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Abstract:

A somewhat bs stream of consciousness account of current
experiments on capillary ripples with gradious generalizations to other
systems exhibiting spatial/temporal chaos.



Notes on:

Defect-Driven Spatial Temporal Chaos

I. Introduction

The notion of a 'phase transition' has broadened in the last few
decades, and at the same time, it has grown to incompass quite an expanse
of physical phenomena. At least four rough catagories of phase transitions

can be identified (Anderson, Basic Notions of Condensed Matter Physics):

Example, Symmetry. Change.
condensed matter/ local homogentiy & complete change of *
solid state. ~ isotropy broken. microscopic properties.
'cosmologicallbig bang. nonlinearities cause little change in local
instability: driven by properties.
small fluctuations.
laser. | local microscopic coherence, but no
symmetry broken by regularity, rigidity.

; external pumping.
Kondo effect. No broken symmetry. continuous transition
| to qualatively different

behavior.

As the use of 'phase transition analogies' has broadened to cross fertalize
many disciplines from cosmology to elementary particles; the notion of a
phase transition itself has blurred. As the Kondo effect illustrates; the
notion of a phase transition is not even always associated with a broken
symmetry.

It seems that the only reasonable defintion of a phase transition is

the rather vacuous statement that a phase transition occurs when a



measurable quantity of a physical system undergoes an abrupt change.
Given such a change, phase transitions are usually divided into two cases:
continous and discontinous. Fi_rst—order transitions are discontinous and
all continuous transitions are loosely called second order. Continuous (2nd
order) transitions can also be divided into two types: instability

transitions and nucleation transitions (Flucations, Instabilities, and

Phase Transitions, ed. T. Riske).

In this paper we will be concerned with nucleation type 2nd order
phase transitions. In particular, we will argue that a qualitative change in
the spontaneous pattern formation in far from equalibrium systems (eg.
multimode lasers, Bernard-Marangoni flow, neumatic-shear flow, capillary
ripples) can be understood as a defect-mediated phase transition (Nelson,
Phase Transition and Critical Phenomena, vol. 7), i.e., as a one or two stage
melting process. The basic scenerio we invision is this; a far from
equilbrium system is driven until it forms a structure breaking the
homgenity and isotropy of the problem. In a fluid problem these structures
could be Benard rolls or cells; in a laser this structure could be the
transverse field intensity across the cavity (a checkered optical Zebra if
you like). As the driving term of the system is futher increased the
nonlinearities in the system cause some local or global modulation of
these structures, leading, in effect, to defects in the
self oraganized structures (these are called "auto-structures” in the
soviet Iiteature).\ The structures now lose some (but perhaps not all) of
their order due to these defects. The order can be lost in one or more
stages. Following Ocelli et. al. (J. Physique Lett. 49 (1983) L-567) we
propose the use of 'multiple point’ correlation functions téylored to each
problem to quantify this loss of order. At the end we will consider a
specific application of these ideas to current experiments on capillary
waves as well as suggest their possible application to transverse

instabilities in multimode lasers.



However, we would like to stress that the basic methodology should
be applicable to the study of pattern formation in many far from
equilbrium systems. Also these ideas could be the basis for a theoretical
research program in spatial-temporal chaos. The idea is to attempt to
classify the types of defects that can arise in patterns (this could be done,
for instance, from a qualitative analysis of modulations that arise in
generalized amplitude equations e.g. Landau-Ginzsburg equation) in far
from equilbrium systems. The guess is that the analysis of different
types of defects may give rise to information about the type of phase
transitions the system can exhibit. In fact, this is exactly what has been
accomplished for the analysis of melting transitions as we will discuss
shortly. In this paper we will show that for some experimental systems
the patterns and their defects can be analyzed experimently. The
connection (if any) between the type (topologically ?) of defects and

different types of phase transitions has yet to be explored.

[I. Defect-mediated phase transitions.

During the last decade Nelson and others (Nelson, Phase Transitions
and Critical Phenomena, vol. 7) have devised a theory of melting where the
melting process occurs because of the formation of dislocation pairs at
sufficiently high temperatures (Nelson & Halperin, Phys. Rev. B 19 (5)
2457). The theory is particulary useful for two-dimensional systems,
where the theory perdicts the existence of a two-stage melting process;
the first stage of which destroys translational order while the second
stage destroys orientational order. A recent experimental confirmation of
the theory is provided by Murray and Van Winkle (Phys. Rev. Lett. 58 (12)
1200) who observe this two-stage melting transition in a
two-dimensional colloidal suspension of highly charged, submicron-sized

spheres in water using optical microscopy and digitial imaging.
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s a reciprocal lattice vector andT particle position. For two
1al solid, quite general arguments show that no long range order
However for a 2-D solid the translational correlation function

5 like a power law
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is related to the elastic coefficient (Lame cofficient) of a 2-D
1 this situation we speak of quasi-long range order.
rriginally suggested by Halperin and Nelson (Phys. Rev B 41, 121;

1978)) a notion of orientational order can also be defined by the
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ngle made by the line joining two neighboring atoms relative to
arence axis, while r locates the mid-point of the bond. By 'bond’,
not necessarily mean a chemical bond, but merely a relation
nearést neighboors, based, possibly on a geometric construction
hlet polygon (Collins, Phase Transitions and Cri‘tical Phenompna
he quanity eéwis appropriate for studing triangular Iattices,em eis

‘unction for square lattices. Thus, the correct orientigbions]



the orientational correlation function can be computed for a lattice (a
model of a solid) or for a net (a radom collection of points modeling a
liquid). Briefly the construction is simply the Wigner-Seitz construction of
solid state physics where oredraws perpendiculadr bisectors between line
segments.connecting nearest neighbors. This construction provides a
unique ﬁiigbgf the plane (c.f. Loeb, Space Structures, chapter 13).

The notions of orientational and translational order are not exclusive.
Certain types of defects in a lattice can destroy one or both of these
correlations. Other types of defects will only destroy one type of order,
for instance, a stack fault will destroy translational order but not
orientational order. In fact, the existence of different types of order
suggests the possiblity of an phase intermediate between a liquid and a
soiid. In a melting process Nelson and Halperin show that this
intermediate 'liquid crystal' phase can indeed exist. They call this new
phase 'hexatic’ or 'tetratic' if the phase exhibits sixfold or fourfold
symmetry respectively. In fact, they showed that a two-stage melting

process could exist where:

solid liquid crystal Lo o o

. quia cry < ohvopic h.%w\d
l | l I

Ton - T,

translational corr. orientational corr,

solid algebraic decay((g‘;':,{;,,“nﬁ constant (long range order)
. Qﬂ'l(r)
liquid crystal _exp. decay ~ algebraic decay
liquid . exp. decay exp. decay

the melting process exhibits three phases; a solid phase, a liquid crystal
phase, and an isotropic liquid phase with the correlation function

chacteristics given above.



In practice one calculates the translational correlation function
-\ = * = =

G <F> = < F_G. (7) F@,(o) >
and the orientational correlation function .

G (P = <AFE) W) >
to distinguish the different phases. Gédis a measure of the departure of
each atom from the ideal lattice location, while Gg)measures the local
deviation of each bond angle from its solid configuration; these are not
simple spatial correlation functions but actually measure the deviation
from some predetermined structure. They are perhaps better called
pattern recongition functions since they measure the deviation from a
translational or orientational pattern. They are also typically not
contin,‘%uos, but are rather summed over a discrete number of sites in the

problem.
[ll. Methodology.

Ocelli et. al. (J. Physique Lett. 44 (1983) L-567) have succesfully
calculated the orientational and translational correlation functions from
experimental data from Bernard-Manangoni flow and nematic-shear flow.
Also, Murray and Vén Winkle (Phys. Rev Lett. 58 (12) 1200 (1987)) have
determined these functions for an experimental melting problem. We are
currently trying to apply these methods for patterns seen in capillary
ripples to be described in the next section. Before we see the details |
would like to point out that there is a general methodology to these
experimental techniques.

First, a collection of patterns are identified in the system such as
rolls or cells. Second, these patterns are given an 'outline’, i.e. a pictorial
description based on a 1-bit quantization of the essential features. Third,
deviations within the pattern are measured by appropriate correlation

functions. These deviations typically arise from defects (dynamical



instabilities) in the pattern. Several different correlation functions can

be employed, each measuring some different aspect of the problem such as
translational or orientational order. Lastly, different states of the

pattern (phase transitions) can'be identified by quantitative changes in the
correlation functions. We next discuss how this program can be

implemented for capillary wave turbulence.

IV. Capillary Ripples

Capillary ripples can be generated on the surface of a liquid when the
liquid is forced to vibrate in the vertical direction. The system can be
viewed as a parametric fluid oscillator since by shaking the liquid up and
down, we are, in effect modulating the gravitational acceleration. We are
interested in studying the patterns that form on the surface of the liquid.
These patterns will be generatéd by capillary waves in the frequency range
we work in. The basic size of the ripples is determined by the capillary

wave dispersion relation /
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whereq is the surface tension,f is the density of the fluid and wfis the
forcing frequency. Our experimental apparatus uses n-butal alcohol with a
forcing frequency 6f 320 Hz. This gives a capillary wavelength of about 2
mm. Our fluid container is 8cm x 8cm x 1cm, so we study a large aspect
ratio (many modes problem) in the deep wave limit. A detailed description
- of the experimental apparatus is given by Simonelli & Gollub (Rev. Sci.
Inst. 59(2) 286 (1988)). Briefly, the apparatus consists of a square
plexiglass container coupled to an industrial shaker undergoing periodic

vertical oscillations. The surface of the liquid is visulized by shinning a

collimated white light beam into the bottom of the cell. The lightis



refracted by the deformed liquid at the surface of the cell. The fluid air
interface acts as an array of lenses to focus or defocues the light. The
light is imaged onto a mylar screen at the top of the cell. This image can
be sampled locally with a photddiode or globally with a video camera.
Images from the video camera can be saved on a VCR and then digitally
processed on a workstation. Typically, only the center of the cell is
imaged to minimize the boundary effects.

The surface remains flat for small forcing amplitudes. The capillary
waves first begin to form at a critical amplitude Ac. As the amplitude is
increased futher, regions of highly ordered (an almost stationary square
lattice) patterns followed by less ordered time dependent patterns are
obsereved.

Three images of the types of patterns are shown in (a), (b), and (c) for
increasing excitation amplitude./ At an excitation amplitude a bit above
Ac, the pattern becomes a highly organized square array with almost time
independent behavior. At a higher excitaﬁon amplitude the pattern breaks
up due to the formation of defects -- which we call 'voids' -- in the
lattice. This region is very ﬁme dependent. At still a higher amplitude
(c), the pattern looses all order and appears to be a net - a random
collection‘of points bosessing only statistical symmetry (Loeb, Space
Structures, chapter 4).

In order to quantify these observations a bit the auto-correlation

function is measured at the center of the cell with a single photodiode:

9 =< X&) x (£+T) >

where x is the intensity of the image averaged over the diode area 0.5 mm
(about oreforth the capillary wavelength). We calculated the |
autocorrelation function for each pattern as the excitation amplitude is
increased by small increments. For each excitation amplitude, we next

calculate the "first half maxium" of the auto correlation function. The
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first half maxium is a rought measure of how long it takes the pattern to
move, on average, by one forth the capillary wavelength. Itis a measure of
the fastest rearrangement time vfor the pattern. In the "stationary”

regieme (the stable square lattice) the first half maxium of the
autocorrelation function is simply a measure of the fastest frequency of

the system, and is, in fact, one forth the time it takes the pattern to drift
through a distance of the capillary wave length. Significant correlations
can exist in this regieme well past the first half maxium.

With the break-up of the square pattern however, the first half
maximum is now a good measure of the correlation time of the system,
i.e., there do not appear to be any significant correlations beyond the first
half maxium. Therefore, in this regieme the first half maxium is a
measurement of the fastest rearrangment time of the system as well as a
good measurement of the correlation time.

The magnitude of the autocorrelation first half maxium (ACF) vs. the
excitation acceleration (in millivolts) is shown in the accopanying plot.

This ACF allows us to distiquish four regions as labeled on the plot.
Region 0. No capillary waves, flat surface.

Region |. Pre-formation of square cells. This region can show periodic
behavior of a single wave front, quasi-periodic motion of two
perpendicular wave fronts presumably interacting linearly;
spatial-temporal intermittency between square pattern and more

complicated stuff.

Region Il. Square pattern. No spatial-temporal intermittency over several
minutes. Only real dynamics is the drifting of this pattern. The patternis
orientationally stable, remaining always at one orientation for the whole

pattern. The square pattern forms at about the center third of the cell,
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intially growing in size, and then decreasing with the onset of the
instability. We belief that it does not cover the whole cell because of a
nonuniformity in the local acelleration. The ACF is pretty much linear
with a slight increase in frequency, i.e., the drift velocity slowly increase
with the excitation amplitude. This region is easily identifed by eye, or
with the ACF. Alsg modulations of intensity which enter this region
appear to be 'damped out' by the lattice. Similar behavior is observed in
PDE's and coupled map models of spatial temporal chaos. This is the
so-called "stationary" regieme of Rabinovich et. al. The first noticeable
instability in this regieme is the small oscillations of the peaks, this is
seen as a jitter on the time series plots, and is the first hint of the onset

of an instability.

Region lll. Onset of instability. A clear threshold is given by the ACF plot
showing a signiciant increase of the voids causing a marked time
dependence. The ACF is approximately square root in this regieme. The
motion at the onset also becomes orientationally unstable, the square
pattern swings back and forth. The pattern is disruped about every four
cells by the instability, thus orientational order exists for distances less
than four wavelenghts. This is in agreement with similar qualitative
observations by russian authors who observe interesting rearrangments of
groups of 3 and 4 cells at a time. Spatial-temporal intermittency is also
observed. There appears to be a pattern competation between patterns of
square and hexangenal symmerty. We conjecture that this is because
energy is now entering into a new mode of the problem generating 6 waves
instead of 4. The pattern competation occurs at a realatively slow time
scale (30 sec). The spaceing between voids and there frequency of

production increase with the excitation amplitude.

Region IV. Full turbulence. The production of the instability becomes so



frequent that there is no room from one to the next. At this point all order
over the length scale greater than the capillary wave length is lost. This
is marked by a less clearly defined threshold in the ACF. At this point the

ACF is approximately linear again with a signiciant slope.

It is tempting to interpret the transition from region Ito IV as a
two-stage melting process since the spatial temporal chaos is driven by
defects -- voids. We are currently planning to test this hypothesis by
calculating the@rand G4-’ the translational and four point orientatioal
correlation functions for this experiment. Unlike the melting process
described by Nelson, however, the defects occuring in capillary wave
turbulence are not local dislocations, but rather longer wavelenth
phenomenon which we term viods. These voids are probably formed by the
transverse intersection of two transverse instabilities of the type
described by Ezerkii et. al. (qu. Phys. JEPT 64 (6), 1228).

V. Conclusion.

Our next step is to calculate GTand Gq_to test the two-stage melting
scenerio. The defects driving this melting process are not local
dislocations and this must be taken into account in any theroetical
description of the problem. The software needed to calculated the
orientational and translational correlation functions from experimental
data is quite extensive and will be discussed in a future communication.
fhe software, in the construction of the Wigner-Stietz cells, will also
allow us to quantitatively study the number and type of defects that arise
in capillary wave tubulence (c.f. McTague et. al. in Ordering in Two |
Dimensions ed. Sinha, p147). This will allow use to study quantitatively
how defects drive spatial temporal chaos. Similar studies are atleast

possible in principle for the optical zebra.



