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Abstract

The topic of this symposium is Optical Chaos. It is essential for those working in this
field to know how to recognize, identify and characterize chaotic behavior and how to dis-
tinguish it from noise. General principles, definitions of terminology, and some brief
review and commentary on the current status of techniques for measuring chaos are presented.

Introduction

Deterministic systems are those for which there are definite prescriptions for all their
future behavior. The future is completely determined by the present state of the system.
Contrary to common teaching, it is possible for deterministic systems to evolve over long
times in an irregular fashion, the details of which are such that the specific future is
unpredictable in practice because of uncertainties in knowing the initial conditions. It
is to this type of deterministic behavior that the term chaos is applied. Remarkably,
not only do these deterministic irreqular solutions exist, but often they can be distin-
guished from stochastically (thermodynamically) irregular behavior resulting from the
combination of an extremely large number of independent random variable. Of course, most
deterministic physical systems are not completely isolated from random perturbations (in
optics we must often deal with inescapable random spontaneous emission), so in order for
deterministic irreqularity (chaos) to be a useful concept, we must be able to show that
there are some features of at least some chaotic systems that are robust enough to persist
in the presence of weak noise perturbations. It is in this context that we are able now
to say (and believe) that chaotic behavior has been observed and that it has been distin-
guished from random behavior in a number of systems including a variety of optical experi-
ments.

In this overview we will focus on dissipative dynamical systems, as most optical systems
are of this type. Chaos is also found in conservative (often called Hamiltonian) systems
but iEsBCharacter will not be reviewed here. Several references provide an entry into this
field*™-.

Many other overviews and reviews of chaotiz_?gnamics should be consulted for details
which go beyond the discussion presented here . For optical systems, discussions of
chaos have been provided in the reviews by Milonni, Shih and Ackerhaltll, and Biswas and
Harrisonl2 and in compendia of research reportsléd-

Types of solutions of nonlinear dynamical systems

We can focus our attention by considering first the simplest laser modell7-19, the
equations for a single mode field interacting wiBh a collection of homogeneously-broadened,
two-level atoms, a set of equations which Haken has shown are isomorphic to the Lorenz
equations used in some of the earliest efforts to describe convective turbulence,

E = - KE - KAE, (1)
P = -y, (P{1 + is,.} + DE), (2)
D = -y, [(D-1) - 3(P*E + PE*)], (3)

Where E, P, and D are the slowly varying amplitudes of the electric field, atomic polar-
ization, and atomic population inversion, respectively, with respect to the cavity reso-
nance frequency while K, Yy ,and y are their respective relaxation rates. The pgﬁameter A
governs the density of the inverted medium and is normalized so that for A> 1+A“, there

is a nonzero constant intensity solution. & is the detuning of the atomic resonance
frequency from the cavity resonance frequency, and A(A=6, Al1+K) is the resultant detuning
of the frequency of the single-mode steady state solutionAgor laser from the atomic reso-
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nance frequency. We do not lose any important generality by considering first order
differential equations, because higher order systems can be reduced to first order systems
by expanding the number of variables. It is crucial, however, that the system be appro-
priately coupled and nonlinear. Tildes over variables denote division by Y,.

In order to better understand the nature of chaotic solutions, we first consider other
kinds of solutions. "Steady State Solutions" are those found by setting the time deriva-
tives equal to zero. For steady state solutions every variable takes on a constant, time-
independent value. For this problem there are two types of steady state solutions.NZThe
trivial solutions of E=P=0; D=1 whish exists fgf all parameter values. FQE A> 1.+ A°, a
second solution exists given by |E|“ = A - (1+% ) =-(1-iA)E/A; D = (1+A°)/A. This
second solution is the normal lasing solution of constant output intensity. One way to
show how these solutions change as some parameter is varied is to construct what is called
a "steady state bifurcation diagram" as in Figure 1 where the value of the intensity
I (=|E[®) of different solutions is plotted versus A.

A

Figure 1: Steady state bifurcation diagram Figure 2: Schematic vectors in the variable

showing I=0 solution and I=A-1 solution for space for A=2. The I=0 solution is the
Equations 1-3 as a function of the excitation trivial point E=P=0, D=1; while the I=A=]
parameter A. solution is given by E=1, P=-1, D=.5.

Another way to represent the solution for particular parameter values is as a vector in
the variable space as shown in Fig 2. Because we are using first order differential equa-
tions it is sufficient to represent the system in the "configuration space" (space of all
the variables of the system). If we were using equations which were second-order differ-

ential equations in time we would have to represent the system in "phase space" (variables
and their derivatives).

For certain parameter values, there are periodic solutions. As it is hard to represent
‘solutions in a multivariate space, we often choose the simplification of plotting either
one variable in time, a projection of the solution in the full variable space onto a two-
dimensional subspace, or labelling the types of solution in some special ways and plotting
some particular characteristic (such as the maximum value of the intensity of the periodic
solutions) on the bifurcation diagram. The steady state bifurcation diagram becomes a
more generalized bifurcation diagram showing all periodic solutions. Some samples of these
representations for periodic solutions of the laser equations are shown in Figure 3.
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Figure 3: Sample results for solution$ of equations 1-3 yielding periodic solutions.
a) electric field E versus time; b) D vs. E showing a simple closed loop attractor.
Apparent crossing of the trajectory is because this is viewed as projected. Parameter
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Figure 3 (contd): Characteristics of periodic signal plotted in parts a and b. «c¢) Intensity
vs. time, d) D vs. intensity,e) schematic bifurcation diagram showing the steady state solu-
tion unstable above AC and branch of periodic solutions indicated by dash-dot line.

Periodic solutions are not necessarily simple loops unless there are only two variables

in the space. When there are three or more variables, periodic solutions may be compli-
cated, multiloop structures which have the particular feature that they close exactly.

Periodic solutions will have distinctive power spectra with a peak at the fundamental
oscillation frequency and with smaller peaks at its harmonics if the oscillation is not
sinusoidal. If there are multiple loops before the solution repeats, then one can expect
a subharmonic given by the fundamental frequency divided by the number of loops. Recalling
that a deterministic solution cannot return to a prior value without immediately beginning
to repeat, we notice immediately that subharmonics are possible only if there are at least
three variables.

"Quasiperiodic solutions" are those which involve two distinct frequencies. If the
frequencies f, and f, are rationally related (f,/p = f_,/q, where p and q are integers)
then the solu%ions mgy look like a closed spiral. If %he frequencies are irrationally
related, then the solutions will trace out all of the surface of a torus, obviously indica-
ting that at least three variables are involved. The spectrum will show peaks correspond-
ing to the two frequencies (and their harmonics) and depending on the degree of nonlinearity
there will also be peaks at frequencies which are rational linear combinations of the two
frequencies.

With these other easily identified types of solutions as background, we show examples of
chaotic solutions of the laser equations.
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Figure 4: Samples of chaotic solutions of equations 1-3; a) E vs. time, b) intensity vs.
time, c) D vs. intensity helping to visualize the strange attractor in projection. Values
for A=16, Y=1.0, A=0, and K = 4.0.

Chaotic solutions have the following features:
1) Irreqgular time dependence,
2) Broadband power spectra,
3) Exponential divergence of nearby trajectories,
4) Another trajectory arbitrarily close to any part of any trajectory,
5) Occupying a subspace of fractal dimensions.

The chaotic nature of the signal may be the dominant feature of the evolution of the
variables, or it may be only a weak perturbation about a steady state or a periodic or
quasiperiodic solution. If the peaks of a chaotic signal are added to a bifurcation dia-
gram there is blurring in some regions of the plot, in contrast to the isolated points

representing peaks of periodic solutions.
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All of these types of solutions are of little importance unless they are stable.
Stability refers to the fact that the system returns to the same subset of the variable
space for asymptotically long times after a small perturbation. Stable solutions are
called attractors. The sensitive dependence of orbits on their initial conditions and
the restriction of the solution to a fractal subspace that are characteristic of an attract-
ing yet chaotic solution, cause it to be called a "strange attractor."

It is possible that random noise, suitably filtered for its frequency components can
have a spectrum identical to that of a chaotic solution. A power spectrum reveals only
the autocorrelation of a time signal from a stationary process which is not specific enough
to uniquely determine the signal itself. How then can one tell whether the irregular evolu-
tion of a variable has its origin in deterministic processes or stochastic processes? There

are both qualitative and quantitative methods.

One qualitative technique is to observe particular sequences in the evolution of the
attracting solution as a parameter of the system is changed. For many nonlinear dynamical
systems i% has been shown that chaos is reached by one of a particular set of sequences of
solutions?l. These universal scenarios include a sequence of period doublings (generating
successive subharmonics), a sequence from periodic, to quasiperiodic, to chaotic behavior,
or a sequence from periodic, to random interruptions in the periodic behavior which increase
in average frequency as the parameter is varied. Unfortunately, many systems reach chaotic
behavior by "nongeneric" routes so these scenarios are often not helpful in determining
whether the behavior observed is actually chaotic. Furthermore, exact universality of the
scenarios is achieved only for particular limits of the parameters which can usually not be
reached in real experiments. Often a period doubling sequence is truncated prematurely by
noise (or by special dynamical effects) leading to chaos, but it is hard to persuade skeptics
that noise can truncate a dynamical sequence and yet not play an equally distracting role
in the chaotic evolution that follows. Hence, scenarios can be observed, at best, only
approximately and so one must turn to more quantitative ways if one is to have assurance
that the broadband spectra arise from chaos. Another method is to plot "return maps" of,
for example, each peak versus the previous peak or each period versus the previous period.
In this case the idea is to see if there is a particularly limited set of possible pairings
of peaks. If the set of points appears to be a fractal set rather than randomly or uni-
formly distributed this is a strong indicator that the attractor lies on a fractal of low

dimensionality.

To quantitatively distinguish noise from chaos, one must measure one or more of the
particular properties that are specially properties of chaos. These may include measuring
the exponential divergence of trajectories (the Lyapunov exponents), measuring the dimension
of a return map or of the attractor itself, or measuring the entropy generated by the
solution. Recently other measures have been proposed including a whole spectrum of dimen-
sions and entropies22,23. Techniques for each of these measurements have been developed to
apply to both numerical solutions and to experimental data.

The measurement of a fractal dimension of an attractor has emerged as the simplest
numerical procedure to use to confirm that chaotic behavior underlies a random-looking
signal and its associated broadbagd power spectrum. A widely used technique is that pro-
posed by Grasberger and ProcacciaZ??. Exagglgs and discussions of this technique as applied
co optical systems can be found elsewhere?°~27. The measurements are made by collecting a
set of values of one variable of the system with successive values equally spaced in time.
Due to fortunate results from the topology of nonlinear systems, it can be shown that the
topological features of an attractor can be fully reconstructed from the time behavior of
this one variable. The reconstruction is achieved by plotting the trajectory in a vector
space formed by taking as vectors the sets of sequential values which are delayed from each
other by the same amount (not necessarily the time delay between successive points in the
original single variable data stream). This procedure is called "embedding the time series
in a higher dimensional space." 1In this embedding space one can measure the relative
separation of points to look for evidence of a fractal distribution.

The correlation dimension is the exponent that describes how the number of interpoint
spacings less than some length epsilon grows with epsilon. Several examples of the plots
of the correlation integrals versus epsilon for different signals measured from single mode
lasers and from amplified spontaneous emission reveal the principal features of the technique.

The most important part of this process is the determination of the proper delay to use
for the embedding and the proper number of points to use to gain an adequate representation
of the attractor. It is increasingly clear that for low dimensional attractors which are
visited relatively uniformly in time, a small numberzgf points (such as 500-1000) may be
adequate to estimate the properties of the attractor”™ . Several different methods for
optimizing thﬁgprocess were proposed and discussed at a recent conference on the calculation
of dimensions“”’. Calculation of the autocorrelation function or the mutual information
function gives a correlation time which sets an appropriate time scale for the embedding
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Figure 54: Slope of correlation integral
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Figure 5f: Slope of correlation integral
for ASE. No plateau indicates no difference
between this signal and random noise.
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vector3o. It is generally necessary that each embedding vector involve delays of the order
of the correlation time or the first minimum of the mutual -information. In addition the
number of components of the vector should be about twice the dimension. An improved method
of ds}ermininq an optimum embedding of the trajectory has been proposed by Broomhead and
King” . By offering a suitable transformation of the normal delay embedding vectors, the
B-K technique has been shown to greatly increase the efgiciency of the calculation of dimen-
sions and other features to be calculated from the data™ . It also gives an embedding space
of optimum and minimun size for measuring the deterministic nature of the solution.

One important note for those applying these techniques is the result that essentially
all strange attractors have dimensions greater than or equal to two. This is because the
fractal nature of the attractor is at least as big as a Cantor set transverse to a two-dimen-
sional surface. Application of the quantitative measurement techniques often results in di-
mensions less than two. This most commonly happens when the measurements are made as an
average of the distribution of the spacing of points on the attractor. If the attractor is
twisted or compressed unevenly, the fractal nature can be apparent in one region on a parti-
cular length scale and be hidden in another region on the same length scale where, instead,
only the basic one dimension of nearly similar trajectories is apparent. Technically, the
fractal dimension is defined only in the limit of infinitesimal length scales to avoid this
problem, but in many experimental situations it is impossible to approach infinitesimal
spacings. In this case, we have found that the B-K technique also tends to find a basis set
for the embedding that removes twists and compressions in a way that keeps the fractal
nature on more nearly comparable length scales over the whole attractor. The result is a
fractal dimension that is greater than two.

There are also conjectures about the ) lationship between the Lyapunov exponents of a
system and the dimension of the attractor”~. These have been used successfully in cases
where the dime?iionality is so high that its calculation by the Grassberger and Procaccia
method will fail”~. Theg.one must rely on computationally demanding methods for calculating
the Lyapunov exponents™ .

Alternatives to Dimension Calculations

Several different shortcuts have been proposed for the measuring of properties of chaos
or determining its presence. Most notable is the blurring of an oscilloscop§6trace
repetitively triggered by initial conditions as accurately reset as possible” . Unfortu-
nately this process is guaranteed only to offer information about the transient evolution
of the system as it finds the attractor, but it appears that in some cases the transient is
relatively innocuous and that traces represent in a reasonable way the divergence of
trajectories with similar but slightly different initial values.

Others are actively measuring the coherence and statistical properties of chaos37—39.
Probability distributions, moments and cumulants, correlation functions, and other such
measures are popular in the study of statistics and have recently been studied for chaotic
systems. It is not yet clear whether there are characteristics sufficiently unique to chaos
to offer reliable proof of the presence of chaos.

Finally one can ask about the effect of noise on a chaotic system40. There are no abso-
lute rules. In some cases, if the rms of the noise is smaller than the rms of the chaotic
part of the signal about the basic structure of the attractor, it is possible that the
noise blurs the fractal dimension on short length scales and does not significantly perturb
the fractal on intermediate length scales. 1In principle, it is equally possible that the
strange attractor is only very weakly stable with the result that a small amount of added
noise can completely destroy the chaotic behavior. There are numerous instances where it
appears that there is a fractal nature to the attractor over some length scales and that at
shorter scales either the digitizing accuracy or inherent system noise causes blurring. By
way of contrast, it is also possible that noise can disturb the stability of periodic or
steady-state solutions causing the system to evolve in a chaotic way on a strange attractor
that would be unstable in the absence of noise. This can be distinguished from "noise
amplification" in that the noise-induced chaos has all the properties of a strange attractor
while amplified noise would be more random.

As these and other quantitative measures are increasing applied to digitized signals,
it will surely be true that more and more instances of irregular behavior will be explained
as having their origins in dynamical evolution on strange attractors. Continued progress
seems likely and simpler litmus tests involving new direct analog computations may emerge
from current research efforts. .
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