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We discuss how to build nonlinear input-output models
of low-dimensional deterministic systems for both static and
dynamic (feedback) systems with \fading memory." Radial
basis functions are used to build the models. The utility of
these models is illustrated by building accurate and stable
models for electronic circuits with dynamic (memory) e�ects.

We are developing techniques for building black-box
models for a number of simple electronic components
(e.g. transistors) and circuits (e.g. ampli�ers) [1-12]. An
example of a such a circuit we built a model for is shown
in Fig. 1.

FIG. 1. A high frequency \analog" transistor circuit.

This particular circuit is meant to be a transistor `ana-
log' of a high-frequency microwave transistor [13]. In ad-
dition to acting as an ampli�er, this circuit also tries to
mimic certain (memory dependent) charge storage e�ects
which should be active in this example in a frequency
range around 0.5 kHz. Models are also built from nu-
merical models and data from simulations.
The notion of a system having \fading memory" is that

input signals far in the past should have almost no e�ect
on the present state. A precise mathematical de�nition of
this concept is usually stated in the space of input/output
functional (integral) equations. Boyd and Chua hint that
the notion of fading memory should also have a (di�eren-
tial) state space formulation [4]. In the following exam-
ple, we show that the essential ingredients of such a state
space formulation is that the attracting solution should
forget both its initial condition and input sequences far
in the past. Both conditions are usually ful�lled if the
system has a unique attracting �xed point.

Consider a closed RC circuit driven by a voltage source
vs. The voltage around a closed loop is

vs � VC � VR = vs �
1

C

Z
t

0

idt�Ri = 0 (1)

or, di�erentiating with respect to time,
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R

dvs

dt
: (2)

The voltage source is triangular wave form de�ned as
follows. For an integer n and a real time

� = tn+1 � tn; (3)

vs is a linear function of the voltage with slope plus or mi-
nus one. The slope's sign randomly changes sign at each
instant indexed by n. The waveform is thus a random
walk. By construction,

dvs

dt
= sn; sn 2 f�1;+1g (4)

generates a random sequence of form

f: : : ;+1;+1;�1;+1;�1;�1;�1;+1; : : :g:

The equation of motion for the current is then
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=
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1

R
sn: (5)

Depending of the sign sn, the equation contains two pos-
sible equilibrium points (di�=dt = 0),

i� = Csn; sn 2 f�1;+1g: (6)

When t 6= tn, n = 0; 1; 2; : : :, the equation of motion
is easy to solve by considering the motion relative to the
equilibrium point,

y = i� Csn; (7)

then
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dt
=
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y (8)

with solution

y(t) = y0e
�
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RC
t
: (9)

1



Next the current is found in the original coordinates at
each tn+1 (i(n�) = in),

in+1 = e
�

1
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�
in + C(1� e

�
1

RC
� )sn: (10)

Now to make the example as simple as possible, set

e
�

1

RC
� =

1

3
: (11)

which implies

in+1 =
1

3
in +

2

3
Csn; sn 2 f�1;+1g: (12)

Lastly, we can solve for in+1 in terms of past values of
the drive voltage and initial condition. First, rescale the
current by C (j = Ci),

jn+1 =
1

3
jn +

2

3
sn: (13)

Next solve for jn+1 in terms of m iterations in the past
(d = 0; 1; 2; :::),

jn+1 =
1

3m+1
jn�m +

2

3

mX
d=0

1

3d
sn�d: (14)

Note that the sum in the series is a geometric series so the
sum is dominated by the �rst few terms. Fading memory
is easy to see in this result. For large memory depth, m,
the current value of jn+1 has little dependence on jn�m

and the higher order terms in
P

m

d=0

1

3d
sn�d.

Returning to our experimental example, for the ex-
perimental data, voltage excitations are supplied and
their ampli�ed response are measured using a nonlinear
circuit measurement system. The measurement system
combines nonlinear circuit device models, arbitrary wave
form generation cards, analog-to-digital cards and nu-
merical software package all developed in, and controlled
by, Matlab [14]. We can thus generate time domain
input-output (stimuli-response) data for nonlinear circuit
devices either in measurements or simulations. The par-
ticular example we use in this study is the high frequency
ampli�er analog in Fig. 1 with the resonance frequency
set to 650Hz. The drive signals we use as stimuli are a
type of CDMA like signal as well as periodic drive signals
for some additional tests. The data sets are labelled by
the type of signal and the carrier frequency. Thus C500

refers to a CDMA signal with carrier frequency 500Hz.
We generate numerous data sets of di�erent types with
frequencies at 50Hz intervals starting at 50Hz and end-
ing at 1200Hz. Voltage samples are equally spaced with a
sampling frequency usually about (1/64)th of the center
frequency.
This is greatly oversampled because memory con-

straints are not a consideration. As described below, we
typically decimate the data sets and use only a fraction
of them in building models. The number of points used

to build a given model is usually less than 20,000 points,
and can be as little as 2000.
The circuits behavior is described by embedding both

the inputs and outputs in the form

z(t) = F [y(t� �); y(t� 2�); :::; y(t� l�);

u(t); u(t� �); :::; u(t� (k � 1)�)] (15)

where F is �tted to the data using nonlinear modeling
methods such polynomials or neural nets. The models we
built in this example used an embedding of the following
form:

y(t+ 1) = F
�
y(t� 1); y(t); u(t); u(t+ 1)

�
: (16)

We found that the best models could be build by deci-
mating the data to have approximately 12 to 16 points
per cycle, and then we reconstruct models of the form
of Eq. 16 with this decimated data. For example for the
data set C1200 we have approximately 48 points per cycle.
We create four data sets by decimating the original data
by four, i.e., we take every fourth point. So, when we re-
construct a model of the form of Eq. 16 we are essentially
reconstructing a feedback model of the form

y(t+ 4) = F
�
y(t� 4); y(t); u(t); u(t+ 4)

�
: (17)

We approximate the output with \static" radial basis
functions of the form,

y(t+ 1) = � + � � z(t) +

MX
i=1

!i�(kci � z(t)k); (18)

where z has no dependence on y, and \dynamic" radial
basis models,

�(kc� zk) = e
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where �, � and ! are constant parameters to be esti-
mated, and in the dynamic models y represents the part
of z reconstructed using the outputs, and u represents
the parts of z reconstructed from the inputs. The c are
the \output" centers with the same dimension of y, and
similarly the d are the \input" centers with the same di-
mension as u. The models which are \dynamic" have
feedback; past predicted values of the output are used in
the current prediction of the output. Such models are
typically unstable, however, the use of a fading memory
assumption in the construction of equation Eq. 19 often
results in stable solutions. More details of this particular
model form are presented in references [15,16].
We present the results of modeling and simulating the

CDMA data sets with static and dynamic models in Ta-
ble I. Table I has seven columns. The �rst column indi-
cates the data set and the second column indicates the
decimation used. The third column shows the \size" of
our best reconstructed feedback model, i.e., the number
of model coeÆcients. In column four we give a percentage
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error of the feedback model for out-of-sample drive sig-
nals and express this error in terms of signal-to-noise in
column �ve. We calculate the signal-to-noise ratio using

SNR = 20 log10
� std(actual)
std(errors)

�
dB: (20)

We show the analogous results obtained by reconstruct-
ing and testing static models on the same data in the
remaining columns.

Data Dec #Parms RMS/std(y) SNR #Parms SNR

C100 1 21 0:06 25:06 7 20:76

C200 1 16 0:05 26:22 3 11:77

C300 1 14 0:06 24:75 7 7:58

C400 1 15 0:08 21:64 5 3:24

C500 1 24 0:09 21:13 3 1:71

C600 2 26 0:09 21:08 3 2:15

C700 3 29 0:06 23:33 2 1:85

C800 3 29 0:08 21:77 2 1:43

C900 4 34 0:08 21:94 3 1:80

C1000 4 36 0:1046 19:60 2 1:01

C1100 4 41 0:1077 19:36 2 0:75

C1200 4 33 0:12 18:78 2 0:66

TABLE I. Results of simulating reconstructed feedback vs
static models. Dec (decimation). Dynamic models, columns
3, 4 and 5. Static models, columns 6 and 7.

Typical results are presented in Figure 2a{d where we
show sections of the time series produced by simulating
the models compared to the actual measured values of
the device. We show the results obtained by simulating
the models reconstructed using the C300, C600, C900, and
C1200 data sets. Good agreement is seen in the Figures
as expected from the numbers given in Table I. These
simulations are also superior to the results we obtained
using the best static models we could reconstruct. In
most of the cases examined the long-term solutions are
not sensitive to the initial seed value and, in the case
of periodic drives, they appear to converge to a unique
solution.
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FIG. 2. Sections of feedback simulations for data sets (a)
C300, (b) C600, (c) C900 and (d) C1200. The solid lines are
the actual device response and the crosses are the simulated
predictions.

We have shown how to construct stable, free running,
input-output models for a class of electronic devices and
circuits having fading memory and (in the absence of a
drive signal) converge to a constant solution. The models
are built from band-limited, spread spectrum excitations,
and such excitations provide a suÆciently rich training
set to make accurate predictions of periodic or similar
spread spectrum drive signals.
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