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SUMMARY
Littoral river plumes are complex optical environments. To begin to resolve this complexity we use

hyperspectral data, and an extension of ‘dark pixel correction’ methods (Chavez 1988), to produce
radiance maps that allow us to distinguish different constituents in the water column ranging from
glacial rich sediments (silica’s) to muds and algae. We present data from two sites: the Columbia
River in the Northwest of the United States, and the Otago Shelf fed by the Clutha River on the South
Island of New Zealand. For this study the instrument used to collect data was HICO (Corson 2010;
Davis et. al. 2010) — the Hyperspectral Imager for the Coastal Ocean — developed by the United
States Naval Research Lab (NRL) and currently flying on the International Space Station. HICO
has 90 channels between 400-900 nm and a ground sampling distance of 90 m. These early results
illustrate how space borne hyperspectral imaging can enhance our view of the suspended matter in
river plumes along a coast.

INTRODUCTION
Ideally, accurate physics based atmospheric correction is used to obtain surface remote sensing

reflectance, and estimates of the inherent optical properties (IOP’s) of the top of the water column,
from a space borne at-sensor radiance (Gordon and Wang 1994). The IOP’s, in turn, can be used
to estimate the constituents of the water column from models and simulations of the scattering and
absorption properties of the specific constituents of coastal waters (Lee 2006).

In many applications, however, such as identifying different types and sources of suspended mat-
ter in the upper water column, understanding qualitative mixing patterns, or providing operational
guidance for in field sampling, a calibrated radiance image (without atmospheric correction) of a
scene may suffice. For instance, the Fluorescence Line Height method (FLH), using the 709 MERIS
channel, is proving to be a good indicator of coastal algal blooms (Gower et. al. 2005; King et. al.
2010), and is helpful in both their initial detection, and also providing guidance for field sampling
(Tufillaro et. al. 2010). Additionally, Gower and co-workers have advocated working directly from
the Level 1b (L1) data lacking atmospheric correction in estimating FLH, especially in near coastal
waters. The FLH maps from L1 data are often used to indicate a specific water constituent, and not
to accurately estimate the concentration. That is, FLH is often used to ‘indicate’ the presence of high
concentrations of algae, relative to surrounding waters.

We will use the term ‘indicator map’ to denote a radiance or reflectance image of a scene, which
like, the L1 FLH products, are usually computed from the calibrated at-sensor radiance and are meant
to highlight specific constituents of the water column, but not necessarily provide a calibrated mea-
surement or concentration. Because we are simply after indicators, rather than estimates of concen-
trations, we make more liberal use of scene based empirical methods to go directly from L1 data to
an ‘indicator’ for a specific water constituent.



We view these indicator maps as, in some sense, an extension of line height methods, made pos-
sible by the use of hyperspectral data which allows us get a finer look at the suspended matter con-
stituents of coastal waters. In line height methods, adjacent channels are used to develop indicators for
a product which is relatively insensitive to atmospheric effects because of the proximity in wavelength
of the channels utilized. In the method described here our intent is the same. That is, we want to de-
velop indicators that are relatively insensitive to atmospheric effects, but can also make use of spectral
data over a wider wavelength range, and not just adjacent channels. We emphasize that this approach
is made possible because of the relatively dense channel sampling provided by hyperspectral data,
which allows us to identify features in the spectra that can be used as indicators for specific types of
suspended matter. In order to facilitate operational use and adaptability to different scenes, our initial
approach relies on an empirical model for ‘dark water pixels’ that is easily tuned for different regions.

Alternatively, as we move away from Line Height Methods we move toward band-ratio methods.
So the method described here might also prove useful simple preprocessing procedure for band-ratio
methods, or point us toward an extension of band-ratio methods that allows us to experiment with
both the location and spectral widths of the bands in order to create an indicator for a target product.

In either case, as we move from space-borne multispectral to hyperspectral remote sensing data,
we expect that the additional spectral channels will find use both in scene based atmospheric correc-
tion methods (Lee et. al. 2007), as well as developing a more complete collection of indicators of the
constituents of coastal waters.

DARK PIXEL MODEL
The starting point for atmospheric correction of a sensor above water radiance, LT , is the decom-

position,
LT (λ) = La(λ)+T (λ)Lw(λ), (1)

where La accounts for atmospheric and sea-surface reflection, Lw picks up contributions below the
water surface, and T denotes the transmittance from the water surface to sensor (Gao et. al. 2000).

In developing ‘indicator maps,’ we will consider a slightly different decomposition. Namely, we
start by imagining, at every pixel, the at sensor radiance we would see if the water was clear, a so-
called dark water pixel. This is an ‘idealized’ quantity, but the difference between this ideal radiance
signal, and the observed signal at sensor, provides information about what is in the water, which is
relatively independent of what is in the atmosphere. Thus it is a good starting point for creating an
‘indicator’ function for what is in the water.

In our approach a dark water pixel will be defined ‘empirically,’ based on an image, or collection
of images, of a region of interest, and choosing pixels, or patches of pixels, which determine ‘dark
water,’ or water free of river plume materials, or other features of interest, for that region. So in
practice, the dark water pixel could contain some background material in the water column that we
will consider as ‘clear water,’ or a ‘dark pixel,’ which is typical for the region. We could call this
type of pixel, which contains some below water signal, a regional dark pixel, but in the following
discussion we will just call it a dark pixel. It is the background signal from which we start any further
signal processing.

Mathematically we can write this decomposition as:

LT (λ) = La(λ)+T (λ)(Ld(λ)+Lb(λ)), (2)



= LM(λ)+LI(λ), (3)

where LM is the modeled spectrum, and LI is the ‘indicator’ spectrum, it is simply the residual between
the at sensor radiance minus any modeling we do for the spectrum. If LM is simply chosen as a dark
pixel in the scene than it is what is normally referred to as ‘dark pixel subtraction’, a very simple
but often effective scheme for atmospheric correction (Chavez 1988). The terms Ld(λ) and Lb(λ) are
called the ‘dark water’ and ‘bright water’ contributions to Lw(λ) respectively.

The trick to this approach is finding (a probably empirical) model of dark pixel spectra that allow
us to create a data based decompositions of LT (λ) to identify one or more dynamic water constituents
of interest. To find such a model we start by examining an image from HICOTM of the at-sensor
radiance (L1B) for a typical dark water scene, in this case the waters around Midway Atoll (Fig. 1).

To create an empirical model to fit the ‘dark water’ pixels shown by the circles in Fig. 1 we take a
guess at the following functional form:

Lm(λ) = (a+b(λ−λ1))
−4 (4)

where a and b are model parameters which are to be estimated from the spectral data — λn and Lm(λn)
— and λ1 is the first value of the wavelength in data set being modeled — a constant. In HICO L1B
data sets, each at-sensor pixel consists 90 radiance values between about 0.4 nm to 0.95 nm. The
typical swath size covers approximately 42 km by 190 km, and 500 by 2000 pixels. To ‘model’ the
data we limit our data sets to wavelengths between 0.45 nm to 0.95 nm, so in our data sets λ1 = 0.45
nm and λN = 0.95 nm.

The choice of window of wavelengths is deliberate for our modeling. First, we want a functional
form which will fit the data well, but not too well — that is we want to deliberately ‘smooth’ the data
by imposing a model that has only a few — in this case two — free parameters. This ‘smoothing’
process will, for instance, average over atmospheric absorption features, but these features can prove
useful in building indicator functions. For dark pixels, the wavelength window chosen is dominated
by a decaying trend in both incoming solar irradiance and Rayleigh scattering. In particular, λ1 is
chosen at approximately the maximum of solar irradiance over the wavelengths considered so that —
on average — the function we are trying to estimate is monotonically decreasing with wavelength.
Second, we need a window which also covers information useful for both dark pixels (whose shape
is dominated by Rayleigh scattering between 0.45 nm to 0.7 nm) and bright pixels which can have
significant radiance past 0.7 nm.

The functional form for the model does not exhibit fourth order scaling per se, rather the use of
two constants effectively introduces terms in a functional expansion that also includes modeling terms
of order λ−4, λ−3, ... , λ0. So it is more proper to say that the model has a leading term that has an
inverse fourth order power.

As Figure 1 illustrates, the functional form approximates the dark pixel data well with just two
parameters in wavelengths considered. The actual functional fit is achieved with a nonlinear least
squares optimization procedure (Dennis 1977). Critical for any nonlinear optimization is the ‘initial-
ization’ of the seed values. The empirical dark pixel model presented in Eq. (4) is easy to initialize.
To find the starting values for our nonlinear optimization — (a0,b0) — we algebraically solve Eq.
(4) for two different values. Choosing the first spectral point in the HICO data set, (λ1,L1), we find a



Figure 1: Image of Midway Atoll and selected spectra at indicated points – (a) HICO RGB image
from 25 March 2010. Bright circles indicate regions for the spectra shown in Fig. 1 (b). The black,
blue, and green dots indicate regions we expect to see ‘typical’ dark pixel spectra — i.e. clear wa-
ter spectrum’s. The magenta dot indicates an example of a (very) bright spectrum. The image is
composed from at-sensor radiances, L1B data is supplied by NRL’s HICOTMteam [Corson 2010]. (b)
At-sensor radiance for black pixel in Fig. 1 (a). The raw data is indicated by circles. The initialization
for the nonlinear fit is shown by the dashed line. The final nonlinear fit to the dark pixel empirical
model is shown by the solid line. (c) At-sensor radiance for blue pixel in Fig. 1 (a). The lower line
shows the difference with the black pixel in Fig. 1 (b).



seed value for a as a0 = L−4
1 , and this in turn can be used to compute b0 at any other spectral value. In

our case we chose the end point, λN = 0.95 nm, with b0 = (L−4
N −a0)/(λN −λ1). The specific values

for the data shown in Fig. 2 are (a0,b0) = (0.36,0.71), and after optimization (a,b) = (0.36,0.79).
Computing optimized values for (a,b) across different ‘dark water pixels’ in a scene provides a mea-
sure of the variation of the model and data. As Figure 3 illustrates, they do not change much in the
Midway scene, typically the values for (a,b) vary by less than 5%.

EXMAPLES: OTAGO SHELF AND COLUMBIA RIVER
Moving to more complex waters we consider coastal flow along the Otago shelf on the South

Island New Zealand. The flow along the Otago shelf is steered Northward by the Southland current.
75 km south of Dunedin, Broadbay, and the biologically productive Otago Peninsula, is the Clutha
River. A major source of freshwater input, the Clutha is glacier fed from thr Southern Alps and is
rich in silicates, which produces very bright coastal waters (Pfannkuche 2002). The Clutha is the
highest volume river in New Zealand, discharging a mean flow of 614 m3/s The Taieri River, about
30 km south of Broadbay, is more sediment rich, and both rivers provide many of the nutrients of the
biologically rich Otago shelf coastal waters. A HICO image of the waters along the Otago Shelf is
shown in Fig. 2.

The spectra at the points indicated in Figure 2(a) is shown in Figure 2(c). Pixel 1, black, is meant
to sample dark waters. Indeed, the dark pixel model works well for this spectral data with optimization
values of (a,b) = (0.4,0.84). The blue pixel is taken near the mouth of the Taieri, and the magenta
pixel near the mouth of the Clutha. The silca rich waters of the Clutha appear to increase the water
brightness between 0.6nm and 0.75 nm relative to the the Taieri.

It would be interesting to distinguish the (silica rich) Clutha and (sediment rich) Taieri waters
based on remote remote sensing data. To attempt this we decompose the L1B spectrum by applying
the dark pixel model on pixel by pixel basis. We then present the ‘residual’ spectrum, the L1B ra-
diance spectra, minus the estimated LM. An image based on the LI , indicator spectrum, is shown in
Figure 2(b). In this case our ‘indicator function’ is simply a choice of RGB channels which highlights
the spectra between 0.6 nm and 0.7 nm, making the Clutha waters bright blue relative to the green-
ish Taieri waters in Figure 2(b). In-situ data from bi-monthly cruises are currently being collected
eastward from Broadbay. Some initial match-ups are shown in Figure 2(d).

As a second example we take a look at the mouth of the Columbia river in the Northwest of the
United States. The L1B HICO RGB image from 19 March 2010 is shown in Figure 3(a). After an
examination of the spectra, we choose a channel at about 540 nm to attempt to highlight sediment in
these waters. The spectra for LI for this channel is shown in Figure 3(b). Images from the summer
(July 8-13), spectra and sediment indicator maps are shown in Fig. 3(c-f). We are currently trying to
match-up these type of data with in-situ sediment records for the Columbia.

CONCLUSION

We describe a method for separation of hyperspectral L1 data into a ‘dark water pixel,’ and resid-
ual portion. We suggest that, particularly in cases where atmospheric correction is problematic, the
construction of indicators based on the residual spectrum can be useful in distinguishing different
types of class 2 waters. An examination of the residual spectrum, for a few well chosen pixels in a



Figure 2: Image of Otago Shelf waters with indicator map, spectra, and examples of in-situ data: (a)
L1B HICO image of the Clutha to Broadbay, New Zealand, 2 May 2010. The bright water covers 70
km from the mighty Clutha (top, south) to Broadbay (bottom, north). (c) L1B Radiance spectrum of
pixels on the Otago shelf indicated in Fig. 2(a). Black spectra — dark water, Blue — near the Taieri
mouth, and Magenta — near the Clutha mouth. (b) HICO image constructed from LI spectrum of the
Otago shelf waters. The Clutha waters (blue) are distinguished from the Taieri waters (green). (d)
In-situ cruise data for water properties for 5 May 2010 eastward from Talarona Head, transecting the
Otago shelf coastal waters.



Figure 3: Images of Columbia River with indicator map highlighting sediments: (a) L1B HICO image
of Columbia River mouth 19 March 2010. (b) An indicator for sediments in the Columbia River based
on the the dark pixel spectral separation for the image presented in Fig. 3(a). (c-f) Typical spectra
and sediment indicator maps for July 2010.



scene, is often enough to suggest channels that can be useful in building indicator maps to highlight or
reveal the presence of waters with significantly different suspended materials. We illustrate the idea
with silica rich, and sediment rich, bright coastal waters off the Otago shelf, and also present initial
work on the analysis of sediment rich waters surrounding the Columbia River mouth.
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