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Abstract—This paper considers an approach to nonlinear
model-order reduction for RF/microwave integrated circuits (ICs)
from the perspective of “black-box” behavioral modeling. We
present a systematic methodology for creating behavioral models
using techniques developed from concepts in system identification,
nonlinear dynamics, computational geometry, and information
theory. Highly complex subsystems can be represented by rela-
tively straightforward input–output relationships involving the
observed and identified dynamical variables. Model order is
thus significantly reduced compared with the device-level repre-
sentation. We illustrate the technique by creating a cascadeable
transportable model of a wide-band microwave IC amplifier that
accurately predicts the dc, large-signal, harmonic and intermodu-
lation distortion, and small-signal ( -parameter) behavior.

Index Terms—Estimation, identification, modeling, nonlinear
systems, reduced-order systems.

I. INTRODUCTION

ADVANCES IN nonlinear numerical simulation techniques
have enabled the accurate design of new microwave and

RF integrated circuits (ICs). Some key advances have been the
development of modern harmonic-balance simulators and, more
recently, of transient envelope simulators. Harmonic balance [1]
allows the efficient simulation of large-signal steady-state cir-
cuits in the frequency domain, achieving great efficiency gains
over traditional time-domain simulators like SPICE for steady-
state problems with large numbers of frequency components.
Such problems are commonly found in the design of microwave
circuits. The recent availability of transient envelope simula-
tors [2], [3] has allowed the efficient simulation of problems
for which the typical spectra can be represented by a set of sev-
eral discrete tones and time-dependent modulation around them.
This is a common characteristic of modern digital communica-
tion circuits.

Modern microwave and wireless communications systems
are too complex today to permit the complete simulation of
the nonlinear behavior at the transistor level of description.
This problem presents a significant productivity bottleneck for
design engineers. A typical design and modeling hierarchy is
depicted in Fig. 1. At the bottom is the device and at the top
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is a complicated module or subsystem. A “top-down” design
methodology propagates specifications down the hierarchy.
Conversely, “bottom-up” verification is the process of vali-
dating overall system performance based on the performance
of lower level components and their configuration. A solution
to the design simulation bottleneck is to design at a higher
level of abstraction at each level in the hierarchy. At the bridge
between the transistor circuit and the multichip module or
RF integrated circuit (RFIC) we use “behavioral models” to
describe the nonlinear circuit blocks or ICs in the system. The
behavioral models are simplified models of the essential non-
linear behavior of the complex sub-circuits; this simplification
means that these models will execute more quickly, and use
much less memory than if an entire complex subsystem was
simulated at the transistor level. The critical need for nonlinear
modeling techniques is a recent development driven by the
increased size and complexity of ICs in the RF regime, as well
as the adoption of more complex signal modulation techniques.
The availability of such nonlinear modeling techniques will
enable designers to make use of the advances in the simulation
technology at higher levels of the design hierarchy.

In this paper, we describe a new and systematic time-domain
methodology for generating nonlinear behavioral models that is
based on techniques from nonlinear dynamics, system identifi-
cation, and computational geometry. These behavioral models
are a “black-box” approach to the problem of model-order re-
duction, as opposed to the traditional “white-box” approach,
where detailed knowledge of the device physics or circuit con-
figuration and operation is used to minimize the number of equa-
tions that describe the essential properties of the circuit or de-
vice. In this “black-box” approach, we are concerned only with
describing the dynamical behavior of the circuit that is observed
at its accessible terminals. The attraction of this measurement-
based modeling approach is that a low-order model of a complex
circuit or system can be derived, without prior knowledge of its
internal circuitry or topology. Indeed, we advocate this approach
even when such details are known, as it is based on the observ-
able dynamics of the system, which are generally of much lower
order than the internal states or dynamics. This approach is now
beginning to be considered by the traditional model-order re-
duction community [4].

Our approach is similar to more conventional model-order re-
duction techniques in that both methods seek to identify and
model the dynamics on a subspace of the phase space speci-
fied by the device level netlist. A dynamical model is created
on this subspace that can also be implemented as a netlist. Our
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Fig. 1. Modeling hierarchy, beginning at the bottom with the device model described by the detailed semiconductor physics; this is abstracted to a circuit-level
transistor model that describes the terminal behavior through equivalent-circuit or phenomenological equations. The transistor model is used to design circuits
and ICs efficiently using circuit simulators, but it is too complex to use in the system-level simulation at the top of the hierarchy. To bridge the circuit and system
simulation environments, we use a reduced-order behavioral model of the circuit.

method differs in that we work with the integrated solutions of
this model provided by simulation, and not the netlist itself, i.e.,
we use simulations and not an analytic procedure to assist us
in identifying the subspace and model used for order reduction.
Both methods rely on the existence of a (small) subspace to re-
alize efficiency gains.

We shall illustrate our methodology by creating and vali-
dating a model of a real microwave IC amplifier. The mod-
eling procedures that we outline are very general: the test signal
design, analysis, model generation, and simulator implementa-
tions are generic and can be applied to amplifiers, mixers, mod-
ulators, and other microwave components or subsystems. The
resulting models are as follows:

• transportable [5]: in other words, usable in a range of
system and simulation environments, and not restricted to
a limited domain of applicability;

• “cascadeable” [6]—so that the cascade of two behavioral
models performs faithfully with respect to the perfor-
mance of the cascade of the respective transistor-level
circuits.

Since cascading nonlinear components can create a wide
variety of environments for the individual behavioral models,
“cascadeability” implies a certain degree of transportability.

II. METHODOLOGY

Fundamental to our approach is the notion that the behavioral
model relates waveforms to waveforms, i.e., the output is not
an instantaneous function only of the input signal. Rather, the
output depends upon the shape of the input waveform or, equiv-
alently, the output depends on the value of the input and past

values of the input, and even past values of the output itself:
the concept of memory. We write this in functional notation ac-
cording to (1). Here, we assume the voltage signal is the input
and the current is the output

(1)

How we write the details of this functional depends on the na-
ture of the system or component being modeled. Take, for ex-
ample, a nonlinear resistor: the current is given by the instan-
taneous value of the applied voltage. The details, or the shape,
of the voltage signal are unimportant, there are no dynamics in
this system. In this case, the current–voltage relationship can be
expressed as a simple algebraic function

(2)

If we now place a capacitor in parallel with the resistor, the cur-
rent flow depends on both the instantaneous voltage (across the
resistor) and also the time derivative of the voltage (across the
capacitor). The detail shape of the voltage signal is now impor-
tant. The current is now expressed as a functional of the voltage
signal, as given by (3) as follows:

(3)

This is an example of a static functional. The output depends
upon the input signal only—a static relationship—but the output
depends on the shape of the voltage signal, as expressed through
the time derivative. The time derivative also describes a memory
effect since a derivative can be approximated by a difference
relationship or time delay.
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Now consider a series connection of the resistor and capacitor
(either or both of which may be nonlinear components). It can
be shown fairly easily that the current through the RC network
depends on the time derivative of the applied voltage and the
time derivative of the current itself. We write this as an implicit
relationship—a functional of the current and voltage signals.
This more complicated class of models is given by the feedback
or dynamic model of the form

(4)

where the solution can be expressed in terms of the output

(5)

Feedback models depend on an internal state of the system, and
also embody the notion of memory.

The motivation for our approach to nonlinear systems identi-
fication goes under the rubric of nonlinear time series analysis
(NLTSA) [7]. The suggestion to use this approach for describing
input–output systems is due to Casdagli [8]. The key idea is to
embed the measured or simulated stimulus and response vari-
ables in a higher dimensional space built not only from the mea-
sured data, but also transforms of the measured data, in our case,
their time derivatives, which describe the local history of the
signal. Due to a theorem of Takens, extended to the driven case
by Stark [9], these embedded models can be faithful to the dy-
namics of the original system. In particular, deterministic pre-
diction is possible from an embedded model that will mimic the
dynamics of the actual system.

The models are formulated as implicit nonlinear ordinary
time-differential equations, which are easily implemented in
commercial microwave simulators, in the embedded variables

(6)

The goal of the modeling process is thus to determine the sig-
nificant embedding variables of the function and then to find
an efficient basis for the function approximation. Only the basic
framework of our approach is presented here: the elaboration of
the theory can be found in the references of this paper.

III. EMBEDDING AS A MODEL-ORDER REDUCTION METHOD

The “black-box” model-order reduction procedure that
we describe is similar to previous “white-box” techniques in
that all model-order reduction methods seek significantly to
reduce the number of variables (or states) used to predict the
behavior of a device by some method of “projection.” The most
common nonlinear model-order reduction techniques begin
with a transistor level model (in the form of a netlist) and use a
combination of functional approximations (e.g., Taylor series,
Karhunen–Loeve expansions) and projection operators (e.g.,
Krylov subspace methods, Hankel norm approximations) to
create a lower dimensional subspace that faithfully predicts the
dynamics of interest [10]. For these methods to be successful,
they must both identify a subspace (i.e., find a small set of

state variables) and create a projection operator that approxi-
mates the differential flow on this subspace (i.e., find a set of
differential equations for the reduced set of state variables).

Our black-box method, in contrast, seeks to reconstruct both
the subspace (the set of reduced state variables) and a suitable
flow operator (a set of differential equations on this subspace)
directly from a collection of measured or simulated data, i.e.,
we attempt to use the data itself to infer a model [11]. As previ-
ously mentioned, the insight for this approach comes from the
Taken’s embedding theorem [9]. The big advantage of this ap-
proach is that it can be applied to systems for which the internal
constitutive equations are unknown. This approach does, how-
ever, present some new challenges such as the design of a suffi-
ciently rich data set that allows for the approximate reconstruc-
tion of the subspace and its model.

Roughly, previous nonlinear model-order reduction tech-
niques are deductive in that they focus on the construction of
a mathematical projection operator that starts from a netlist
model. Our approach is inferential in that it focuses on approxi-
mating a model starting from a collection of data (experiments).
White-box model-order reduction methods focus on the math-
ematical construction of a numerical projection operator
assuming the prior model is correct. Black-box model-order
reduction methods focus on inferring an approximate model
assuming that the data is correct and sufficient to create a model
useful for some well-defined set of excitations.

Embedding is both a simple procedure, and a profound in-
sight into the behavior of the system [12]. We can write the dy-
namical description of a nonlinear system in terms of a set of
nonlinear ordinary differential equations

(7)

Each of the ’s in the vector is a state variable of the
system, the number of state variables describes the order of the
system. The observable output variable is a function of the
states of the system, and the external drive signal . This drive
is also generally observable. The internal states are not ob-
servable. If the state equations are known a priori, the value of
the output can be determined for every time . This solution
describes a time-parameterized path or trajectory in the multi-
dimensional space of the state variables known as the “phase
space.” The observable output is a projection of this trajectory
onto a single axis, the -axis, and this describes the time evolu-
tion of the output value : plotted as a function of time, this
is a time series.

Given a time series of some observable , a trajectory in a
“model phase space” can be constructed using a process known
as “embedding.” A common embedding procedure is to use
delayed values of the observable output. This set of quanti-
ties constitutes an “embedding.” The actual system trajectory
(of ) and the trajectory we create from this time-delay em-
bedding will differ by no more than a smooth and differential
change of coordinates—the transformation relating the actual
and model trajectories is a diffeomorphism. In other words, the
trajectory in the model space preserves the dynamics of the orig-
inal system. What we have done is use an observable output to
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Fig. 2. Example i(t)–v(t) relationship. The current is not a unique-valued
function of the drive voltage.

retrieve explicitly the unseen internal degrees of freedom of the
system—its internal state variables or their analogs. We can do
this provided we take enough delays (or time derivatives, in the
method described here) [7], [12].

We make use of a geometrical relationship to determine how
many delays are needed. The Whitney embedding theorem
states that an -dimensional manifold can always be embedded
in a Euclidean space of not more than dimensions.
For an example, consider a sheet of paper—a two-dimensional
object. We can fold and attach the ends of the paper and get
a Mobius strip, which requires three dimensions to describe
it. If we then join the other ends, we get a Klein bottle, which
requires four dimensions to describe it, but locally, on the piece
of paper, the geometry is still two-dimensional—in the plane
of the paper.

The “ -dimensional manifold” that we consider in behav-
ioral modeling is the observable state space of the system. The
embedding theorem provides an upper bound on the number
of dimensions that we will need in our model state space. The
utility of this approach is that, in practical cases, there is an or-
ders-of-magnitude reduction in the number of variables (dimen-
sions) required to describe the observed behavior of the system.

How many variables will we need in the embedding? The al-
gorithm that we use for choosing which of the dynamical vari-
ables are used for the embedding is based on the technique of
“false nearest neighbors” [13], which can be computed using
algorithms from computational geometry. We have adapted a
method described by Rhodes and Morari [14] for input–output
systems. The algorithm uses the data itself to determine the op-
timal set of embedding variables, resulting in a compact and ef-
ficient model of vastly lower complexity than the original non-
linear system. The principle of this algorithm is illustrated in the
following.

Consider the simple system comprising an observable output
and a single drive signal , which yields the response

shown in Fig. 2. Clearly the output is not a single-valued or
unique function of the drive signal. For instance, the two points
A and B on this curve share the same input value, but yield dif-
ferent outputs. Thus, if we sample the output in terms of
the drive signal , then both samples A and B fall into the
same “bin” from to : the points A and B are known
as “false nearest neighbors” because they are close in the input
space, but are from temporally disparate locations on the re-
sponse curve. The point C, which is close to point A on the re-
sponse curve—a true nearest neighbor—also falls into the same

Fig. 3. Same example function now unfolded in a higher dimensional space
of the embedding fv(t); v (t)g. The current is now a single-valued functional
of the embedding.

“bin.” The number of samples in each “bin” will, therefore, be
large.

We can expand the number of embedding dimensions in this
example by noticing that the direction of travel around the re-
sponse curve means that the first time derivative of will be
different at points A and B. We now plot the response as
a function of the drive and the time derivative of the drive
and, in this simple example, the response curve has unfolded
into a single-valued path or trajectory (Fig. 3). Sampling in
the new embedding space , we see that the points
A and B fall into separate “bins,” and the true nearest neighbor
(point C) and point A still fall into the same “bin.” The number
of counts in each “bin” has fallen.

This is the basic principle of the “false nearest neighbors” ap-
proach. We sample the observable output variable in the embed-
ding space, initially assuming a simple one-dimensional model,
and that most of the counts will be false nearest neighbors. As
we add embedding variables, the state space is unfolded into
higher and higher numbers of dimensions. At some point, the
output response curve will unfold into a single-valued trajec-
tory, and the only points in each bin will be true nearest neigh-
bors. If the data is sampled appropriately, this will be a small
number. We monitor the density of false nearest neighbors, and
when this falls to a small value, this is the embedding dimen-
sion. This approach leads to fewer ad hoc assumptions, such
as model order, compared with other recently published time-
domain techniques [15].

The immediate differences between this approach and
our application are that we are considering a driven system,
which operates over a wide bandwidth. Clearly, a constant
time-delay embedding is inadequate to cover the wide time
scales (bandwidth) of the excitation signal used here for the
amplifier. We use time derivatives of the inputs and outputs for
embedding the data, yielding an expression of the general form

(8)
Equation (8) is a feedback model of the type represented

by (5). These behavioral models, therefore, can handle systems
with memory. Equation (8) essentially defines an implicit non-
linear differential equation for the behavioral model: in other
words, it describes the observable dynamical variables of the
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Fig. 4. ANN structure with a single hidden layer.

system. The remaining problem is to find a suitable approxima-
tion for the nonlinear function .

IV. NONLINEAR FUNCTION FITTING USING

ARTIFICIAL NEURAL NETWORKS (ANNs)

We now have a single-valued function relating the observable
output and the embedding variables. The relationship between
these variables is a nonlinear one, thus, we seek a multivariate
nonlinear function fitting method. Multivariate polynomials
[16], radial basis functions [17], and ANNs have been used
[15], [18], [19]. ANNs are preferred due to their asymptotic
properties and because they give very smooth results for
approximating discrete measured and simulated data.

We use the basic structure shown in Fig. 4. The inputs are con-
nected to the nonlinear processing units through a set of linear
weights. The nonlinear units sum all their inputs, and produce
an output when this sum is above a certain threshold, which
can be adjusted by the bias. The transfer function for the pro-
cessing units is a “sigmoid” function—hyperbolic tangent. The
nonlinear behavior is captured in these functions. The outputs
from all the processing units are summed through weights at
the output.

A fundamental mathematical attraction for using ANNs is
found in the “universal approximation theorem” [20], which
states that, given enough neurons in the hidden layer, a neural
network of the form shown can approximate any continuous
bounded function to any accuracy that we care to specify.

Another feature of ANNs is “generalization”—the ability of
a suitably trained network to correctly predict a response to a
(set of) inputs that it has not seen before. In some cases, the
network can be trained to fit the target data extremely well, but
performs poorly on other data of a similar class—the network
has “memorized” the target data and generalizes poorly. This is
a symptom of overtraining.

Key to the design of the ANN for function approximation
is the number of neurons in the hidden layer. Since the num-
bers of inputs and outputs are fixed—the former by the em-
bedding procedure—the number of hidden layer neurons de-
termines the number of weights that must be optimized during
the training process to obtain the best function approximation.
The values of the weights are obtained through “back-propaga-
tion,” a procedure where the network neuron outputs are used to

Fig. 5. NLTSA “black-box” modeling procedure. The shaded region identifies
those functions that have been created using MATLAB. A suitable interface
between MATLAB and the Agilent-EEsof ADS simulator has been devised to
generate the SDD instance enabling the nonlinear model to be described in the
simulator.

update the neuron input weight values through a minimization
algorithm [21]: the Levenberg–Marquard nonlinear optimiza-
tion algorithm is used. This minimization proceeds from the
output of the network—comparing this with the target training
value—to the input; hence, the terminology. The mean square
error—the difference between the ANN output and the target
value—is often used as a measure of the quality of the function
approximation.

Techniques for improving the generalization of the ANN in-
clude regularization [21] and “early stopping” [21], [22]. Regu-
larization uses other measures in the error term that is to be min-
imized, such as the sum of the squares of the weight values, to
reduce the potential for overtraining of the network. Early stop-
ping techniques use an additional set of data, a “validation” set,
against which the ANN output is compared. If the error on the
validation set begins to rise, even though the error on the training
data set continues to fall, then this is an indication of a loss of
generalization, and is an indicator to stop training the network.
Cross-validation techniques [21], [22] use multiple data sets for
training and validation to improve generalization using early
stopping criteria. Bayesian techniques have been employed for
weight selection to improve regularization [23], and these can
be used to indicate the optimum network size. Early-stopping
and Bayesian regularization methods work well on large ANNs,
though this may not lead to parsimonious models and, hence,
may lead to poor convergence in a simulator environment.

V. NLTSA BEHAVIORAL MODELING PROCEDURE

The modeling framework is outlined in Fig. 5. This illustrates
the general flow of activities that we need to perform to extract a
behavioral model from either measured or simulated data [24].

The first step is to define the excitation signals to the de-
vice-under-test (DUT) so that the device can be excited over its
complete range of operation or over a limited range of interest.
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The goal here is to choose (a set of) input signals such that all the
observable nonlinear behavior of the device in a typical applica-
tion is exercised. It is not necessary to design a signal that will
excite all possible internal states in the device: indeed, some of
these states will not be observable under the conditions of use
and, in general, we do not know what the internal state space
of the device is. Only the observable nonlinearities are of in-
terest in the modeling process. The operating range of the DUT
is generally specified in a datasheet. For example, the “power
bandwidth” specification of the device or circuit can be used to
define the range of powers and frequencies for the design of the
(set of) excitation signals. The class of excitation signals that we
have considered includes: 1) single-tone sinusoid; 2) two-tone
or multitone sinusoids; and 3) analog or digitally modulated sig-
nals, whose carriers can be swept in power or frequency. These
excitations can be produced in a simulation environment, or as
practical signals using a signal generator with a large-signal net-
work analyzer (LSNA) [25] to record all the frequency compo-
nents present as harmonics and mixing products of the input sig-
nals resulting from the nonlinear behavior of the DUT [16], [18],
[24]. A general theory of excitation design and optimal excita-
tion design in this framework is still an open question. To date,
we often apply an interactive procedure where we first identify
an embedded phase space for model-order reduction and then
examine the coverage (by examining the probability density of
the excitation signals) on this phase space. We can then modify
our excitations signals in an attempt to provide a relatively uni-
form coverage of the phase space.

The attraction of measurement-based modeling is that a
low-order model of a complex component can be derived using
this methodology without knowledge of the internal circuitry
or topology of the component. Such an approach is not possible
with more traditional modeling and model-order reduction
techniques since these latter usually start with detailed circuit
knowledge in the form of a netlist.

The measured or simulated stimulus and response data is im-
ported into a prototype MATLAB-based Behavioral Modeling
Toolbox where we perform the modeling procedures.

We typically use the DUT terminal voltages and currents, and
their time derivatives up to second order or more, as the candi-
date variables from which to build the models. Typically, re-
ported methods for building an embedded phase space from a
nonlinear time series usually assume that there is a single input
and single output, that the system can be described by a single
characteristic timescale, and that new variables are created by
delays [7]. Identifying which variables to use in the model is
not a problem; a unique set of model variables is created from
the delayed embeddings. Our problem differs in that we have
multiple signals, and we have chosen to use time derivatives as
candidate embedding variables to enable us to describe the wide
frequency range covered by the DUT. From this candidate set of
model variables, we need to select a subset from which to build a
deterministic model. We start by using the “false nearest neigh-
bors” method outlined earlier to identify a suitable set of em-
bedding variables from these candidates. A “nearest neighbors”
search algorithm from the TSToolbox1 is used. Time-correlated

1[Online]. Available: http://www.physik3.gwdg.de/tstool/index.html

samples from the time series are excluded from the search for
a given sample: only data points that are beyond a time interval
that is found from the autocorrelation or auto mutual informa-
tion of the signal are used in the search. All possible combina-
tions of the voltages, currents, and their time derivatives are sub-
mitted to the search, and the false nearest neighbors returned as a
percentage for each. For all candidate sets with a low percentage
score, we fit a cubic polynomial to the nonlinear function, and
estimate the residual error. The most promising candidate set(s)
is(are) chosen, using compactness of the candidate set and min-
imum residual error as guides in this choice. This is an informal
application of a minimum description length criterion [26].

Once the embedding has been identified, the nonlinear
function approximation is carried out. As indicated earlier,
we have tried polynomials, and radial basis function ap-
proximations, but typically use feed-forward ANNs. We use
the MATLAB Neural Network Toolbox.2 The embedding
variables—voltages, currents, and their time derivatives—are
inputs to the network. The network training is carried out using
back-propagation and Levenberg– Marquard optimization: the
training is stopped manually once the training error reaches a
minimum and begins to plateau. While this often gives good
results, the ANN may be less than optimal [27], finding a local
rather than global minimum of the function approximation.
More sophisticated training methods including regularization
[21] and cross-validation [22] are under investigation.

The MATLAB neural-network structure is then parsed as a text
file to be read into this nonlinear circuit simulator, i.e., Agilent-
EEsof Advanced Design System (ADS), for verification of the
model. A proprietary piece of software is used to convert this
text file into an instance of a symbolically defined device (SDD)
in ADS. An example can be seen in Fig. 1. The SDD calculates
the time derivatives directly from its port voltages and currents
at each time step during the simulation. A practical implemen-
tation also requires variable scaling, which is also implemented
within the SDD. Validation of the model against measurement or
simulation of the transistor-level circuit is carried out in ADS.
Accuracy and speed of simulation are figures-of-merit for the
behavioral model: the goal of a much shorter simulation time
indicating that a reduced-order model compared with the full
transistor-level circuit has been created.

It is helpful to point out the possible limitations of the method
proposed. First, as noted earlier, the issues around good excita-
tion design is still under active investigation. Furthermore, un-
like model-order reduction techniques that are built on direct
transformations of the netlist, we currently have no way to guar-
antee that the model will extrapolate well to predictions with
excitations of a type the model is not trained on. However, es-
pecially for design problems for which the excitation signals are
well defined, the proposed model-order reduction procedure can
be very useful.

VI. MICROWAVE AMPLIFIER IC MODEL

The DUT is a wide-band microwave IC amplifier, i.e., Agilent
Technologies Inc.’s HMMC-5200 [28]. This is a dc–20-GHz

2[Online]. Available: http://www.mathworks.com
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10-dB gain amplifier with internal feedback, designed to be used
as a cascadable gain block in a variety of microwave circuit ap-
plications. It consists of eight HBTs configured as a compound
modified Darlington feedback pair, operating in class A. The IC
also contains biasing and feedback resistors, on-chip bypass ca-
pacitors, etc. The IC has numerous nodes and connections and,
hence, has many internal degrees of freedom. Since one of the
key assumptions of our methodology is that only a few of these
internal states are important features of the observable signal,
the resulting model should be quite compact; in other words, a
significant reduction in the model order can be achieved.

The data for creating the behavioral model of this amplifier
are generated from simulation. The excitation signal applied to
this DUT is two offset tones at the amplifier input, and a tone at
the output port, identical in frequency to one of the input tones.
These signals were swept over the frequency range from 1.2 to
10.2 GHz, and from small signal to the amplifier’s dB
compression point: 0 dBm for each input tone. The signal power
applied at the output port was identical to the input, i.e., ap-
proximately 10 dB below the output generated by the IC. The
input tone separation used was 600 MHz, as employed in the
LSNA instrument. We performed a harmonic-balance simula-
tion using ADS; nine harmonics for each individual tone, and
mixing [intermodulation (IM)] tones up to nine orders were con-
sidered. The amplifier requires a dc bias to be applied through
the RF output port, via a load resistor and choke (dc feed com-
ponent), and also requires dc blocks on the input and output
ports. The voltages and currents, including dc contributions,
were monitored at the amplifier’s RF input and output ports.
The harmonic-balance voltage and current data were converted
into time series signals using the ADS fast Fourier transform
(FFT) function.

From ADS, the data was exported to our prototype MATLAB

Behavioral Modeling Toolbox, as shown in Fig. 5. As described
above, we use as candidate embeddings the amplifier’s terminal
voltages and currents, and the time derivatives of these up to
second order. Initially, we used only terminal-1 variables as
candidates for the embedding variables for the terminal-1 cur-
rent; this choice was made on the basis that the amplifier’s

is quite small and, therefore, the effects of the output vari-
ables could be neglected. Subsequent studies have demonstrated
that this hypothesis was false: these models behaved poorly
due to the incorrect embedding choice, as terminal-2 variables
were shown by the false nearest neighbors technique to be sig-
nificant contributors to the terminal-1 current model. The am-
plifier model reported here uses all voltages and currents and
time derivatives to second order as embeddings for both the ter-
minal-1 and terminal-2 currents. These embeddings gave the
minimum residual for a cubic polynomial fit, but may not nec-
essarily be the most compact models.

The nonlinear functions for the terminal-1 and terminal-2
currents were individually approximated by ANN models. The
neural networks used a single “hidden layer” of 40 neurons: this
number is of similar order to that reported by Xu et al. [15]
in the modeling of a narrow-band amplifier using ANNs. The
neural networks were trained for approximately 15–25 cycles
before stopping manually: at this point, the mean square error
had fallen to a low value, and further reductions were minimal.

Fig. 6. Single-tone power sweep comparing the gain compression of the
NLTSA behavioral model (gray line) and the transistor-level circuit model
(black). The frequency range is 1–11 GHz.

This indicated that the network had approximated the function,
but was not yet overtrained. The mean square errors in the func-
tion fitting of all the data were of the order 10 .

The neural-network models were exported from MATLAB and
implemented as an SDD in ADS: the SDD external port currents
are defined by the neural-network function expressions. The em-
bedding variables for the neural network are calculated by the
SDD from the terminal voltages and currents.

The verification procedure in ADS included the following:

1) single-tone power sweep harmonic balance simulation,
over 1–11-GHz frequency range and to at least dB;
in addition to the power magnitude and phase responses,
we observe the harmonic-distortion performance;

2) two-tone power-sweep simulation, over the same power
and frequency range as 1), with a tone spacing of
100 MHz;

3) small-signal ( -parameter) frequency response;
4) transient simulation;
5) transient envelope simulation of adjacent channel leakage

ratio (ACLR) using wide-band code-division multiple-
access (WCDMA) input signal.

In addition to the above microwave performance of the be-
havioral model itself, we verified its performance of a cascade
of amplifiers, thereby demonstrating the suitability of this ap-
proach for creating behavioral models for use in the simulation
of large systems.

The power levels and frequencies used for validation were
different from those used in the data/model generation. In addi-
tion, we investigated the limiting cases of linear or small-signal
behavior using -parameter simulation and dc behavior. Again,
it is important to note that neither small-signal, nor dc data were
used in the model generation procedure: only large-signal data
were used.

In Fig. 6, the single-tone gain compression characteristic
reproduced almost exactly by the behavioral model. The fre-
quency range is 1–11 GHz, which is the operating bandwidth
of the amplifier. In Fig. 7, phase is also faithfully reproduced.

In Fig. 8 we show the response up to the seventh harmonic
for a single-tone input at 3 dBm, which is the dB
compression point. There are some deviations, but this quality
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Fig. 7. Single-tone power sweep comparing the fundamental phase response
of the NLTSA behavioral model (gray line) and the transistor-level circuit model
(black). The frequency range is 1–11 GHz.

Fig. 8. Comparison of the dc and harmonic response in HB simulation for the
NLTSA behavioral model (gray arrows) and the transistor-level circuit (black).
This example is atP�1 dB compression and a fundamental frequency of 5 GHz
in the middle of the amplifier passband.

of prediction is not obtained from simple models or heavily
truncated—i.e., practical—Volterra-based models. The even
harmonics are reproduced well here; this is not the case with
simple “power out–power in” models, which can only predict
odd-order harmonics. Second-order correctness is important,
especially for “long-term” or slow memory effects, dc offsets,
etc. Note also that the dc level is reproduced exactly by the
behavioral model, even though no dc measurements were used
in the model construction.

The model and circuit -parameters are also in excellent
agreement over the frequency range of 1–10 GHz, as shown in
Fig. 9, indicating that the fully nonlinear model reduces to the
correct linear behavior under small-signal conditions.

The two-tone performance of the behavioral model is also
very accurate. This is shown in Fig. 10 for fundamental input
signals of 2.0 and 2.1 GHz, at 0 dBm each tone, corresponding
to approximately 1 dB of compression.

The time-domain output voltage waveforms for the two-tone
input are shown in Fig. 11. The RF signal is modeled accurately,
and the envelope signal at 100 MHz is also reproduced exactly.

Fig. 9. Comparison of the S–parameters of the NLTSA behavioral model
(gray lines) and the transistor-level circuit (black) over 1–10 GHz.

Fig. 10. Response to a two-tone excitation at 2.0 and 2.1 GHz, comparing the
NLTSA behavioral model (gray arrows) and the transistor-level circuit (black).
The input tones are each 0 dBm, which is approximately 1-dB compression.

Again, this is an excellent performance as no low-frequency IF
signals were used in the creation of the behavioral model.

In the above verification, the behavioral model SDD and the
full transistor-level circuit model were simulated in ADS. The
simulation times for the circuit model and SDD model were
found to be approximately comparable: the SDD model exe-
cuted in approximately 25% less CPU time on a PC than the full
circuit model. It is expected that a compiled model with a neural-
network evaluation function would be significantly faster than
the SDD implementation. Further, a more compact set of em-
bedding variables could be chosen, and more compact neural-
network structures can be achieved by using more sophisticated
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Fig. 11. Time-domain representation of the two-tone response shown in
Fig. 10 obtained by FFT. The NLTSA behavioral model displays good fidelity
with the transistor-level circuit response even at IF of 100 MHz.

Fig. 12. Transient response of the NLTSA behavioral model, the input is
shown dotted (gray line) and the output is shown black. The model shows rapid
convergence even at a signal level of +5 dBm, well into saturation for this
amplifier and much higher than the level of the training signals.

training and pruning algorithms. Both strategies will also im-
prove simulation speed.

The NLTSA behavioral model operates successfully in Tran-
sient Simulation (Fig. 12) as well as harmonic balance. The
input signal level here is very high—above the dB test

Fig. 13. Comparison of the NLTSA behavioral model and the transistor-level
circuit in transient envelope simulation excited by a WCDMA-modulated signal
at 2 GHz for ACLR prediction. The measured data are also included. The models
show good agreement with each other and the measurements.

Fig. 14. Comparison of the gain compression characteristic for a cascade
of two circuits: the cascade of NLTSA behavioral models (gray line) and the
transistor-level circuits (black). Excellent agreement is obtained, noting the
expanded ordinate scale.

level. The model is predicting hard limiting behavior correctly.
This is often difficult for dynamical models to predict well, es-
pecially Volterra models.

Fig. 13 shows a comparison of the behavioral model and
the transistor level circuit in a transient envelope simulation in
ADS Ptolemy. The excitation is a WCDMA modulated signal
at 2 GHz. Similar results have been obtained for error vector
magnitude (EVM) using wireless local area network (WLAN)
standard signals. This aspect of the model performance is par-
ticularly good since no digital modulation signals were used in
the model generation process, only sinusoidal signals were used.
In this case, the SDD model executed significantly faster than
the circuit model: 294 CPU s compared with 1532 CPU s for a
single power point.

While the accurate agreement between the behavioral model
results and those from the transistor-level circuit are an essen-
tial first step in validating the behavioral model, the usefulness
of this model is pertinent in the simulation of a module or system
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containing several components. To demonstrate that the behav-
ioral model of the amplifier can be used in a system-level simu-
lation, we place two models in cascade, and compare the results
with two transistor-level circuit models in cascade. The simu-
lation results for the gain-compression characteristic are shown
in Fig. 14. Excellent agreement between the behavioral model
and transistor-level circuit is observed. Similar results are also
found for the harmonic performance, IM behavior, etc. of the
cascade.

VII. CONCLUSIONS

We have presented a new, general, and systematic time-do-
main methodology for generating nonlinear behavioral models
based on well-established techniques from nonlinear dynamics,
system identification, and computational geometry. The mod-
eling technique we have described is general, systematic, and
scalable. The order of the model is contained in the embedding
dimension and the ANN structure, and is vastly smaller than
the number of internal degrees of freedom of the DUT. This
model-order reduction is achieved through a systematic proce-
dure, and does not require detailed knowledge of the circuit of
the DUT, or skilled analysis of the circuit equations necessary
for traditional model-order reduction methods.

A prototype Behavioral Modeling Toolbox has been de-
veloped in MATLAB, which reads measured or simulated
time-domain data and generates a model file that can be im-
ported into the Agilent-EEsof ADS nonlinear microwave circuit
simulator. With this toolbox, we have generated a behavioral
model from simulated data using a transistor-level circuit model
of a broad-band microwave IC amplifier. The behavioral model
faithfully reproduces the circuit model electrical behavior in
a wide range of validation exercises including single- and
two-tone power-frequency sweeps over the operating space
of the amplifier, dc conditions, and -parameter simulation.
The cascading of two microwave amplifiers is also modeled
accurately, indicating that these behavioral models can be used
in system-level simulations of modules containing several
amplifiers.
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