at fu1 =

vD � vS ; u2 = �vS ; u3 = 0; u4 = 0; u5 = 0; u6 = 0g.

This equilibrium corresponds to the DC solution of the

model circuit.

In order to integrate the above dynamical system we

must assign cut{o� values to the characteristics of the

nonlinear elements. This is necessary since the charac-

teristics are approximations to the characteristics mea-

sured for real devices. The approximations are only valid

around the normal operating regime of the device, and

outside of such a regime the approximation no longer

holds. The cut{o�'s used to integrate the system were

Curtice{cubic model: If jvdsj > 1060

_Ids = (a1 + 2a2v1 + 3a3v
2
1) _v1sign(vds)

Capacitances: If vgs � 0:999999vbi

Cgs = 1000Cgs0

_Cgs = 0:

If vgd � 0:999999vbi

Cgd = 1000Cgd0

_Cgd = 0:

Conductances: If vgs > 103

Ggs = 1060

_Ggs = 1060:

If vgs = 0

Ggs =
Is

vnt

_Ggs =
Is _vgs

2v2nt
:

If vgd = 0

Ggd =
Is

vnt

_Ggd =
Is _vgd

2v2nt
:

The parameters of the circuit were set to the following

values.

Source:

LA = 15nH

RA = 50


CA = 0:03nF

vS = 0:1V

Gate:

L2 = 25nH

Drain:

L1 = 60nH

Curtice{cubic model:

a0 = 0:0563A

a1 = 0:1022AV �1

a2 = 0:0619AV �2

a3 = 0:00383AV �3

 = 1:63V �1

� = 0:047

Vds0 = 2:72V
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Capacitances and Conductances:

Cds = 0:135� 10�3
nF

Cgs0 = 0:45� 10�3
nF

Cgd0 = 0:1� 10�3
nF

vbi = 0:6516V

Is = 7:13� 10�12
A

vnt = 0:03146V

The drain{voltage vD is unspeci�ed as it is chosen to be

a bifurcation parameter ranging from 0V to 2V .
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