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Abstract

We demonstrate how to combine remote sensing data from satellite imagery
(Sentinel-2) with in situ water quality gauging (USGS Super Gage’s and the
Gybe hyperspectral radiometer) to create spatially dense maps of water qual-
ity parameters (chlorophyll-a concentration, turbidity, and nitrate plus nitride
concentration) along the Lower Kansas River. The water quality maps are cre-
ated using locally tuned models of the target water quality parameters, and
this study describes the steps used to design, calibrate, and validate the empir-
ical correlations. Water quality parameters such as chlorophyll-a concentration
are correlated to well-studied absorption and scattering features in the visible
spectrum (roughly 400-700 nm). Nutrients (such as nitrate plus nitride concen-
tration) typically lack strong absorption features in the visible spectrum, and in
those cases we describe a novel surrogate data modeling approach that identifies
overlapping water parcels between the in situ gauging and the remote sensing
imagery. Measurements from the overlapping water parcels yield excellent cor-
relations (R2 > 0.9) for the target water quality parameters for limited windows
of time (or limited sections of river reaches). Examples are provided illustrating
how the water quality maps can be used to track river inputs from unguaged
sources (such as creeks), or the mixing patterns at river and creek confluences.
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1 Introduction

The Lower Kansas River is located in northeastern Kansas. It runs from just
west of Lecompton, KS, to the confluence of the Kansas River with the Missouri
River in Kansas City, MO. The Lower Kansas River Watershed is an agricul-
tural region (pasture/hay and croplands) with significant population centers
(Lawrence, KS, population ∼100,000) [1]. The Kansas river control structures
are managed for multiple goals ranging from flood control, irrigation needs,
drinking water supplies, and environmental flows [2]. The Lower Kansas River
water quality is impacted by storm runoff, which can carry significant sediment
loads that transport nutrients (nitrate, phosphate), bacteria (e-coli), metals (Pb,
Cu), and other products from natural and man-made activities [3].

The Kansas River is an ecologically impaired river system. Its restoration
and protection is a high priority for state and national agencies. A diverse set
of stakeholders from local community groups (e.g., Friends of the KAW [4]) to
NGOs (e.g., The Nature Conservancy [5]) are actively involved in restoration
and ecological management efforts. A key component of all these activities is
gauging the water quality. To achieve adequate temporal coverage, the USGS
maintains high frequency (15-minute sampling) Super Gage’s providing water
quality parameters such as chlorophyl-a concentrations, turbidity, and some
nutrients (nitrate) [6]. However, adequate spatial coverage is lacking, which is
particularly important in the Kansas River watershed since storm runoff has an
important and complex (temporally and spatially) impact on water quality.

This paper looks at how recent satellite imagery with high spatial resolution,
in particular, the European space agencies constellation known as Sentinel-2
(10-meter nominal spatial resolution) [7] can provide water quality maps with
dense spatial coverage along the Kansas River. Starting from publicly available
satellite data, we give an account of how to generate water quality products such
as turbidity, chlorophyll-a concentrations and nitrate plus nitrite concentrations.
We then present examples of remote sensing imagery revealing the patterns
formed by the water constituents along the Kansas river.

The absorption of electromagnetic radiation by water is relatively low across
the visible spectrum (∼300–700 nm). This makes the (above-water) remote
detection of target parameters, such as like chlorophyll-a concentrations or tur-
bidity, relatively easy because they posses robust signatures across the visible
spectrum. Conversely, the detection of target variables, such as nitrate with
features outside the visible spectrum (absorption ∼220 nm [8]), are more prob-
lematic. In those cases, surrogate data methods are often utilized to estimate
water quality parameters [9].

The standard method for constructing water quality maps from remote sens-
ing imagery correlates historical times series of in situ data, such as in water
gauges for chlorophyll-a concentrations or turbidity, with reflectance data avail-
able from satellite imagery [10]. In this study we report two different techniques
intended to improve upon the precision of the water quality maps build using
only the standard method. Though distinct, both techniques have a common
theme, they attempt to adjust the empirical correlations with contemporane-
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ous in situ data, either from in-water gauges or from above-water ground-based
reflectance measurements.

The latter technique uses a ground-based hyperspectral radiometer [11, 12]
operated as a fiducial reference (co-located with a USGS gaging station) to as-
sist with the atmospheric correction process in deriving water quality product
maps from Sentinel-2 imagery. In this effort, we use contemporaneous spectral
measurements to reduce the uncertainly in the atmospheric correction. The
former technique uses the in-water gauges to construct surrogate models that
replace the historical data training set with training data that is contempora-
neous to both the satellite imagery and in-water gauges. Both techniques are
simple attempts to fuse in-situ data with satellite imagery in an effort to provide
better estimations of water quality maps.

This paper is organized as follows. Section 2 (Methods) is the most extensive
part of the paper and provides a detailed account of the methods used to derive
the water quality product maps. The algorithms described are optimized both in
their model structure and calibration for the Kansas River site data. Although
site-specific, the model selection and calibration process is reproducible for other
medium-sized rivers and watersheds with access to high-frequency in situ water
quality gauges. Section 3 (Results) examines three examples of how the dense
spatial information enabled by remote sensing can provide insights into either
the gauging or the biogeochemical dynamics affecting water quality processes,
particularly during storm runoff events. Section 4 (Discussion) highlights lessons
learned and suggests additional research or operational water quality efforts.

2 Methods

We begin with an overview of the sites and data sources used in this study. This
is followed by a detailed description of the models we developed for empirical
correlations between USGS based in situ measurements of water quality and
the multispectral Sentinel-2 imagery.

2.1 Sites and Data Sets

The Kansas River (the ‘Kaw’) flows West to East from Junction City, KS, into
the Missouri River at Kansas City, MO. This paper looks at the stretch of river
from Mill Creek, west of Topeka, to Randolph, MO, seven river miles east of
the confluence of the Kansas and Missouri Rivers. In particular, we focus on
the reach from Lawrence, KS, to Kansas City, MO, because of the availability
of high-frequency water quality data from a USGS Super Gage in the center of
this river section. Three data sources were used in this study: remote sensing
satellite imagery from Sentinel-2, high-frequency data from USGS river gauges,
and spectroscopic data from an autonomous radiometer – the Gybe sensor.
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2.1.1 Satellite imagery

Sentinel-2(A,B) imagery was acquired from ESA’s Copernicus Browser, which
provides a complete image of the Lower Kansas River every 5-days (Sentinel-2
Tiles T15STD and T15SUD) at nominal spatial resolution of 10 (bands 3, 4)
and 20 (band 5) meters. The only USGS Super Gage in this region that includes
in situ measurements of nitrate plus nitride is located on the bridge at De Soto,
KS, and is the central station used for water quality model calibrations in this
study. The De Soto station is located at a ‘double overpass’ for Sentinel-2, so
imagery data is available, on average, every 2.5 days at a nominal overpass time
of 11:15 CST. The USGS gauging stations used in this study are described in
Table 1 and other locations of interest are listed in Table 2.

Sentinel-2 (S2) top-of-atmosphere reflectances (L1C) were processed using
Acolite [13] to Remote Sensing Reflectances (Rrs) for correlations to in situ
water quality parameters and ground-based radiometric measurements. Imagery
for locations of interest was further screened by process flagging (e.g., negative
reflectance values) and visual inspections. Two data sets were assembled that
contained clear imagery for further study: (1) 162 images covering the period
from January 2018 to December 2023, and (2) 13 images from 28 July 2021 till
30 October 2021. The latter S2 data set overlaps with the period when data
was available from the Gybe sensor, a ground-based spectral radiometer.

2.1.2 De Soto, Kansas: Study area and high-frequency data

The USGS station at De Soto, Kansas (Station ID: 06892350) is approximately
20 miles downstream from Lawrence, KS, and has a large set of in situ wa-
ter quality sensors, including turbidity, chlorophyll-a, and nitrate plus nitride
(NO3+NO2) dating back to 2014 and earlier. The site is centrally located in a
midwest agriculture region. It is a conduit for nitrate from the midwest, travel-
ing eventually to the Mississippi River and the Gulf of Mexico. It exhibits a wide
range of nitrate levels from 0.1 to 10 mg/L, usually peaking during spring when
fertilizer is first applied to plowed agricultural fields. Sensor measurements from
USGS gauges are reported every 15 minutes. We examined data from 2018 to
2023, which had discharges in the range of 103 to 105 ft3/s, turbidity between
0-1500 FNU, chlorophyll-a concentrations (as indicated by the corresponding
fluorescence line heights) of 0-30 RFU, and nitrate plus nitride concentrations
between 0-7 mg/L. For correlations, satellite imagery and surface radiomet-
ric data sets were matched to their corresponding USGS data set to within a
15-minute window centered at 11:15 CST.

2.1.3 Hyperspectral data

An autonomous hyperspectral radiometer manufactured by Gybe [11] was in-
stalled directly above the USGS gauges on the bridge above the Kansas River
at De Soto, KS, as shown in Figure 1. The Gybe sensor measures downwelling
irradiance and upwelling surface radiance and is oriented to facilitate matchups
with satellite imagery. The De Soto bridge spans the river North to South. This
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allowed us to point the sensor from the bridge’s east side toward the middle of
the Kansas River at an azimuth angle of approximately 45 degrees, i.e., North
East. The sensor further points 40 degrees from nadir, in alignment with the
NASA above-water ocean color radiometric field measurement protocols when
the solar angle is at high noon [14].

The Gybe sensor measures light from ∼400-900 nm with ∼10 nm spectral
resolution every 5 seconds. Actual sampling integration times range from 100
microseconds to 2 seconds, and data is temporally averaged. The integration
time varies with light conditions. During processing the spectra are interpolated
to a 1 nm grid (upsampled), so the wavelength grid for the analyzed spectra is
λk = {400, 401, 402, ..., 877, 878, 879} nm.

The radiometer was operational from 28 July till 27 October 2021. Data
was collected daily from 10 AM to 4 PM CDT and averaged into 3-minute
buckets. Reflectance spectra were derived from downwelling irradiance, Ed,
and total radiance, Lt. The total radiance measurement contains both a water
surface reflection (so-called sky-glint and sun-glint, which result from the diffuse
reflection of the sky and the sun disc on the water, respectively) and a water-
leaving radiance component, Lw, that carries the light that has interacted with
the water [15] . An estimation of both glint components was computed using
a spectral optimization algorithm described in [15] which enables retrieval of
water reflectance spectra under a wide range of solar and view angles [16]. The
glint was subtracted from surface reflectance, resulting in an estimate for the
remote sensing reflectance Rrs [[16], eq. (1)],

Rrs =
1

Ed
(Lt − Lrefl) =

Lw

Ed
. (1)

Automated routines like those described in [16] were also applied to gauge the
quality of the retrieved spectra based on a range of variability and spectral met-
rics. Poor signals (due to poor environmental or viewing conditions, rain, cloud
shadows, ...) were filtered from the data set. Resulting quality-controlled Rrs
spectra were used to estimate correlations to the target water quality parame-
ters, i.e. chlorophyll-a concentration and turbidity.

In part to ensure the data was also temporally decorrelated (and in part in
anticipation of a study on satellite match-ups, and to ensure more consistent
solar illumination conditions), only one measurement a day was used to match
the USGS data sets. In particular, the time for matching was chosen to agree
with the Sentinel-2 overpass time at approximately 11:15 AM CST. After pro-
cessing and filtering, the resulting ‘daily’ data contained 43 spectra, which were
further divided into two categories – a training set of 25 spectra (coincident with
days an S2 overpass occurred) and a remaining ‘test set’ of 18 spectra (on days
with no overpass). The test and training set designations were used in studies
examining the out-of-sample performance of the water quality correlations.

Despite the limited time frame, a wide range of water conditions were cap-
tured in the late summer and fall of 2021. As indicated by USGS gauging, ap-
proximately four periods of elevated turbidity occurred (> 100 FNU related to
storm runoff) and four periods of elevated chlorophyll-a levels (> 18 RFU) with
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relatively rapid oscillations between the high turbidity and elevated chlorophyll-
a states as described in [17].

The difference between these two distinct water quality states was easy to see
in the satellite imagery and the spectra captured by the Gybe sensor. Figure 2(a)
shows a Sentinel-2 image of a warm, sunny day in August with deep green
water and elevated chlorophyll-a concentrations. The corresponding spectra
are shown in Figure 2(b) where a peak at about ∼570 nm is easily identified,
as well as peaks from red-edge effects [18], and backscatter at ∼700nm and
∼800nm. The image and spectra in Figure 2 presented a sharp contrast with
those in Figure 3, a sunny, high-turbidity day in September. Figure 3(a) shows
very brown water, which is also relatively bright due to the high backscatter.
Correspondingly, in (Fig. 3(b)) the central peak is now at 700 nm, and the
amplitude of the spectra generally increases between 500-700nm since the strong
backscatter outweighs water absorption, especially between 650-700nm. One
advantage of hyperspectral data is that it allows us to use features with a wide
bandwidth in developing a water quality product algorithm – features that may
be unique to a specific body of water or a particular water type. Indeed, in
this data set, in addition to the absorption features, the overall reflectance
slope between 600-700nm is the most prominent feature available to describe
the optical (and corresponding water quality) state of the Kansas River as it
oscillates between states of high turbidity and high-chlorophyll-a concentrations.

2.2 Correlation and surrogate models of water quality

The next subsections describe the methods we used to create empirical models
for water quality target products (turbidity, chlorophyl-a, and nutrient concen-
trations) from reflectance spectra. Our model development process had three
steps – first, we experimented with different single band [19], band ratio [20], and
band difference [21] algorithms to identify models with the best correlations; sec-
ond we calibrated the selected models against the in situ and spectral data from
the De Soto, KS (USGS 06892350) sensors and; third, we validated the models
with water quality sensors downstream from De Soto, specifically the USGS
gauges at Lake Quivira (USGS 06892518) and Randolph (USGS 06893060).

One novel aspect of this study, which presents a bit of a detour in the fol-
lowing subsections, is the description of the use of the above water spectral
radiometer in order to provide day-to-day vicarious corrections to the atmo-
spheric processing. The remotely sensed reflectances estimated from Sentinel-2
are affected by uncertainties in atmospheric correction. Typically, the largest
source of uncertainty stems from the aerosol type and optical depth determina-
tion, but other factors such as adjacency effects and glint also come into play.
The optical depth of different aerosols are known to potentially vary signifi-
cantly throughout a day, and from day-to-day [22], however, in many situations
they can be assumed fairly uniform across an individual image. Based on the
assumption of spatial homogeneity of aerosol optical properties, we attempt a
post-correction, computed from fiducial spectral reference matchups, across all
the pixels in an image. In evaluating the utility of the fiducial correction we
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work with the subset of 13 images from the Fall 2021 which have both satellite
and in situ observations.

After the detour into the use of a fiducial spectral reference, we present the
correlations models calibrated with the full data set (162 images) of satellite re-
flectances (without fiducial corrections) which are used for the results displayed
in Section 3.

2.2.1 Turbidity models

We began the modeling process by comparing corresponding S2 and Gybe spec-
tra for the field data collected in the Fall of 2021. Figures 2 and 3 were typical
of the shape of the spectra observed for both low and high turbidity waters.
Generally, the ‘shape’ of the spectra between the Gybe and S2 spectra were
in reasonable correspondence for wavelengths <= 705 nm, but the spectra sys-
tematically differed in two ways. First, reflectances in the deep red and near-IR
(>705 nm) were always higher for the S2 bands than the corresponding Gybe
bands. This can be explained by the ‘adjacency’ effects [23, 24]. Second, from
scene to scene, an offset between the two spectra was often observed. As men-
tioned, we hypothesize that the fluctuations in the baseline of the spectra are
due, in part, to effects not accounted for adequately in the atmospheric cor-
rection, which could include daily variations in continental aerosols, seasonal
variations in land cover impacting the adjacency effects, daily environmental
variations not detected by flagging (mist, fog, clouds, cloud shadows), illumina-
tion and view variations and uncertainties in their correction (e.g., the accuracy
of sky glint estimation).

The fluctuations were particularly troublesome for single-band algorithms.
We initially tried single-band algorithms for correlating turbidity using forms
described by Dogolitti [19] and Nechad [25] (which are produced as part of
the standard Acolite processing) and observed that neither algorithm produced
useful correlations at the De Soto site, as indicated by coefficient of determi-
nation (R2 < 0.3). As an obvious next step, we experimented with band ratio
algorithms. As illustrated in Figure 4, an examination of both the Gybe and
S2 spectra indicated that the change in slope between S2 band B3 (560 nm)
and S2 band B4 (665 nm) was systemically correlated to the turbidity level.
The physical basis for this correlation is that the absorption of water increases
sharply when approaching the red end of the visible spectrum, however this wa-
ter absorption effect is muted as backscatter (and turbidity) increases, resulting
(absent of other effects) in an increase of the slope between the Sentinel-2 B3
and B4 bands [26].

Figure 5(a) shows a plot of USGS turbidity values and the band ratios of
Sentinel-2 bands formed by B3/B3 (i.e., Rrs(560)/Rrs(665)) for the 2018-2023
S2 image set. The data set appeared to be separated into two clusters — normal
turbidity events which can be approximately delineated by turbidity values less
than ∼200 FNU (and Rrs(560)/Rrs(665) > 0.74) and extreme turbidity events
with turbidity values greater than ∼200 FNU (and Rrs(560)/Rrs(665) < 0.74).
The lack of correlation for the extreme events is probably due to signal com-

7



pression and the limited dynamic range in the sensor itself, which is unable to
detect changes in reflectance values in the red band due to the extremely high
turbidites and associated suspended matter concentrations. We are investigat-
ing the use of alternative longer wavelength bands to build useful correlations
at higher turbidity levels, but their lower spatial resolution typically limits the
the utility of these longer wavelength bands in a river monitoring context [19].

The curvature in the band ratio plot Figure 5(a) suggested utilizing a non-
linear polynomial form in our empirical correlation function. Limiting our S2
2018-2023 data set to band ratios Rrs(560)/Rrs(665) > 0.74 resulted in a 5th
order polynomial correlation model of the form:

x = log10(Turbidity), y = log10(Rrs(560)/Rrs(665))
z = a5 · y5 + a4 · y4 + a3 · y3 + a2 · y2 + a1 · y + a0
tuS2 = 10z

(2)

where tuS2 is the Sentinel-2 estimated turbidity in FNU, and

(a0, a1, a2, a3, a4, a5) = (1.547,−2.601, 8.021,−15.807, 142.329,−613.753), (3)

where the fit is obtained by ordinary least squares. Figure 5(b) shows the corre-
spondence obtained with the empirical band ratio fit to turbidity with an coef-
ficient of determination of R2 = 0.687. If we limit the to Rrs(560)/Rrs(665) <
0.74 then we see a significant decrease in the coefficient of determination to
R2 = 0.362, as we expected from our earlier observations.

Next, we performed a similar regression using the Gybe sensor reflectance
from Fall 2021. Recall that we split the Gybe data set into a training set of
25 spectra and a test set of 18 spectra. The Gybe data (Figure 6(a)) shows
a similar pattern as the S2 data (Figure 5(a)). One notable difference is that
there are no extreme turbidity events (>200 FNU) during the Fall of 2021. A
3rd-order polynomial fit to the Gybe data yields,

x = log10(Turbidity), y = log10(Rrs(560)/Rrs(665))
z = a3 · y3 + a2 · y2 + a1 · y + a0
tuGybe = 10z

(4)

with coefficients

(a0, a1, a2, a3) = (1.744,−2.320, 2.938, 2.00) (5)

where tuGybe is the Gybe estimated turbidity in FNU. The resulting coeffi-
cient of determination was R2 = 0.92. The 5th order model is reported here
only for sake of comparison since it performed marginally better with greater
complexity. The 5th order model coefficients were (a0, a1, a2, a3, a4, a5, a6) =
(1.788,−2.567,−7.611, 52.763, 332.956,−1467.613), with an R2 = 0.93, MAE
Training = 8.06, and MAE Test = 7.59. Part of the improved correlation can
be attributed to the lack of year-to-year data in the Gybe spectral data set be-
cause of the limited time span of the data set, but part can also be attributed to
the higher covariance between the Gybe sensor spectra and the turbidity data
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set. Limiting both data sets to only the 13 samples where the S2 images and
Gybe are coincident, we estimated that the Pearson Correlation Coefficient of
Gybe-Turbidity sensor pair was -0.87 whereas the S2-Turbidity sensor pair co-
variance was -0.77. We attribute the lower correlation of the the satellite-derived
spectra to the the uncertainties introduced by the process of atmospheric cor-
rection. We applied Eq. (4) to the test set to gauge how well the correlation
model handles out-of-sample data. Similar performance, as indicated by com-
parable values in the Mean Absolute Error (MAE) of training and test data
sets, is shown in Figure 6(b).

2.2.2 Daily adjustments of Sentinel-2 spectra using a ground-based
fiducial reference

The ground based data set contains more reflectance samples with a better corre-
lations to water quality parameters than a satellite only data set. This suggests
that when ground-based fiducial reference spectra are available, and particularly
at the beginning of a calibration effort when there is limited satellite data, we
chould consider a two-step modeling procedure. First, build a correlation model
directly using ground-based spectra, and second, vicariously update the daily
S2 Rrs values so that they are in line with the fiducial reference.

The overlapping pixels for a daily alignment of the Gybe sensor to the S2
spectra are indicated by the red circles in Figures 2(a) and 3(a). Figure 4
indicates typical scenarios for Chlorophyll-a and turbidity dominated situations.
We next considered how to adjust the S2 spectra to bring it into alignment
with the Gybe spectra, a process indicated schematically by arrow outlines in
Figure 4. It is possible to construct many different maps that attempt, in some
sense, to preserve the shape of the spectra [27]. Here we describe a method that
restricts the map to a low order polynomial.

Ground-based and satellite derived spectra may be aligned by a polynomial
function, which allows for offset (0th-order), gain (1st-order), and higher degree
corrections. In the present study we limited the Sentinel 2 band set for alignment
to B3, B4, and B5 since these are the only bands required by the selected water
quality algorithms. We further simplified the correction procedure by applying
the correction not to the bands directly, but to the band ratios B3/B4 and B5/B4
(since the reflectance band ratios are the independent variables for the water
quality product algorithms and not the individual band reflectances). With
these restrictions, a unique solution is available for the adjustment function.
Appendix A provides more details for this method of spectral alignment.

The last step of the proposed method for a daily vicarious correction proce-
dure is to apply the spectral alignment function derived from overlapping pixels
to all the clear atmospheric pixels in the S2 image.

It is not obvious that the above class of algorithms for ‘daily corrections’
will, in the bulk, achieve the desired effect and it will need to be verified on a
case-by-case basis, which we will accomplish here with data from downstream
USGS gauging stations. However, if a significant source of uncertainty in the
S2 retrievals are day-to-day variations that are uniform over the spatial range
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considered – say tens of kilometers of a river reach such as could be the case
with aerosols or other atmospheric effects with long correlation lengths – then
the vicarious adjustment described should improve S2 retrievals.

2.2.3 Validation of S2 turbidity products with daily fiducial refer-
ence based adjustments

To validate the S2-based water quality product maps we compared the values
estimated at the De Soto site to distal locations with independent turbidity
measurements, namely the USGS gauge on the Kansas River at Lake Quivira
(16 miles downstream) and the USGS gauge at Randolph, MO on the Missouri
River (38 river miles from De Soto).

We first checked the accuracy of the daily S2 daily adjustments using the
Gybe sensor. This was accomplished by computing a 3x3 (9-pixel average) S2
estimate of turbidity at two locations, directly in the field of view of the Gybe
sensor, and then at a point about 400 meters downstream, for all the days
there were coincident S2 and Gybe spectra of good quality. Figure 7(a) shows
the resulting time series, which (with one exception) shows good correspondence
between the S2 estimates at separate sites that share almost identical water. The
excellent consistency between the two locations is reflected in the near-perfect
match exhibited in Figure 7(b). Figure 7(c) shows the match between the S2
estimate turbidity and the USGS gauge values – the coefficient of determination
R2 = 0.87 was used as a benchmark to gauge the accuracy of the S2 estimates
at distal locations for which we have independent turbidity data.

Examining Figure 7(a) closely, we see one instance – 11 September 2021
– where there appears to be a substantial difference in turbidity values (∼20
FNU) between the De Soto site and the test site 400 meters downstream. A
closer look at the image for that day reveals a strip of haze directly above the
test site, so that despite its proximity to the De Soto bridge image pixels, the
satellite pixels at the test site have a higher reflectance due to a very localized
atmospheric disturbance. The haze was so light that it was not noticed in the
original RGB image but was more clearly revealed in an image constructed using
the Red band (B4) alone, as shown in Figure 8.

Sixteen river miles downstream from De Soto is the USGS gauge near Lake
Quivira on the Kansas River. Figure 9 shows the time series and turbidity
match-ups between S2-derived turbidity values and the USGS gauge measure-
ments. The coefficient of determination, R2 = 0.81 (versus 0.72 for the un-
aligned spectra), indicates a moderate reduction in precision from the S2 tur-
bidity derived values at De Soto. Further downstream, and on a different river
system, at the Randolph USGS gauge on the Missouri river the precision is
more substantially degraded as indicated by an R2 = 0.59 (versus 0.61 for the
unaligned spectra). This data is very limited, however our interpretation is that
there is some evidence for the hypothesis that – within the same river system
and watershed – it is possible to achieve S2-derived turbidity products using
daily fiducial corrections over river reaches of tens of kilometers. Of course this
hypothesis needs to be examined on a case-by-case basis in light of any knowl-
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edge about river inflows and outflows along a particular reach. Conversely, we
would also expect to see significant degradation in the precision of fiducially
corrected products when we different atmospheric conditions such as changes
aerosol concentrations or constituents.

2.2.4 Sentinel-2 Chlorophyll concentration model

So-called ‘red-edge’ algorithms have proven useful for the detection of chloro-
phyll concentrations in turbid waters [20]. Therefore, we examined the corre-
lation between the USGS chlorophyll time series and the Sentinel-2 band ratio
formed from bands B4/B5 (Rrs(665)/Rrs(705)). Figure 11 shows that an es-
timate of chlorophyll can be made with a linear regression and results in a
correlation model of the form:

chlS2 = 62.6 · y − 58.2; y = Rrs(665)/Rrs(705), (6)

where the chlorophyll concentration is proportional to relative fluorescent units
(RFU). Presumably, more refined multi-band algorithms [28] could improve on
this result, but those were not explored in this study.

2.2.5 Sentinel-2 nitrate plus nitrite concentration models

Surrogate data modeling in water quality applications refers to using gauged
water quality parameters, such as turbidity and chlorophyll concentrations, to
estimate ungauged parameters, such as nutrient concentrations [29]. Surrogate
models are site-specific and require calibration measurements with the target
water quality parameters, and are typically estimated from regressions on multi-
year time series [12]. Both linear [30] and nonlinear [17] surrogate data models
have been developed and calibrated for the Lower Kansas River, and these
could be used to provide estimates of nitrate plus nitrite concentrations from
Sentinel-2 data. However, here we describe an alternative approach which, when
applicable, provides substantially better correlation estimations (R2 > 0.9) than
those available from current surrogate data models (typically with an R2 < 0.8).

A search of the time series provided by the USGS gauge at De Soto reveals
several windows of time with high correlation between nitrate levels and other
water quality parameters. These windows of correlations have been previously
labeled and analyzed in the context of concentration-discharge (C-Q) ‘hysteresis
curves’ [31]. Many studies connect the qualitative shape of these hydrologic
hysteresis curves to specific land-water runoff processes, such as how nutrient
concentrations in soils do (or do not) limit the concentrations observed in runoff
discharge [32].

For instance, a high correlation between nitrate concentrations and turbid-
ity in the Kansas river is observed in an image from 10 February 2023. Fig-
ure 12(a) shows a large inflow of sediment-laden waters from sources such as
Stranger Creek and the Wakarusa River further upstream. We hypothesize that
the nitrate loads are not source-limited during this period, so there is a di-
rect correlation between turbidity, sediment concentrations, and nitrates from
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stormwater runoff, as Figure 12(b) appears to indicate. The water that passes
under the bridge at De Soto 9:00 CST 10 February 2023 is advected downstream
arriving at the USGS gauge on the Kansas River near Lake Quivira at 3:00 CST
on 11 February 2023, as determined by correlating the turbidity curves at each
site. The transit time is 18 hours over a distance of 16 river miles, or an approx-
imate mean river speed of 0.9 mph. Thus, the values in our correlation curve
are also valid for 14.4 miles (0.9 mph · 16 hr), or ∼ 23 km of river reach east
of De Soto, KS — assuming, of course, that there are no other major influxes
of turbid laden water in the reach, or if there are, then they share a similar
sediment-nitrate make up. This assumption was checked by a qualitative in-
spection of the remote sensing imagery and appears valid for this limited time
window.

These high turbidity events are especially important to gauge accurately
because they carry the bulk of the yearly nitrate loading [33]. Thus, gauging
them with higher accuracy surrogate models, even if they are only of intermittent
utility, should improve both event and yearly nitrate loading estimations.

3 Results

This section looks at a few examples of the generation of water quality product
maps and ‘virtual’ gauging for the Kansas River. These remote sensing data
products not only help with understanding biogeochemical processes within the
Kansas River but can also inform issues around water sampling and gauging.

3.1 Transverse mixing at the confluence of Missouri and
Kansas Rivers

Figure 13(a) shows the confluence of the Kansas and Missouri rivers on 11
September 2021. The Kansas River entering the Missouri River from the west
has a high sediment load (∼130 FNU), which appears to be initially confined
to the southern bank of the Missouri River. This type of confinement can
occur when a slower-moving river converges with a faster-moving river, and
the mixing interface has been described theoretically using a Kelvin-Helmholtz
instability [34]. Recent studies have also shown how to estimate measures of the
transverse mixing that occurs at confluent river flows, as shown in this example
[35]. Moving seven miles upstream on the Missouri River to the USGS gauging
station at Randolph, Figure 13(b) reveals that there is still a significant gradient
of sediment concentration between the North Bank, where the USGS gauging
station is located, and the South Bank of the Missouri River.

A look into the historical record of Sentinel-2 images shows that such mixing
patterns between the Missouri and Kansas rivers are not uncommon; that is,
a distinct mixing interface exists in the intermediate mixing regime for several
miles. The USGS sensors at Randolph, MO, have changed locations over the
years, so an understanding of typical transverse sediment distributions can in-
form the interpretation of the historical time series as well as provide guidance
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for future sensor placements.

3.2 Longitudinal virtual gauging of a turbidity slug in the
Kansas River

The following example looks at monitoring turbidity slugs generated from storm
runoff. These turbidity slugs often carry high nutrient loads and are particularly
easy to detect in the Kansas River with remote sensing. Figure 14(a), a Sentinel-
2 image from 28 February 2023, shows the leading edge of a long turbidity slug
approaching the city of Lawrence. The slug was generated from a storm near
Topeka about 30 miles upstream. During the late evening of 27 February 2023,
over an inch of rain fell in the Topeka region, resulting in substantial storm
runoff with high sediment loads. The imagery (Figs. 13(b,c)) shows a clear
gradient from brown water to greener baseflow water between Lawrence and
the town of Eudora, located ten river miles downstream.

The longitudinal structure of the leading edge of the turbidity slug can be
measured by the using remote sensing ‘virtual gauges.’ A sequence of pixels
is selected so that they are located approximately in the middle of the Kansas
River, and also avoid gravel bars. The pixels are spaced approximately 0.5 miles
apart. Water quality product values are extracted at each pixel and plotted as
illustrated in Figure 14(d). This particular plot uncovers an inverse relation
between turbidity and chlorophyll concentration as the virtual gauging loca-
tion moves downstream. Finer details are also evident in the plot, such as the
longitudinal sediment concentration showing a rapid fall off before the bridge
(Fig. 14(b)) on the westmost section of the Kansas River (river miles 54-52), and
then a more gradual decline further downstream (river miles 52-38) as shown in
Figure 14(d)).

Searching for the origins of the slug, we observed the first significant in-
flow of sediment-laden stormwater in the 28 February 2023 image is located at
the confluence of Mill Creek (17 miles west of Topeka) and the Kansas River
(Fig. 15(a)). The turbidity slug is long, roughly 50 river miles from tail to head
(Mill Creek to Lawrence). A well-defined mixing interface is visible, producing a
impressionistic-like image as the merging waters weave around the gravel bars.
A detailed look at the turbidity gradient across the mixing interfaces can be
probed by virtual gauging. Figure 15(b) shows a plot for an imaginary boat
track crossing in and out of the mixing interfaces. The sharp transitions at the
mixing interface are easily detected as the path of the virtual gauging crosses
from the green base flow of the Kansas River to braids of brown water emerg-
ing from Mill Creek to the south and Cross Creek in the north. In the visible
imagery, the braids appear to last downstream as far as just west of Topeka –
so in this instance, a river reach of ∼15 miles is required before the flow is well
mixed in the transverse direction [36].
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3.3 Nutrient concentration map of the Kansas River near
the Lawrence, KS

Figure 16(a) shows the time series between nitrate plus nitride concentration
and turbidity for the USGS gauge at De Soto for the turbid slug exists in the
image from 28 February 2023. The correspondence is good enough to estimate
the nutrient concentration from turbidity with high confidence (R2 = 0.946 in
Fig. 16(b)). As a point of comparison a nonlinear model trained on a complete
historical time series between 2016-2023, not temporally filtered, produced an
R2 = 0.72[17]. The parcels of water at Lawrence during the S2 overpass at
11:22 CST reach the De Soto sensor about 13 hours later since the mean surface
velocity is approximately 1.6 mph, which was determined by cross-correlating
the S2 turbidity transect in Lawrence with the turbidity signal at De Soto.
There are two potentially significant inflows between Lawrence and De Soto: the
Wakarusa River (see Fig. 14(c)) and Stranger Creek, and neither shows a large
influx of sediment loads in the S2 image. Therefore, we used the following linear
correlation model to estimate nitrate plus nitrite concentration from turbidity:

niS2 = 0.00467 · tuS2 + 0.165. (7)

which is only applicable to the subsection of the 28 February 2023 S2 image
that sits within the advection time window.

Figure 17 shows the nitrate concentration estimate based on Eq. (7). A
linear scale for the nitrate plus nitrite concentration product map is shown in
red. The remaining area shows the (pseudo) S2 RGB image. Of course, this
image was chosen because it nicely illustrates the start of an extended period
(∼ 30 hours = 50 hours / 1.6 mph) of degraded (high sediment load and nutrient
load) water quality from the Kansas River in the Lawrence.

4 Discussion

Remote sensing imagery opens the door to a wealth of new insights into the
processes affecting the waters of the Kansas River, as well as informing issues
concerned with water quality gauging and sampling. The Sentinel-2 derived
water product maps augment the USGS high frequency in situ gauging by re-
vealing patterns in both the downstream and cross-channel structures of the
biogeochemical process in the Kansas River. The bulk of this paper discussed
the methods used to develop spatially dense water quality product maps. The
examples illustrate the resolution that is possible with current operational satel-
lites. Though we did not provide details on the implications of the map data
for ecological services, we do illustrate that the spatial resolution is sufficient
to follow inflows from creeks (Stranger and Mill) and rivers (Wakarusa) up-
stream to further interrogate land/water processes. Some applications where
water quality maps could be used include the identification of upstream loca-
tions of (or suggestions for) vegetative filter strips, or evaluating the efficacy of
restoration efforts by providing virtual gaging of sediment transport and water
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clarity around inflows and outflows of wetlands. Similar monitoring could in-
form activities such as watering and grazing operations or the location of feeding
systems.

As shown in the examples, much of the sediment load in the Lower Kansas
River is due to creeks (e.g., Stranger) that are not regulated by large control
structures such as the Clinton Reservoir. Again, virtual gauging of these under-
gauged inflows should enable a better understanding of the source and fate
of sediment transport and its associated biogeochemical properties within the
Lower Kansas River. For instance, some preliminary work shows that it is
possible to identify inflows not just from overland processes but also from tiled
fields, which can provide very rapid transport of nutrients into the Kansas River
after storm events.

This study demonstrates ways in which the fusion of remote sensing im-
agery and daily high-frequency data, both in water gauging, and above-water
radiometric sensors, enables more accurate water quality maps.

Because of the short time frame for data collection with the ground based
radiometer, the study only provides limited evidence that modest improvements
in surface spectral reflectance estimations from satellite imagery are possible by
using daily alignments with a single point fiducial ground-based reference. That
said, the method for spectral corrections utilized here is very simple, and it is
quite likely that more sophisticated techniques, such as those using Bayesian
inference methods [37], could result in more significant reductions in the co-
variance between satellite, ground based reflectance values, and water quality
target parameters.

Perhaps of more immediate value is the observation that maps of water
quality can be improved by exploiting the temporal windows of high correla-
tion between various water quality parameters which are often observed during
storm runoff events or reservoir releases. These correlations have been studied
in the context of hydrologic concentration-discharge hysteresis analysis [38], but
their utlitiy for water quality surrogate data modeling has, to the best of our
knowledge, not been utilized before in the construction of remote sensing based
water quality maps. The observation that the water parcels used in the daily
calibration of the remote sensing water quality maps are the same water parcels
measured by the fixed location gauging (using Lagrangian transport to inter-
change space and time measurements) opens a door to building better maps of
water quality. The periods of high correlation, while intermittent, are also easy
to identify in the high-frequency in situ data streams and often occur during
events that transport significant quantities of organic and inorganic materials.
Thus, the use of temporally windowed data, in remote sensing surrogate mod-
els of water quality, should lead to better estimates of both event and seasonal
biogeochemical loadings and enable a sharper view of their spatial patterns.
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Appendix: Daily updates of water quality band
ratios using a fiducial spectral reference

Denote the Sentinel-2 spectral bands as q3 = Rsentinel
rs (560), q4 = Rsentinel

rs (665),
and q5 = Rsentinel

rs (705). Similarly, let the Gybe spectral bands be: p3 =
Rgybe

rs (560), p4 = Rgybe
rs (665), and p5 = Rgybe

rs (705). Then the Sentinel-2 turbid-
ity product band ratios is sT = q3/q4 and the chlorophyll product band ratio
is sC = q5/q4. Similarly, the Gybe sensor band ratios are rT = p3/p4 and
rC = p5/p4. Consider the maps from

MAP : (sT , sC) −→ (rT , rC).

A linear map has the form:

G : (s̃T , s̃C) = (gT · sT , gC · sC) (8)

with gT = rT /sT , gC = rC/sC , which we also call the ‘gain’ map. The two gain
constants calculated at the overlapping reference pixels are applied to every
pixel in the scene, thereby ‘pulling’ them into a daily alignment with the Gybe
reference spectrum. The tilde indicates a value after a daily correction is applied.
The next simplest class of maps are ‘affine maps’ consisting of an offset and a
gain, which is determined by solving the set of linear equations:

m · (sT , sC) + b = (rT , rC).

Solving for m and b we find:

m =
(rT − rC)

(sT − sC)
; b = rT − (rT − rC)

(sT − sC)
· sT

If we denote the corrected Sentinel-2 spectra by s̃ = (s̃T , s̃C), then the affine
map

A : s̃ = m · s+ b

with s = (sT , sC) and at the reference pixels is exactly equal to r = (rT , rC)
by construction. More generally, if the number of band ratios to be adjusted
(s = (s1, s2, s3, ..., sn)) is not equal to the number of fitting parameters, then
a singular value decomposition [27] can be computed to find the best fit in
the mean of the input and reference spectra. Also note that the same affine
transformation applies to the original Sentinel Rrs bands (ql = (qT , qC)). The
adjustments are well-defined as long as (sT − sC) or (rT − rC) does not equal
zero. If the differences are close to zero, the adjustment constants could be very
large, leading to problematic corrections.
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Figure 1: The Gybe hyperspectral radiometer installed above the Kansas River at De
Soto, KS colocated with USGS super gage site measuring nitrate plus nitrite.
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Figure 2: (a) Sentinel-2 image of Kansas River at De Soto, KS, on 9 August 2021
at 12:12 CDT (17:12 GMT). (b) Remote sensing reflectance spectra collected from
the middle of the bridge looking approximately Northeast. The green water has a
chlorophyll fluorescence (fChl) of 7.2 relative fluorescence units (RFU). The elevated
Sentinel-2 reflectance values in the Red-IR (> 730 nm) are due to atmospheric correc-
tion artifacts from ‘adjacency effects’ as described in [24]. The Sentinel-2 bands are
referenced by nominal wavelengths.

24



Figure 3: (a) Sentinel-2 image of Kansas River at De Soto, KS, on 6 September 2021
at 12:22 CDT (17:22 GMT). (b) Remote sensing reflectance spectra were collected
from the middle of the bridge looking approximately Northeast. The brown water has
a high turbidity (118 FNU), which causes a strong backscatter that is evident in the
elevated Rrs values especially between 600-700 nm.
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Figure 4: (a) Sentinel-2 and Gybe spectra as typically observed for low turbidity water
(b) Sentinel-2 and Gybe spectra as typically observed for high turbidity water. The
systematic increase in slope between bands 3 and 4, as turbidity increases, is due to the
reduction in the wavelength-dependent effects of water absorption due to an increase
in backscatter. The arrows indicate a map that provides an empirical daily vicarious
correction to the Acolite derived S2 spectrum to bring it into better correspondence
with the Gybe field spectra.

26



Figure 5: (a) Correspondence between USGS turbidity values and Sentinel-2 band ra-
tio values formed from Rrs(560)/Rrs(665). A good correlation is observed for values
of turbidity below ∼200 FNU. This suggests limiting the correlation model to band
ratios above ∼0.74, as indicated by the dotted lines separating the regions containing
normal and extreme turbidity events (b) For normal turbidity events, a good corre-
lation model can be established as indicated by the R2 value of 0.687. For extreme
events (Rrs(560)/Rrs(665) > 0.74) an estimate of turbidity has a much greater level
of uncertainty.

Figure 6: Gybe sensor turbidity product calibration. (a) Match up between USGS
Turbidity and Gybe spectral radiometer band ratio, Rrs(560)/Rrs(665) (b) Fit of
USGS turbidity with turbidity predicted from the Gybe sensor after calibration to
a third-order polynomial model. There are 25 points in the training set and 18 in
the test set, which consists of spectra and turbidity values measured at the De Soto,
KS site during the Fall 2021. The comparable values of the maximum absolute error
(MAE) of the training and test sets indicate good out-of-sample performance of the
estimated turbidity product.
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Figure 8: Sentinel-2 image of the De Soto, KS region from 2021-09-11 showing haze
(highlighted by cyan ovals). A small patch of haze (red circle) is just above the test
water patch and is the origin of the discrepancy indicated by the red oval in Fig 7(a).
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Figure 9: (a) Time series comparing Sentinel-2 turbidity estimates to USGS values
on the Kansas River near Lake Quivira during the Fall of 2021. (b) An R2 = 0.81
indicates that, at least for this particular 16-mile river reach, the fiducial corrections
to the S2 turbidity values are better than the unadjusted S2 estimates.

Figure 10: (a) Time series comparing Sentinel-2 turbidity estimates to USGS values
on the Missouri river near Randolph during the Fall 2021. This patch of water is 38
river miles downstream from De Soto and on a different river and watershed. (b) An
R2 = 0.59 indicates that the fiducial corrections to the S2 turbidity values are no
better than the unadjusted S2 estimates (see Fig 5(b))
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Figure 11: Linear regression showing a correlation between USGS Chlorophyll time
series (fChl in Relative Fluorescent Units) and a Sentinel-2 band ratio formed from
bands B5/B4 (Rrs(705)/Rrs(665)).
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Figure 12: Example of a Sentinel-2 image around De Soto, KS, on 10 February 2023
showing that accurate daily estimation of nutrient target products are possible during
periods of high correlations between the target product and remote sensing products
such as turbidity: (a) (pseudo) RGB image of Kansas river showing high inflow of
turbidity from sources such as Stranger Creek, (b) Time series of turbidity and nitrate
plus nitrite concentrations from USGS gauge at De Soto, KS, (c) Empirical correlations
show excellent correspondence between turbidity and nitrate plus nitrite concentration
during a 16-hour window beginning at 9:00 CST 10 February 2023. The linear fit
results in R2 = 0.94. A nonlinear quadratic fit results in R2 = 0.98. These fits are
only appropriate for the time window and river regions covered by the advection of
water parcels described in the text.
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Figure 13: High turbidity Kansas River waters merge and mix with the Missouri River:
(a) Sentinel-2 (pseudo) RGB image of the Kansas and Missouri Rivers confluence on
2021-09-11 at 11:22 CST. Water from the Kansas River is concentrated on the south
bank of the Missouri River, and (b) higher sediment loads on the south bank are still
visible at the USGS station in Randolph, MO, which is seven river miles downstream
from the confluence.
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Figure 14: Sentinel-2 images from 28 February 2023 at 11:22 CST show the leading
edge of a long turbidity slug that was generated by storm runoff on 27 February 2023
in the Topeka region of Kansas, approximately 30 river miles upstream, (a-c) (pseudo)
RGB images showing turbidity gradient, (d) turbidity gradient and chlorophyll-a es-
timates from Sentinel-2 imagery for points between Lawrence (Bowerstock Dam at
River Mile 51.8) and Eudora (Bridge at River Mile 42.4 River Mile).
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Figure 15: Storm runoff from Mill Creek, west of Topeka, KS, showing inflows with
high sediment loads into the Kansas River (a) Sentinel-2 (pseudo) RGB image from
28 February 2023 with the location of ‘virtual’ gauging stations indicated by red dots
(1-91 left to right), (b) Sentinel-2 estimations of turbidity at virtual gauging stations
showing sharp changes in turbidity as the path crosses over the interface caused by
the sediment loading from Mill Creek and Cross Creek.
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Figure 16: (a) Time series showing the correlation between turbidity and nitrate plus
nitrite observed at the USGS station in De Soto, KS, during a 48 hour period from
28 February to 1 March 2023. The correlation is due to the passing of a large slug
of turbidity generated by storm runoff upstream east of Topeka, KS (see Fig. 15), (b)
Linear fit between nitrate plus nitrite and turbidity results in an R2 = 0.946.
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Figure 17: Sentinel-2 estimation of nitrate plus nitrite in the Kansas River on 28
February 2023 at 11:22 CST. The water quality product map was generated with the
correlation data described in Fig. 16. The leading edge of the turbidity slug contains
elevated levels of nitrate. It is about to pass by the Lawrence drinking water treatment
plant with an intake pipe on the West bank of the Kansas River. Water parcels from
Lawrence are advected downstream to De Soto (at an estimated rate of 1.6 mph,
and travel time of ∼13 hr). Hence, the correlations used for the nitrate estimates
at Lawrence, KS, contain water parcels that overlap with those used to calibrate the
product map. The base map is the Sentinel-2 (pseudo) RGB image from the same
day.
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