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ABSTRACT: Behavioral models for microwave devices from time domain large-signal mea-
surements are developed. For the presented examples, the model is defined by representing the
terminal currents as a function of the terminal voltages and their derivatives. When using
these models as building blocks of higher level designs, the simulation speed is significantly
improved. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13: 54-61, 2003.
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I. INTRODUCTION

The recent availability of vectorial large-signal mea-
surement setups [1-4] makes it possible to develop
new measurements based nonlinear modeling ap-
proaches that are not limited to the use of only static
(DC) and S-parameter data. Some examples of such
modeling techniques include parametric equivalent-
circuit model extraction [5-7] and black-box model
identifications in the frequency domain [7, 8].

In this work we develop a time domain black-box
modeling procedure, which is based on nonlinear system
identification, using techniques developed in nonlinear
time-series analysis (NLTSA) [9-11]. One advantage of
this technique is that the resulting model should be
transportable; in other words, it should be usable in a
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range of environments and not restricted to a small
domain of applicability, for example, a single bias con-
dition. A further advantage of this time domain tech-
nique is that it is not restricted to the modeling of only
weakly nonlinear phenomena, unlike some frequency
domain methods such as Volterra series analysis. The
model is described directly by time-differential equa-
tions that are reconstructed from measured data. By this
means, all the observable dynamics of the device are
determined. Finally, this black-box modeling principle is
applicable to any device type, regardless of its complex-
ity, because no physical preknowledge is required. Be-
cause only the observable dynamics are captured, the
model size of circuits in particular will generally be
significantly smaller compared to the case where these
circuits are represented by separate models for each of
the constituting building blocks. This enables the con-
struction of a compact, accurate, and transportable dy-
namical model [12, 13].

In the next section we describe in detail the mod-
eling procedure we developed. The different steps are
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Figure 1. A simplified large-signal equivalent scheme of
a HEMT.

clarified by applying them to a microwave transistor,
a high electron mobility transistor (HEMT), and a
- monolithic integrated amplifier circuit (MMIC). The
obtained models are validated by examining the DC,
small-signal, and large-signal behavior (Section III).
Finally, we give an indication about the gain in sim-
ulation time when using this type of model represen-
tation.

Il. METHODOLOGY

To introduce the principle, we take HEMT as an
example. Its simplified large-signal equivalent
scheme is shown in Figure 1. We neglect the extrinsic
parasitic network and the nonquasistatic effects to
simplify the following equations. The terminal cur-
rents /,(f) and I,(¢) can be expressed by

ngs( Vl (t)’ VZ(t))

I] = Igs(Vl(t)’ VZ(t)) + dt (1)

dQ,(V, (1), V(1))

12 = Ids(vl(t)7 V2(t)) + dt (2)

where V,(#) and V,(¢) are the terminal voltages that
correspond to voltages V,(f) and V((1), respectively;
and subscripts ds and gs are drain-source and gate
source, respectively.

By taking the partial derivatives of the charges
Q,(9) and Qy(#) toward the voltages V(#) and V,(9),
we obtain

avy()
1,(t) = I(V,(0), V() + C(Vi(1), V(1) ar
dV,(1)
+ Cp,(Vi(0), V(1) ar 3)
avy(z)
I(1) = I,(Vi(8), V2(1) + Cyu (Vi(2), V2(8)) ar
avy(z)
+ Cp(Vi(0), V(1) ar )
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or, in other words, the terminal currents are a function
of the terminal voltages and the first derivatives of the
terminal voltages:

1,(t) = fi(Vi(D), V,(2), Vi(2), V(1)) &)
L(t) = £L(Vi(1), Va(2), Vi(2), V(1)) )

The generalized form of this equation for a two-port
device is

L) = fi(Vi(0), Vo), Vi(2), Vo(2), Vi(e), . . .,
1(), Iz(t)) V @)

Iz(t) =f2(vl(t)’ V2(t)’ Vl(t)9 Vz(t), Vl(t)7 L)
L(n), L) ®)

The objective of the modeling procedure is to find the
functional relationships f;(.) and f,(.). Because the
black-box modeling approach supposes that no phys-
ical background information is available, we first have
to determine the independent variables of the func-
tions f,(.) and f,(.), which are the state variables. In
our method, these state variables are estimated from
time domain large-signal measurements. The flow-
chart of the modeling process is depicted in Figure 2.
All steps are described in detail hereafter.

The model is built from time domain data obtained
by performing vectorial large-signal measurements
using the nonlinear network measurement system
(NNMS) [4]. The NNMS works by attempting to
accurately reconstruct the large-signal time domain
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Figure 2. A flowchart of the time domain measurement
based behavioral modeling procedure.
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Figure 3. Example coverage of the (V,, V,) plane by a
single vectorial large-signal measurement under two-tone
excitation.

voltage waves by measuring the harmonics up to 20
GHz (i.e., the current bandwidth limitation of the
system), which are properly amplitude and phased
aligned in the frequency domain. The nonlinear time
domain signal is then obtained from a Fourier trans-
form to the time domain.

At the start of the modeling process, operating
bounds for the model are established by defining the
minimum and maximum values of the state variables.
These bounds define the operation region within the
state space for which the model is to be developed and
used. To enable practical identification of the device
dynamics, the measured time domain data need to
sample this operation region efficiently. However,
because the actual state variables are unknown at the
start, we begin by defining the minimum and maxi-
mum V, and V, voltages.

The advantage of applying a large-signal excitation
to the device instead of the conventional small-signal
excitation (bias-dependent S-parameters) is that the
device is characterized under conditions that are
closer to real use. The instantaneous voltage trajectory
can sample an extensive region of the device’s (V,
V,) plane, which is otherwise unreachable by conven-
tional measurements. This is illustrated by Figure 3, in
which the time domain waveform of V,(#) is plotted as
a function of the time domain waveform of V,(¢). In
this example, the HEMT device was excited by a
single tone signal at the gate and by a second periodic
signal at a different fundamental frequency at the
drain. The (V,, V,) area is divided in a grid with
50 mV X 100 mV sections. The purpose of the data
gathering process is to have a minimum number of
time domain data in each of the sections. For the
given example, we notice that one large-signal mea-
surement crosses 28 of these sections. Hence, all the
practical (V,, V,) area can be sufficiently covered with
a minimum number of vectorial large-signal measure-

ments. This can be achieved by suitable variations of
the parameters of the measurement system: the DC
bias, input powers, input frequencies, and so forth [5].
It is important to point out that the proposed proce-
dure in this work does not require multiple trajectories
through exactly the same (V, V,) grid points, which is
a requirement for the direct extraction method [5, 7).

We performed similar measurements on an ampli-
fier MMIC. In this case, we measured at the funda-
mental frequencies covering the amplifier’s band-
width and varied the input powers, because the
amplifier’s optimal operation fixes the DC bias con-
dition.

The next step is to determine a minimal set of
independent variables needed to accurately predict the
device dynamics. The initial set of independent vari-
ables from which the model is built consists of the
measured terminal voltages and currents and their
derivatives, as defined in eqs. (7) and (8). We could
use all the possible independent variables to an arbi-
trary fixed order; however, this would result in models
that are needlessly complex. A more principled way
exists for selecting a subset of independent variables
from which to construct a model. This principle,
which is from recent developments in NLTSA, gen-
erally goes under the rubric of “embeddology” [11].
In practical terms a “good” (although not necessarily
unique) subset of independent variables should have
the property that a given response current should be a
single-valued function of the independent candidate.
As described in detail by [14, 15], this is a topological
property of the solution sampled by the data and, as
such, it should be independent of the model structure.
Based on this argument, the authors propose a diag-
nostic called “false nearest neighbors” to identify a
“good” subset of independent variables. In our models
we also use the false nearest neighbors test to select
the set of independent variables from which to build
our models.
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Figure 4. The measured /,(#) time domain waveform of a
HEMT as a function of the corresponding V/(#) time domain
waveform.
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TABLE I. Normalized Number of False Nearest Neighbors (FNN) for Currents I, and I, of the HEMT as

Function of the State Variables

FNN
Dimension I, I, State Variables
3 0.4920 0.4179 (lyorl) +V,V,
4 0.2504 0.2494 (yor L) + V, V,, V,
5 0.1202 0.2369 (yor L) + V,, V,, V,, V,
6 0.0513 0.1990 yor ) + Vy, V,, V,, V,, V,
7 0.2050 0.3816 (Iyor) + V,, V,, Vi, V,, V|, V,

To illustrate the idea, we plotted for a HEMT the
time domain waveform of I,(f) as a function of the
time domain waveform of V() (Fig. 4). We note that
L(¢) is not a single-valued function of V,(#), which
indicates that V| is not the only independent variable.
In the case of the idealized HEMT [Fig. 1 and eq. (6)],
if we would plot this I,(f) characteristic in a 5-dimen-
sional space, in which the different dimensions are
defined by I,, V,, V,, V,, and V,, we would obtain a
single-valued function. Hence, the purpose of embed-
ding the data in a higher dimensional space is to create
a space of sufficient dimension so that the dependent
variables (I, I,) are single-valued functions of the
independent variables (V,, V,, Vi, . ..). As the exam-
ple above illustrates, this is often not the case if we
simply use (V,, V,) as independent model variables.
In order to identify this sufficient set of model vari-
ables our method differs slightly from that described
in [14, 15], in that we are using derivatives instead of
time delay variables. However, our algorithm is the
same otherwise. This implies that these embedded
models can be faithful to the dynamics of the original
system. In particular, deterministic prediction is pos-
sible from an embedded model that will mimic the
actual dynamics.

The results of applying this technique to actual
measured data of the HEMT and amplifier MMIC
under study are displayed in Tables I and II. The first
column represents the dimensionality of the state
space. The numbers in the second and third columns
are for I, and I,, respectively, which are the normal-

ized number of data points that have “false” neigh-
bors, which is an indication to check whether a single-
valued function can be obtained for that
dimensionality of the state space. The last column
lists the state variables that have been taken into
account for this calculation. When performing mea-
surements at fundamental frequencies up to 5 GHz,
we found that it is necessary to include state variables
up to V,(#) for I, and I, in the case of the HEMT and
up to V,(¢) for I, and V,(¢) for I, in the case of the
amplifier MMIC.

Finally, the functional relationships fi(.) and f,(.)
of egs. (7) and (8) are determined by fitting the
measured time domain terminal currents, using the
independent variables determined in the preceding
step. In this work, we use multivariate polynomials to
describe f;(.) and f,(.), but other types of fitting func-
tions can also be used. A least squares fitting proce-
dure is used to obtain the multivariate polynomial
coefficients.

lll. RESULTS

We implemented the obtained behavioral models in
the Agilent Advanced Design System (ADS) micro-
wave circuit simulator by means of a symbolically
defined device (SDD). The SDD can determine the
time derivatives of the terminal voltages at each time
step in the simulation, hence enabling the functional
forms for the currents to be evaluated.

TABLE II. Normalized Number of False Nearest Neighbors (FNN) for Currents I, and I, of the Amplifier MMIC

as Function of the State Variables

State Variables

FNN
Dimension I, I,
3 0.3449 0.3638
4 0.0948 0.1444
5 0.1534 0.0959
6 0.1103 0.1429
7 0.0554 0.0521

yorly) +V,V,

(yorly) +V,, V,, V,

Uyorl) + V, V,, Vi, V,
(Uyorly) + V,, V,, Vi, V,, V)
Uyorly) + V, Vo, V, V), V|, V,
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Figure 5. A DC simulation of the dynamically modeled I,
of a HEMT as a function of V, with V, ranging between
—12and 0 V.

Model validation starts by testing limiting cases, such
as a DC or small-signal operation. We note that both DC
and small-signal (S-parameters) data were not explicitly
used to construct the model. Further validation is
achieved by comparing the simulated model perfor-
mance with measured large-signal data.

The DC I-V characteristics predicted by the
HEMT model are shown in Figure 5. The DC behav-
ior of the model arises from effectively setting all the
derivative terms to zero in the functional equations for
£i() and £,(.). The resulting I-V curves are then de-
termined by the static nonlinearities in the functions
of V, and V,. Figure 5 shows that the dynamical
HEMT model provides a good prediction of the static
behavior of the HEMT in the region of operation: the
results are comparable with our in-house table-based
model [16], which is essentially exact at DC, because
it is based on measured and interpolated data.

Next, the HEMT behavioral model was used to
generate the small-signal S-parameters as a function
of the applied DC bias at several frequencies. The
HEMT small-signal equivalent-circuit parameters
were then extracted using a typical equivalent circuit
[17]. In Figures 6 and 7 we show two examples of the
small-signal ~equivalent-circuit parameters: the
transconductance (g,,) and the total gate capacitance
(Cy)- The parameters were extracted at 20 GHz, which
is well above the frequencies at which the behavioral
model time domain data were measured. The ex-
tracted parameters display the general trends of the
expected variations with the applied bias as described
by the physics of the HEMT. Some capacitive ele-
ments, for example, Cg,, are less well determined.
One of the reasons could be the rather low frequencies
that were used in the measurements: the fundamental
frequency is less than 5 GHz because of the current
bandwidth limitation of the NNMS. This low fre-
quency means that the capacitive component of I, is

Transconductance gm (mS)

85 4T
08 -0.7 -6 05 04 63 02 -01
V1 v]

Figure 6. The small-signal g, value of the HEMT derived
from model-generated S-parameters at 20 GHz [V,
(=Vy4) = 0.5-4.5 V].

significantly smaller than the in-phase current contri-
butions and that the extraction of this capacitive com-
ponent is therefore more difficult.

Finally, the model was validated using large-signal
measurements. We used the behavioral model to predict
the time-dependent output currents /,(f) and I,(f) as
functions of the drive voltages V() and V,(¢) and com-
pared the predictions with measured values. The simu-
lations were carried out at the same excitation conditions
as the measurements. The input signal was a two-tone
excitation with frequencies of 4.0 and 4.5 GHz. Figure 8
presents the excellent agreement between the large-sig-
nal simulation and vector-corrected time domain mea-
surements, performed using the NNMS [4], that can be
obtained with this new modeling technique.

We conducted similar validations on the behav-
ioral model we obtained for the amplifier MMIC.
Figure 9 shows the very good agreement between the
large-signal simulation and corresponding measure-
ments under one-tone excitation.

The proposed modeling method is based on large-
signal time domain data of the device under test.

g 8
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Figure 7. The small-signal C, value of the HEMT derived
from model-generated S-parameters at 20 GHz [V,
(=V4) = 0.5-45 V]
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Figure 8. A comparison of the (X) measured and (—)

modeled 1,(¢) (top) and I,(f) (bottom) values of a HEMT
under two-tone excitation.

These data can be obtained by either performing vec-
torial large-signal measurements or by simulating a
conventional model of the device using harmonic
balance or a time domain analysis. Here the terminal
voltages and currents and their higher order time
derivatives are determined directly in the simulator.
The excitation design and model generation process
follow the same principles as for the models produced
from measured data. In this case the purpose is to also
construct a lower dimensional behavioral model of the
device for which the validity range is determined by
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Figure 10. The gain versus the input power of an ampli-
fier MMIC. (X) The simulation results using the transistor-
level model for the MMIC; (—) the simulation results of the
corresponding behavioral model, obtained without any iter-
ation during the modeling process.

the observable dynamics. The advantage of such
lower dimensional behavioral models, especially in
the case of circuits, is that the simulation time is
significantly reduced compared to the simulation of
the full transistor-level representation of the circuit.
The gain in simulation speed depends on the circuit’s
complexity and the type of simulations, but our pre-
liminary results show over a 10-fold reduction in
simulation time. This is illustrated by Figure 10,
where we compare the simulation results of the be-
havioral model of an amplifier MMIC with the results
of the corresponding full transistor-level model rep-
resentation. Note that there were no iterations during
the process of creating the behavioral model, which
implies that there is still room for improvement in the
accuracy. This one-cycle model generation took about
2 h, of which the data gathering step, which consisted
of simulating the transistor-level model of this
MMIC, consumed 75% of the time, the embedding
and function fitting took 20%, and the model imple-
mentation utilized 5%. The particular power sweep
shown in Figure 10 took 140 s in the transistor-level

60 T T T
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0 L . .
0 0.2 0.4 0.6

time [ns]

I [mA]

Figure 9. A comparlson of the (X) measured and (—) modeled l,(t) (left) and I,(¢) (right) of an

amplifier MMIC at 3 GHz.
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model, whereas the behavioral model based simula-
tion only took 14 s. Such an improvement in simula-
tion speed is of great importance when simulating
high-level designs, such as (sub)systems, which con-
sist of ICs as building blocks.

IV. CONCLUSIONS

We presented a methodology for developing time
domain black-box models for nonlinear microwave
devices directly from vectorial large-signal measure-
ments or simulated data. The advantages of this
method are that it is not restricted to weakly nonlinear
systems and the dynamics of the device are deter-
mined directly from the time-series data, resulting in
a compact, accurate, and transportable model. The
resulting model of the HEMT device shows excellent
prediction of large-signal performance and displays
physically realistic behavior under the limiting cases
of DC and small-signal (linear) conditions. Moreover,
we showed that this method is applicable not only to
microwave transistors but also to ICs, because no
physical preknowledge is required. Because the ob-
servable dynamics are determined directly from the
large-signal time-series data of the IC, the model does
not need to explicitly include the internal, unobserv-
able dynamics of the individual transistors in the IC.
This results in a compact model that simulates the IC
behavior accurately and quickly.
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