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Radial-Basis Models for Feedback Systems
With Fading Memory

David M. Walker, Nicholas B. Tufillaro, and Paul Gross

Abstract—We discuss how to build nonlinear input-output models of
low-dimensional deterministic systems for both static and dynamic (feed-
back) systems with “fading memory.” To build the dynamic models a new
form of radial-basis functions is introduced which, in the absence of an
input, have the property that they converge to a constant solution. The
utility of these models is illustrated by building accurate and stable models
for electronic circuits with dynamic (memory) effects.

Index Terms—Embedding, nonlinear, system identification.

I. INTRODUCTION

This paper describes a dynamical-systems approach to nonlinear
system identification [1]. In particular, we examine the question,
is it possible to build data-driven, stable, “free-running” models of
low-dimensional dynamic systems subject to stochastic drives? The
nonautonomous systems we consider can typically be divided into two
parts, an “internal” deterministic dynamics, and an “external” (possibly
stochastic) drive term. The “low dimensionality” mentioned above
refers only to the internal dynamics. Due to the data requirements
in higher-dimensional spaces, the methods are practically limited to
systems for which the asymptotic solutions of the internal dynamics
can be modeled with only a few degrees of freedom (typically less
than seven in our applications). Models of this type commonly arise
in electronic circuit applications [2]. The models are called “free
running” when they have feedback terms (also known as autoaggresive
terms) and the inputs to the model are the (time-dependent) drive
terms and a single set of (seed) initial conditions. Free-running models
often lead to unstable solutions, and thus are only of practical use
for short-term prediction [3], [4]. However, the systems we want to
consider often have the property that the input signals far in the past
have almost no effect on the present state—the so called “fading
memory” assumption [5]. As described by Boyd and Chua, fading
memory is closely related to the fact that the internal dynamics of the
system can have a unique asympototic state [6]. Therefore, in this
paper we explicitly build this property into our models in an attempt
to create stable, free-running dynamic models. Stable free-running
models have practical uses in applications involving simulation where
long term prediction is desirable.

The problem of nonlinear systems identification is large with many
unresolved issues. Generally, the problem can be divided into an
number of sub-problems such as excitation design, model structure
selection, modeling fitting and model verification [7]. We will briefly
describe how each of these issues is handled in the case studied,
however, our main aim is to illustrate how to build qualitativea priori
information into the identifiation procedure. In this respect, our paper
is similar to the recent paper of Aguirreet al. [8]
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We begin with a brief overview of a dynamical-systems approach
to input-output modeling. Other methods that have been developed for
nonlinear system identification include Volterra Series, neural nets, and
cluster weighted models to name a few [9].

A dynamical-systems approach to “black box” or “behavioral mod-
eling” based on the Takens Embedding Theorem was first suggested
by Casdagli [10]. The use of delay variables in the structure of these
dyanamical models is similar to that originally studied by Leontaritis
and Billings [11], and is common in linear time-series analysis and
system identification [9].

This approach to nonlinear system identification is sometimes called
“dynamic reconstruction theory [12]” and begins with a state-space
representation

_x = f(x(t); u(t)) y(t) = h(x(t)) (1)

or their numerical version of difference equations

xn+1 = f(xn; un): (2)

In these equations,f , x, andu are typically vectors andu(t) is the
input, drive, or stimulus,x(t) is the state, andh(t) is a measurement
function. Attempts to build data-driven state-space models appear hard
on at least two counts. First, without any specific form for a model,
the relevant dynamical variablesx appear to be unknown and second,
even if we know what variables are needed to be included, they still
may not be accessible to experimental measurements. These issues,
essentially the nonlinear order and observability of the model, as well as
model selection and calibration are discussed below. Another essential
issue in building good models is excitation or experiment design. In
this paper, we describe the use of band-limited pseudorandom noise
in constructing black-box models. Lastly, a simple metric for model
validation is considered.

II. DYNAMIC RECONSTRUCTIONTHEORY, BASIS

FUNCTIONS, AND EXCITATIONS

The key idea of dynamic reconstruction is to embed the measured
input-output variables in a higher dimensional space built not just with
u(t), y(t), but also transforms ofu, y, for example their numerical
derivatives.

Due to a theorem of Takens (with an extension to the driven case
by Stark [13]) these embedded models can be faithful to the dynamics
of the original system. In particular, deterministic prediction is possible
from an embedded model which will mimic the actual dynamics. Thus,
embedding opens the way toward a general solution of extracting black
box models for the observable dynamics of nonlinear systems directly
from input-output time-series data. It can solve the fundamental exis-
tence problem for a class of nonlinear system-identification problems,
however, the gulf between these theoretical results and practical imple-
mentation is wide.

Practically, the components’ behavior is described by embedding
both the inputs and outputs in the form

y(t) = G[y(t� � ); y(t� 2�); . . . ; y(t� l�)

u(t); u(t� � ); . . . ; u(t� (k � 1)�)] (3)

whereG is fitted to the data using nonlinear modeling methods such
as global polynomials, neural nets, or radial-basis functions [9]. The
form of the equations shows a “lag” embedding with a time delay� ,
input-lag dimensionk, and output-lag dimensionl, though in practice
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we find that better quality models can often be built using other embed-
dings such as linear transforms, integral and differential transforms and
wavelets to help bring out the salient dynamical features in the data.

Given the above model form, the problem now reduces to a number
of technical issues such as: 1) determination of the dimensions (k and
l); 2) determination of lags (� ) or other forms of embeddings and em-
bedding parameters; and 3) determination of model classG and fitting
the model parameters, model validation and design of excitation sig-
nals (where possible) for a given model/signal class.

It might be helpful to point out that this relation between a contin-
uous dynamical system and an embedded model built from time-de-
layed input-output signals can be made explicit in the case of linear sys-
tems. The details for an algorithm are described in a book by Franklin
[14] which shows how to go from the linear system and it’s matrix rep-
resentation to a model based only on delayed variables. Unfortunately,
no explicit constructive proof exists for nonlinear systems.

In the nonlinear case, we can attempt to estimate the embedding pa-
rameters directly from the data. For embeddings built from a time delay
lag �

y(t+1) = G[y(t�� ); . . . ; y(t�l�); u(t); . . . ; u(t�(k�1)�)] (4)

we can use an extension of the algorithm for the theory of embedded
autonomous systems known as “false nearest neighbors [1]”. Basically,
we find the smallest “k” and “l” by creating a statistic that checks if
vectors close in a delay space are also close in a delay space of greater
dimension. If they are not, then we have false neighbors andG is not
single valued. This diagnostic is independent ofG . Examples of using
these and related algorithms in circuits are presented reference [15].

For models built from time delays we need to estimate� . Again,
we make use of a diagnostic from autonomous systems theory. We use
either the mutual information or the first zero of the autocorrelation
function in determining� [1].

Once we have a suitable embedding, we next turn to function approx-
imation ofG. The black-box models we reconstruct are radial-basis
function models. We have experience using such basis functions with
some success [16] but other basis functions can be used [9]. A ra-
dial-basis function which predictsy(t+1) using the reconstructed state
z(t) can be expressed as

y(t+ 1) = � + � � z(t) +

M

i=1

!i�(kci � z(t)k) (5)

where�, � and! are constant parameters to be estimated. Theci are
referred to as centers and determining their location and number are the
main difficulties in reconstructing the radial-basis models. We use the
methods developed by Judd and Mees [17] to help solve this problem.
These methods attempt to find a subset of centers from a candidate set
which best describes the data. Our candidate set will be taken from the
reconstructed data points. The function� is the basis function and a
common choice is to use a fixed-width Gaussian function.

Lastly, depending on the application, we build our models from
training sets using smooth, band-limited, aperiodic excitations. For
the examples shown, we use an excitation signal based on (an ISO95)
CDMA (code division multiple access) specification which are of the
form

u(t) = A cos(2�fct)

48

i=1

bi(t)pi (6)

where thebi are random 48-dimensional vectors taking the values�1
or +1 [18]. Thepi are coefficients of a low pass filter.A is a constant

amplitude andfc is a carrier frequency. The chip rate is one and the
bandwidth is roughly 5 kHz. Although the models are very sensitive to
the center frequency and bandwidth of the training signal, they appear
to be less sensitive to the exact form of the random excitation. The
excitation signal was chosen to excite several harmonics.

In the absence of any external excitation, many of the devices we
hope to model, converge to a unique (usually constant) solution. We
would like our models to have this property. We have developed the
following basis function to use in our models

�(kc� zk) = e
�(1=2v )kc�xk

� e
�(1=2w )kdk � e

�(1=2w )kd�uk (7)

where
x part ofz reconstructed using the outputs;
u parts ofz reconstructed from the inputs;
c “output” centers with the same dimension ofx;
d “input” centers with the same dimension asu;
v, w fixed-widths of “output” and “input”.

We set their values to be the standard deviations of the output- and
input-data, respectively. We note that, by design, whenu = 0 the con-
tribution of the basis function is zero leaving only the autoregressive
portion of the model in (5). Since the autoregressive portion will be
stable, the models prediction will converge to the type of response we
are looking for when there is no stimulus. The subset-selection method
based on a minimum-description-length criterium is used to determine
the centersd for the input space andc for the output space and is de-
scribed in detail by Judd and Mees [17]. Roughly, a set of centers is
chosen from the data points and the goodness of fit is determined from
both a least squares error term plus a penalty term for the size of the
model. Quadratic programming techniques are used to grow or shrink
the basis set so as to optimize the least squares mean error. Alterna-
tively, one could also try to fit the models by orthogonal least squares,
or stepwise regression [9].

It can be difficult to reconstruct a dynamic black-box model which
simulates well, that is, one whose outputs are stable and at least quali-
tatively the same as the actual device, if not exactly quantitatively ac-
curate. We will demonstrate that by using our proposed-basis function
of (7) accurate dynamic models under simulation can be reconstructed.

In addition to reconstructing feedback models we are also inter-
ested in constructing static models, in part to understand when feedback
models are necessary (there exists a large literature on how to model
the “static” nonlinearities of a system, see, for example, reference [7]).
Static models are functions which directly map the input to the output,
that is, no past simulated outputs are “fed back” into the model. Static
models are not expected to perform well when the device under study
exhibits strong memory effects. In this case, models with knowledge of
the internal state of the device should be expected to perform better. The
use of past outputs provides an approximation to the internal state. For
the purposes of comparison we reconstruct static radial-basis models
as well. A static model is of the form

y(t) = H[u(t); u(t� � ); . . . ; u(t� (l� 1)� ] (8)

and in this example we find the form

y(t+ 1) = H[u(t+ 1); u(t)] (9)

produced the best static models. Thus, our aim in this paper is twofold.
We want to show how a spread-spectrum excitation design is suitable
building black-box models and to introduce the basis function of (7) as
a good basis function to use in feedback models of electronic devices.
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Fig. 1. A high-frequency “analog” transistor circuit.

III. D ATA SETS AND MEASUREMENTS

We developed black-box models for a number of simple electronic
components (e.g., transistors) and simple circuits (e.g., amplifiers). An
example of a simple circuit we built a model for is shown in Fig. 1.

This particular circuit is meant to be a transistor ‘analog’ of a
high-frequency microwave transistor [19]. That is, the circuit at-
tempts to capture some of the dynamic effects that should be present
in microwave transistor but which are difficult to measure in the
time-domain due to the high frequency of its typical operation. Circuit
‘self-analogs’ of this type were built in the 1960s to study the dynamics
of microwave circuits. This particular circuit acts as an amplifier and
also tries to mimic certain (memory dependent) charge-storage effects
which should be active in the microwave amplifier in the gigahertz
regime and in our ‘analog’ circuit in a frequency range of around
0.5 kHz. Models are also built from numerical models and data from
simulations.

For the experimental data, voltage excitations are supplied and their
amplified response are measured using a nonlinear circuit measure-
ment system. The measurement system combines nonlinear-circuit-de-
vice models, arbitrary wave-form generation cards, analog-to-digital
cards, and a numerical software package all developed in and con-
trolled by, Matlab [20]. We can thus generate time-domain input-output
(stimuli-response) data for nonlinear circuit devices either in measure-
ments or simulations. The particular example we use in this study is the
high-frequency amplifier analog in Fig. 1 with the resonance frequency
set to 650 Hz. The drive signals we use as stimuli are the aforemen-
tioned CDMA type signal as well as periodic drive signals for some
additional tests. The data sets are labeled by the type of signal and the
carrier frequency. Thus,C500 refers to a CDMA signal with carrier fre-
quency 500 Hz. We generate numerous data sets of different types with
frequencies at 50-Hz intervals starting at 50 Hz and ending at 1200 Hz.
Voltage samples are equally spaced with a sampling frequency usually
about1=64th of the center frequency of the CDMA carrier. Thus, we
are sampling 16 kHz at Nyquist.

This is oversampled because memory constraints are not a consider-
ation. As described below, we typically decimate the data sets and use
only a fraction of them in building models. The number of points used

to build a given model is usually less than 20 000 points and can be as
little as 2000.

IV. M ODELS

In our first modeling attempt, the models we built used an embedding
of the following form:

y(t+ 1) = F [y(t� 1); y(t); u(t); u(t+ 1)] : (10)

It is known, however, from autonomous time-series studies that not all
data sets are best embedded using a lag of one, yet a dynamic model
with, say, an “optimal” lag of five did not simulate well. A possible
explanation for this discrepancy is that for models which predict one
time-step in the future we need to keep track of “extra dimensions”
when the lag is not one. For example, suppose we simulate the fol-
lowing model:

y(t+ 1) = F [y(t� 5); y(t)] : (11)

We see that although the model includes two state variables, we must
keep track of six values ofy, so implicitly the model is six dimensional.
Now after five iterations our implicit internal state consists entirely of
predicted values all of which have errors compounded. Keeping the unit
lags in our model implicitly could slightly decrease these compounded
errors.

Our experiments with our data sets appear to bear this out. However,
for the higher-frequency data sets where we have many samples per
carrier cycle using a lag of one is not appropriate. We overcome this
by decimating the data to have approximately 12 to 16 points per cycle
and then we reconstruct models of the form of (10) with this decimated
data. For example, for the data setC1200 we have approximately 48
points per cycle. We create four data sets by decimating the original
data by four, i.e., we take every fourth point. So, when we reconstruct a
model of the form of (10) we are essentially reconstructing a feedback
model of the form

y(t+ 4) = F [y(t� 4); y(t); u(t); u(t+ 4)] : (12)
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TABLE I
RESULTS OFSIMULATING RECONSTRUCTEDFEEDBACK VS STATIC MODELS

(a) (b)

(c) (d)

Fig. 2. Sections of feedback simulations for data sets. (a)C . (b)C . (c)C . (d)C . The solid lines are the actual device response and the crosses are
the simulated predictions.

We will see that by following this procedure, good results can be ob-
tained.

We present the results of modeling and simulating the CDMA data
sets with static and dynamic models in Table I. Table I has seven

columns. The first column indicates the data set and the second column
indicates the decimation used. The third column shows the “size”
of our best reconstructed feedback model, i.e., the number of model
coefficients. In column four, we give an error measure of the feedback
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model for out-of-sample drive signals and express this error in terms
of signal-to-noise in column five. We calculate the signal-to-noise
ratio using

SNR= 20 log
10

std(actual)

std(errors)
dB: (13)

We show the analogous results obtained by reconstructing and testing
static models on the same data in the remaining columns.

Typical results are presented in Fig. 2(a)–(d) where we show sections
of the time series produced by simulating the models compared to the
actual measured values of the device. We show the results obtained by
simulating the models reconstructed using theC300, C600, C900 and
C1200 data sets. Good agreement is seen in the figures as expected from
the numbers given in Table I. These simulations are also superior to the
results we obtained using the best static models we could reconstruct.
In most of the cases examined, the long-term solutions are not sensitive
to the initial seed value and, in the case of periodic drives, they appear
to converge to a unique solution.

V. CONCLUSION

We have shown how to construct stable, free-running, input-output
models for a class of electronic devices and circuits having fading
memory and (in the absence of a drive signal) converge to a constant
solution. The models are built from band-limited, spread-spectrum
excitations and such excitations provide a sufficiently rich training set
to make accurate predictions of periodic or similar spread spectrum
drive signals. Adding additional local and global properties appears
to be a promising avenue for research in building stable and accurate
black-box models.

ACKNOWLEDGMENT

The authors wish to thank R. Brown for some early discussions about
this investigation.

REFERENCES

[1] H. Kantz and T. Schrieber, Nonlinear Time Series
Analysis. Cambridge, U.K: Cambridge Univ. Press, 1997.

[2] N. Tufillaro, D. Usikov, L. Barford, D. Walker, and D. Schreurs, “Mea-
surement driven models of nonlinear electronic components,” inDig.
54th ARFTG Conf., Boston, MA, June 2000.

[3] K. Judd and M. Small, “Towards long-term prediction,”Physica D, vol.
136, no. 1/2, pp. 31–44, 2000.

[4] L. A. Aguirre and S. A. Billings, “Dyanamical effects of over-
parametrization in nonlinear models,”Physica D, vol. 80, no. 1,2, pp.
26–40, 1995.

[5] L. Chua, C. Desoer, and E. Kuh,Linear and Nonlinear Circuits. San
Francisco, CA: McGraw-Hill, 1987.

[6] S. Boyd and L. Chua, “Fading memory and the problem of approxi-
mating nonlinear operators with Volterra series,”IEEE Trans. Circuits
Syst., vol. CAS-32, pp. 1150–1161, Nov. 1985.

[7] R. Harber and H. Unbchauen, “Structure identification of nonlinear
dyanamic systems, A survey on input/output approaches,”Automatica,
vol. 26, no. 4, pp. 651–677, 1990.

[8] L. A. Aguirre, P. F. Donoso-Garcia, and R. Santos-Filho, “Use of a priori
Information in the Identification of Global Nonlinear Models–A Case
Study Using a Buck Converter,”IEEE Trans. Circuits Syst. I, vol. 47,
pp. 1081–1085, July 2000.

[9] N. A. Gershenfeld, The Nature of Mathematical Mod-
eling. Cambridge, U.K: Cambridge Univ. Press, 1999.

[10] M. Casdagli, “A dynamical systems approach to modeling input-output
systems,” in Nonlinear Modeling and Forecasting, SFI Studies
in the Sciences of Complexity, Proc, M. Casdagli and S. Eubank,
Eds. Reading, MA: Addison-Wesley, 1992, vol. XII.

[11] I. J. Leontaritis and S. A. Billings, “Input-Output parametric models for
nonlinear systems part I: Deterministic nonlinear systems,”Int. J. Con-
trol, vol. 41, no. 2, pp. 303–328, 1985.

[12] S. Haykin and J. Principe, “Making sense of a complex world,”IEEE
Signal Processing Mag., pp. 66–81, May 1998.

[13] J. Stark, “Delay Embeddings of Forced Systems: I deterministic
forcing,” J. Nonlinear Science, vol. 9, pp. 255–332, 1999.

[14] G. F. Franklin,Feedback Control of Dynamic Systems. Reading, MA:
Addison-Wesley, 1994.

[15] D. M. Walker and N. B. Tufillaro, “Phase space reconstruction
using input-output time-series data,”Phys. Rev. E, vol. 60, no. 4, pp.
4008–4013, 1999.

[16] D. M. Walker, R. Brown, and N. B. Tufillaro, “Constructing trans-
portable behavioral models for nonlinear electronic devices,”Phys.
Letts A, vol. 255, no. 4/6, pp. 236–242, 1999.

[17] K. Judd and A. I. Mees, “On selecting models for nonlinear time series,”
Physica D, vol. 82, no. 4, pp. 426–444, 1995.

[18] J. S. Lee and L. E. Miller,CDMA Systems Engineering Hand-
book. Boston, MA: Artech, 1998.

[19] B. T. Murphy, “Diode and transistor self-analogues for circuit analysis,”
Bell Syst. Techn. J., no. 4, pp. 487–502, 1968.

[20] J. King,Matlab for Engineers. San Francisco, CA: Addison-Wesley,
1998.

Generating Chaos in Chua’s Circuit via
Time-Delay Feedback

Xiao Fan Wang, Guo-Qun Zhong, Kit-Sang Tang, Kim F. Man, and
Zhi-Feng Liu

Abstract—A time-delay chaotification approach can be applied to the
Chua’s circuit by adding a small-amplitude time-delay feedback voltage to
the circuit. The chaotic dynamics of this newly derived time-delay Chua’s
circuit is studied by theoretical analysis, verified by computer simulations
as well as by circuit experiments.

Index Terms—Chaos, stability, time delay.

I. INTRODUCTION

Chua’s circuit is one of the physical systems for which the pres-
ence of chaos (in the sense of Shil’nikov) has been established experi-
mentally, confirmed numerically, and proven mathematically. In recent
years, Chua’s circuit has become a standard model for studying chaos
in systems described by finite-dimensional ordinary differential equa-
tions [1].

Synchronization of chaotic Chua’s circuit with application to secure
communication has also been investigated. However, a classic Chua’s
circuit is a third-order continuous-time autonomous system which can
only produce low-dimensional chaos with one positive Lyapunov ex-
ponent.
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