decency, brotherhood, and peace? All of these men can be
admired for their scientific accomplishments, but for probity
and honor I believe Isaac Newton stands over them as if still
on the “shoulders of giants.”

The conflict with Flamsteed is not simply the vengeful act
of a self-centered Newton trying to cheat a poor astronomer
out of his data. Newton and Flamsteed differed sharply in
their perceptions of Flamsteed’s official position—and it
seems to me, by the standards of today at least, that New-
ton’s viewpoint is the more sustainable. To Newton, the As-
tronomer Royal was a civil servant, a scientist paid by the
State to obtain results of use to the State. Is it not, then,
almost a malfeasance of duty for a government scientist to
refuse to relinquish data until such time as he can complete
some personally conceived magnum opus? Think of this con-
flict in contemporary terms: How sympathetic would we be
to a scientist working for NIST, or the National Oceanic and
Atmospheric Administration (NOAA), or the National Aero-
nautics and Space Administration (NASA), or any of a num-
ber of other government agencies with responsibility to pro-
vide the public with critically needed information, if that
scientist were to refuse to release that information until such
time far in the future as suited his own personal agenda?
Newton was no saint, and he certainly had his personal rea-
sons for singlemindedly pursuing Flamsteed’s lunar data.
Nevertheless, the manner of this pursuit—via the communi-
cation channels available to him as an influential scientist
and administrator—does not, in my view, justify the claim in
the subtitle of the book that Newton suppressed his antago-
nists’ scientific discoveries. Quite the contrary in the tase of
Flamsteed, he was trying—even if for his own somewhat
venal reasons—to ‘‘liberate” those observations and make
_ the work available for public use. In the case of Gray’s dis-
coveries, Newton may not have facilitated their publication,
but he certainly did not—and could not—prevent Gray from
communicating his observations in letters to other natural
philosophers, which was the usual manner of the day.

But don’t take my word for this. Read the book yourself
and let Clark and Clark take you back to a uniquely colorful
place and time of extraordinarily talented scientists with all-
too-human frailties.

Mark P. Silverman is Professor of Physics at Trinity College.
His research interests include quantum physics, optics, and,
most recently, astrophysics. Isaac Newton'’s experimental
work has long fascinated him and he describes, among many
other things, his modern reproductions of Newton’s seminal
experiments on light diffraction and radiant cooling in his
books Waves and Grains: Reflections on Light and Learning
(Princeton, 1998) and A Universe of Atoms, an Atom in the
Universe (Springer, 2002).

The Topology of Chaos. Robert Gilmore and Marc Lefranc.
596 pp. Wiley, New York, 2002. Price: $84.95 ISBN
0-471-40816-6. (Nicholas B. Tufillaro, Reviewer.)

One Ring to rule them all,

one Ring to find them,

one Ring to bring them all

and in the darkness bind them
Lord of the Rings, J.R.R. Tolkien
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A knot is an embedding of a circle, a ring, into three-
dimensional space. There are an infinite number of ways in
which this can be done. The figure eight knot, the trefoil knot
of celtic lore (a stylized version of the shamrock), and of
course the “‘unknot,” a simple closed loop—these are just
three of the more common examples of an embedded ring.
When two or more knots are entangled together they form a
link. Knots and links enter dynamics through the search for
periodic solutions to the equations of motion. A periodic or-
bit that arises by solving a system of three ordinary differen-
tial equations is a knot; a collection of such orbits forms a
link. For instance, integrable Hamiltonian systems with two
degrees of freedom in configuration space can be described
by a flow in a three-dimensional phase space, and the peri-
odic orbits of this flow form a braid of “torus” knots. This
concise topological description of a dynamical phenomenon
follows from the fact that solutions of such integrable sys-
tems, in appropriate action-angle variables, can be viewed as
rational (periodic) or irrational (quasi-periodic) windings on
a torus. In this instance topology and dynamics are really the
same coin viewed from different sides. Although beautiful in
mathematics and celtic art, torus knots and their links are
considered tame by dynamists. More exciting links are gen-
erated by looking for periodic orbits embedded in strange
attractors found in three-dimensional dynamical systems like
the Lorenz, Duffing, or Rossler equations.

Recall the familiar picture of the “Lorenz attractor,” so
often seen on computer screens, consisting of two spiraling
branches. A single chaotic trajectory of the Lorenz attactor
comes arbitrarily close to an infinite number of unstable pe-
riodic orbits. Informally, a chaotic attractor can be defined as
the closure of all the periodic orbits, or knots, it contains. In
order to get a handle on these ‘“Lorenz knots,” the mathema-
ticians Birman and Williams introduced a topological carica-
ture, a cartoon, for the Lorenz attactor, called a remplate—
which is simply a collection of two-dimensional surfaces
called branches, which are bent, twisted, and glued together
in such a way so as to resemble the two spiraling wings that
are generated by the Lorenz equations. By projecting out the
stable directions of the flow in the Lorenz equations, Birman
and Williams were able to show that the resulting flow in-
duced on their template, or “knot-holder,” was a faithful
topological representation for the knots that occur in the fa-
miliar Lorenz attractor. A number of physicists, led by
Gilmore, realized that this process could be worked in re-
verse: periodic orbits could be extracted from experimental
data and used to construct topological models—templates.

Moreover, these topological models carry important dy-
namical implications. For instance, the existence of a single
so-called “postive entropy” orbit, extracted from a chaotic
time series, provides strong evidence that an attractor is cha-
otic, in a way that is much easier to obtain than methods
based on calculating metric properties of an attractor such as
its fractal dimension. The simplest flows (as opposed to
maps) that can exhibit chaotic behavior are three dimen-
sional, and the simplest chaotic attractors are those with just
one unstable direction (one postive Lyapunov exponent). It is
exactly this class of attractors which can be modeled by tem-
plates. As Gilmore and Lefranc illustrate repeatedly, with
data sets ranging from mechanical systems to lasers, what
matters in successfully constructing such a model from ex-
perimental data is not the underlying number of dimensions
of the system, but rather that the attractors generated can be
faithfully embedded in three dimensions. Thus, what we
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have is a physical theory and experimental procedures for
identifying and classifying the “simplest” chaotic forms that
can exist. The bulk of this book is a detailed user’s manual
for how to extract these topological models from experimen-
tal data, and why such an analysis is both useful and impor-
tant.

The book focuses on teaching the topological modeling
methods developed during the past decade by Gilmore and
his co-workers. A good grounding in an elementary text,
such as Steven Strogatz’s Nonlinear Dynamics and Chaos
(Addison—Wesley, 1994) should be enough to get the moti-
vated reader started. The opening chapter of the book re-
counts the authors’ first encounters with the challenges posed
in understanding nonlinear behavior in laser systems. This
sets the stage for the questions they want to tackle: how to
classify the geometric and topological mechanisms that gen-
erate chaotic behavior, and how to identify these forms in
experiments. This first chapter contains a lot of the standard
jargon of nonlinear dynamics (and some lesser known terms
and concepts like “snakes’), such as “crisis,” “saddle-node
bifurcation,” “Newhouse series,” and ‘“Lyapunov expo-
nents,” which could be off-putting to some readers. However
many of these terms are described more fully in the follow-
ing chapters when they are actually needed.

The beginning chapters are a nice summary of dynamical
systems theory, with a strong bent toward topics and terms
that are useful in the topological analysis to come. As one
might expect, the Logistic map makes an early appearance,
with a detailed examination of its symbolic dynamics via
kneading theory. The emphasis is on understanding and cal-
culations, as opposed to rigorous proofs, which can be found,
for example, in Robert Devaney’s book [An Introduction to
Chaotic Dynamical Systems (Addison—Wesley, 1992)]. With
the analysis of ‘“‘horseshoe maps,” the text begins to distin-
guish itself from ‘‘standard” treatments. The authors provide
a description of the horseshoe map, as well as a “‘reverse”
horseshoe, and show how it is topologically distinct from the
Smale horseshoe studied in almost all books on chaotic dy-
namics. The text is peppered throughout with very insightful
comments of the type that are often heard in a lectures, but
never seem to make it into texts. For instance, when speak-
ing of the symbolic reduction of the dynamics of the Smale
horseshoe, the authors write, “To conclude, let us emphasize
that the two-sidedness of symbolic sequences for the horse-
shoe map is not due directly to the dynamics being two-
dimensional. Rather, it originates in the distinction between
stable and unstable spaces, regardless of their dimension.”

After examining fairly standard material about maps, the
authors look in detail at some typical flows: the Duffing, van
der Pol, Lorenz, and Rossler systems. Each example is nicely
introduced with a concrete physical realization. Again, in
addition to standard material such as the analysis and stabil-
ity of fixed points and periodic orbits, the authors also intro-
duce some original ideas, such as the first steps toward a
“structure” theory of dynamical systems. Most striking is the
authors’ repeated emphasis on the role singularity theory can
play in the classification of chaotic forms. This idea is im-
plicit in Milnor and Thurston’s original presentation of
kneading theory [““On iterated maps of the interval,” in Dy-
namical Systems, edited by J. Alexander, Lecture Notes in
Math. Vol. 1342 (Springer-Verlag, Berlin, 1988), pp. 465—
563], but the suggestions and initial steps toward pushing
this idea beyond one or two dimensions are very intriguing.
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The dynamics and topological structure of even the simplest
two-dimensional maps are still a subject of active math-
ematical investigation. Recent studies, for example, on forc-
ing relations in horseshoe maps, by Toby Hall and Andre De
Carvalho (“Symbolic dynamics and topological models in
dimensions 1 and 2,” to appear in Topics in Dynamics and
Ergodic Theory), nicely complement some of the more
physically motivated approaches described in this text.

The middle chapters present the core material about knots,
braids, links, relative rotation rates, and templates, needed to
set the stage for topological modeling, and are largely self-
contained. Material that can be found scattered throughout
several research papers is presented in a clear and coherent
fashion. As with most of the text, there are ample figures,
and care is taken to describe the meaning and motivation of
the equations introduced. Although much of the mathematics
will be new to many readers, the essential calculations can be
mastered with a basic command of elementary knot theory
(which is accessible to undergraduates), combinatorics, and
algebra. Invariant manifold theory plays an important role in
motivating the development of templates through the
Briman—Williams Theorem, but it is not essential for calcu-
lating knot invariants used to identify templates.

The next chapters show that this is not just a book about
theory. The authors describe in great detail the signal pro-
cessing tricks needed to get a good embedding and a topo-
logical model, and they go on to illustrate the results of these
procedures on a diverse collection of experiments, ranging
from the Belousov—Zhabotinskii chemical reaction to several
different types of laser systems. Along the way they present
ample evidence that certain topological forms such as the
Smale horseshoe or the Lorenz attractor pop up again and
again in a wide spectrum of physical systems. The remaining
chapters in the middle part of the book draw much from the
authors’ own original research, and begin to develop a theory
for why these chaotic forms are so ubiquitous.

The book concludes with two chapters that are visionary.
Drawing on analogies from the theory of Lie Groups and
Singularity Theory, the authors outline how to extend the
program for topological analysis beyond three dimensions.
More importantly, they advocate a “‘program for dynamical
systems theory,” with enough questions and insights to keep
physicists and mathematicians busy for quite some time.
These chapters alone may be worth the price of admission
for the cognoscente.

The primary audiences for this text will be graduate
classes and researchers in chaotic nonlinear dynamics. How-
ever, a motivated teacher can find material in the book of use
to undergraduates. For instance, as part of an undergraduate
research project I had one student develop a Mathematica
notebook for computing relative rotation rates and plots of
templates and their knots. Indeed, even some of the simpler
topological models described in this text have yet to be com-
pletely explored or characterized, and might present some
interesting challenges in undergraduate research.

It has been fourteen years from the time Robert Gilmore
first began studying chaos in lasers to the publication of this
book, which might be seen as book three of a trilogy. In book
one, Lie Groups, Lie Algebras, and Some of Their Applica-
tions (Wiley, New York, 1974) Gilmore first explored the
continuous group as a sort of generalized kinematics—the
stage if you will, for all dynamics. In book two, Catastrophe
Theory for Scientists and Engineers (Wiley, New York,
1981), he elucidated the role singularity theory can play in
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understanding and classifying the equilibria of gradient dy-
namical systems—arguably the simplest dynamical systems
with interesting properties. In these first two books he ex-
pertly demonstrated how a mature mathematical theory can
present us with a more unified view of seemingly diverse
dynamical phenomena. In this third book Gilmore and Le-
franc step one more rung up the ladder of dynamical com-
plexity to explore the simplest chaotic dynamical systems,
and discover that to date there is only a partial mathematical
theory to guide us. Nevertheless they urge us to explore fur-
ther, leading us as far down the path as they can. This is a
story that is still unfolding, and although the route may not
be clear, there will no doubt be many more adventures along
the way.

Not all who wander are lost
J.R.R. Tolkien

Nick Tufillaro works at Agilent Technologies on nonlinear
test and modeling problems arising in rf, microwave, and
optical communications systems.

Tritium on Ice: The Dangerous New Alliance of Nuclear
Weapons and Nuclear Power. Kenneth D. Bergeron.
234 pp. MIT Press, Cambridge, MA, 2002. Price:
$25.00 ISBN 0-262-02527-2. (David Hafemeister, Re-
viewer.) '

Tritium is a key component in the primary stage of a
nuclear weapon. Without tritium—deuterium fusion boosting
in the primary, the secondary will not explode with signifi-
cant yield. Tritium does not add much energy to the prima-
ry’s fission yield, but it shortens the time. It takes about 80
doubling generations for a primary to explode, but by getting
a quick dose of neutrons, generations can be skipped, saving
time before violent disassembly. By increasing the fission
efficiency of the 2°Pu or 2U, less material is needed, and
the size of primaries can be reduced.

The US has not produced tritium since 1988, relying in-
stead on existing supplies. But these are being depleted by
the spontaneous decay of tritium (half-life 12.3 yr), and the
Department of Energy decided in 1998 to resume production,
at the Tennessee Valley Authority’s (TVA) Watts Bar reactor.
Kenneth Bergeron’s Tritium on Ice raises three main con-
cerns about this decision: (1) The urgency of the need for
tritium. (2) The breach in the traditional separation between
military and commercial fuel cycles. (3) Reactor and envi-
ronmental safety issues.

The need for more tritium: Bergeron correctly points out
that the need for tritium is driven by US plans to maintain a
large enduring stockpile of nuclear weapons. One might
think that the 2002 Strategic Offense Reduction Treaty
(SORT) would lead to a reduction to 2200 warheads, but the
US desire for flexibility, with a large “‘responsive force” and
a considerable number of spares, actually suggests a total of
about 10000 warheads. J. Cirincioni [Phys. and Soc. 31, 14
(July 2002)] considers the following stockpile for the year
2012:
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Operational deployed force 2200
Warheads on 2 Tridents in overhaul 240
Missile and bomber warheads in response force 1350
Nonstrategic bombs assigned to US/NATO 800
Nonstrategic cruise missiles (SLCMs) 320
Non-strategic spares 160
Intact warheads in inactive reserve 4900
Total 10000

After considering proposals to make tritium in dedicated
accelerators or reactors, the DOE opted to contract for tri-
tium services at an existing TVA nuclear power plant. One
can estimate tritium demand from three factors: the decay
rate of tritium (mean life 7=17.7 yr), the DOE’s proposed
tritium production rates, and the number of warheads in a
future stockpile. Tritium is produced from the absorption of
neutrons by ®Li in thermal reactors. DOE stated in 1998 that
it would start tritium production of 2.5 kg/yr in 2005 for
nuclear weapons under START I, which sustains some 8000
strategic warheads, plus other warheads. DOE said it would
postpone production of 1.5 kg/yr until 2011 if START II
entered into force with a limit of 3500, plus other warheads.
Deeper cuts in warheads would relax tritium requirements,
and postpone even further the need for new tritium. A factor
of 4 reduction, from 10000 to 2200, would extend the time
before new supplies are needed by two half-lives, or a total
of 25 yr. My estimate ignores the details of the actual tritium
cycle (reserves, pipeline, recycle losses). :

In 2005, under START I, the tritium needed in the stock-
pile under steady-state conditions would be

my=1(dm/dt)=(17.7 yr)(2.5 kg/yr)=44 kg,
with an average tritium budgeted per warhead of about
44 kg/10000=5 g.

A reduction in warheads postpones the need for tritium pro-
duction as follows:

SORT (START III) at 2000 warheads+ 3000 reserves, tri-
tium production begins in 2015.

m,=(5000 warheads)(5 g/warhead)=25 kg,
At=—[In(m,/m;)](7)
=—[In(25 kg/44 kg)](17.7 yr)

=10 yr+2005=2015.

SORT at 2000 warheads: ~ m3=10 kg, Ar=26 yr+2005,
begins in 2031.
SORT II at 1000 warheads: m,=5 kg, Ar=38 yr+2005,

begins in 2043.

Thus the urgency of the need depends critically on the num-
ber of warheads anticipated.

Separation of the military and commercial fuel cycles: The
multilateral Nonproliferation Treaty is our only hope to pre-
vent the global spread of nuclear weapons. The US, as one of
the five nuclear weapons states (NWSs), has long promoted
the ideal of separation between military and commercial fuel
cycles. This is not a legal requirement, but rather a matter of
setting an example to the 180 non-NWSs. The US mostly
adheres to this constraint, but there have been exceptions,
such as Hanford’s N reactor (shut down in 1988), which
made military plutonium as it sold electricity. It is true that
having' the quasi-private TVA reactors make tritium would
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