P R
<[ A5
=J§we_T(t+T:ds. t o)

Nevertheless, we have seen that the two forms make differ-
ent predictions when the force is suddenly turned on. What
we have here is one of those instances for which the physi-
cist must exercise some care with his mathematics. The
calculation in (9) indicates that, when the future value of
the force is expressible in terms of the force and its deriva-
tives at time ¢,
(rs)” d"F(t)
Fit+ 7s —_— 10

(+)n20n' e (10)
then equations (4) and (7) are equivalent [actually uniform
convergence of the integral in (9) is also required, but this is
not the important point]. This being the case, it clearly
makes no difference which equation is used for the calcula-
tion of numerical results, but (7) has the advantage of being
manifestly causal, whereas (4) appears to violate causality.
The violation is only apparent, however, because, in this
case, the past and present force determine the future force
completely. On the other hand, when the future force is not
determined by the force and its derivatives at time ¢, then (4)
and (7) are not equivalent, and one must decide which to
adopt as the equation of motion for a charged particle. It is
in this case that (4) truly violates the principle of causality,
since the future force is quite independent of the past and
present force.

An astute referee pointed out that, for the force (5), the
equation of motion (7) is not totally free from difficulties
because this force and all its derivatives are undefined at
t = 0. To see more clearly the effect of the sudden change in
the force, we write (5) as

Swinging Atwood’s Machine

13
F(t)=F0f S(t"dt'. (11)
The equation of motion (7) then assumes the form

[ n—1
mi=F(t)+F, 3 » 30
n=1 dt "

which is indeed undefined at ¢ = 0. But this is not a serious
difficulty because changes of physical quantities across the
discontinuity of F(r) are well defined. For example, the
change of momentum P( = mr) as time crosses ¢ = 0 is the
integral of (12)from t = — e to t = € with e—0. The result,
which derives entirely from the » = 1 term in (12), is that
the momentum jumps at ¢ = 0 by the amount

AP =7F, (13)

This sudden change of momentum equals the accumulated
change during the preacceleration period of Eq. (6). Hence
the integrated momentum change is the same for both
equations. But again we must emphasize that in no case
does Eq. (7) violate causality.

We would therefore urge adoption of Eq. (7) as the only
equation of motion for a nonrelativistic charged particle
that is in accord with both the law of inertia and the princi-
ple of causality. Its only shortcoming is that it is not a
closed-form expression. However, this seems a small price
to pay to avoid the paradoxical, if not contradictory,
aspects of preacceleration.

(12)

'H. A. Lorentz, The Theory of Electrons(Dover, New York, 1952), 2nd ed.
>M. Abraham, Ann. Phys. 10, 105 (1903).
3R. Haag, Z. Naturforsch. Teil A 10, 752 (1955).

“For the relativistic formulation of the integrodifferential equation, see
F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading,
MA, 1965), Chap. 6.

5. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., Chap. 17.

Nicholas B. Tufillaro,® Tyler A. Abbott, and David J. Griffiths
Department of Physics, Reed College, Portland, Oregon 97202

(Received 24 January 1983; accepted for publication 18 November 1983)

We examine the motion of an Atwood’s Machine in which one of the masses is allowed to swing in
a plane. Computer studies reveal a rich variety of trajectories. The orbits are classified (bounded,
periodic, singular, and terminating), and formulas for the critical mass ratios are developed.
Perturbative techniques yield good approximations to the computer-generated trajectories. The
model constitutes a simple example of a nonlinear dynamical system with two degrees of freedom.

L. INTRODUCTION

The advent of electronic computers has brought re-
newed interest in the once-intractable study of nonlinear
dynamical systems. Even the simplest models, such as a

895 Am. J. Phys. 52 (10), October 1984

pendulum on an elastic string,! can yield motions of sur-
prising variety and complexity. We examine here the case
of an ordinary Atwood’s Machine, in which however one of
the weights is allowed to swing in a plane (Fig. 1). The
pulleys are massless and frictionless, and the rope is mass-
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Fig. 1. Swinging Atwood’s Machine.

less and inextensible. We assume the rope is long enough so
that we need not worry about the counterweight (M ) hitting
the pulley; on the other hand, we shall allow the swinging
mass (m) to rise above the horizontal line—and even to
make complete loops around its pulley—provided the rope
always remains taut.

It is not difficult to set up such a “Swinging Atwood’s
Machine” (SAMj in the laboratory. We used an air table
mounted vertically to confine the swinging mass (an air
puck) to the plane. The Ealing tables come with a hole
through the center into which a pulley on a swivel can be
inserted (Fig. 2). Friction is reduced by using an air pulley
to support the counterweight. Although it is impossible, of
course, to eliminate a// dissipative forces, we have succeed-
ed in demonstrating several of the motions described in this
paper, using the laboratory model.

It might be supposed that SAM—lIike the simple
Atwood’s Machine—admits only runaway solutions (with
the trivial exception of the equilibrium at m = M ). But this
is far from true; as we shall see, there is a rich variety of
bounded and even periodic motions, which occur when M
exceeds m. Under appropriate conditions the centrifugal
pseudoforce on the swinging mass balances the extra
weight of the hanging mass, imparting to the system a kind
of dynamical equilibrium with no counterpart in the simple
Atwood’s Machine.

In Sec. II we derive SAM’s equations of motion, from
which all the rest follows. The qualitative behavior of the
trajectories is discussed in Sec. III; a number of computer
solutions are presented, and some useful terminology is in-
troduced. In the final sections we concentrate on two spe-
cial classes of trajectories: “type A,” whose limiting case is
the simple pendulum (in Sec. IV), and “type B,” which

S ¥
®©

Fig. 2. Laboratory model of SAM. (a) Air pulley. (b) Air table, mounted
vertically.
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occur when m is launched outward from the pulley and
executes a symmetrical loop (in Sec. V). In each case we
first determine the mass ratio and initial conditions which
lead to motion of the specified type, and then develop a
perturbation scheme for solving the equations of motion.

What we present here is certainly not an exhaustive
study of the Swinging Atwood’s Machine. We say nothing,
for example, about unbounded motions (with M<m), and
the trajectories we examine always begin from rest or from
the origin. Our purpose is to call this delightful and intrigu-
ing problem to the attention of physics instructors, who
may want to recommend it as a subject for independent
projects by advanced undergraduates (as two of the authors
were, when this work was undertaken). At the same time,
we think the system should be of interest to applied math-
ematicians specializing in nonlinear dynamics, who have
not, as far as we are able to determine, considered it.

IL. EQUATIONS OF MOTION

The Swinging Atwood’s Machine has two degrees of
freedom, which we shall take to be the r and #in Fig. 1. The
kinetic energy for this system is

T =} MP + im(i* + r*8?), (1)
and the potential energy (apart from an arbitrary constant)
is

V=grM— mcos ), 2)
where g is the acceleration of gravity. The Lagrangian
(L = T — V) is therefore

L=} MP+im(? +r6? +grimcos 6 — M), (3)
and the Euler-Lagrange equations ((d/dt)dL /dq;)

=dL /dq;) yield

(m+M)i=mrd*+ gimcos @ — M) (4)

g’—t(mrzé) = — mgrsin 6. (5)

Equation (4) represents Newton’s Second Law in the radial
direction, with the centrifugal term mr6 %; Eq. (5) says that
the rate of change of angular momentum is equal to the
gravitational torque.

To simplify matters, define

p=M/m. (6)
Then Eqgs. (4) and (5) assume their final form:

(14 p)F=r0*+ glcos 8 — u) (7)
(which we shall call the “radial equation”), and

r + 210 + gsinf=0 (8)

(the “angular equation”). SAM’s motion is entirely deter-
mined by these two equations, together with appropriate
starting conditions:
HO)=ry 6(0)=6p HO)=Fy O(0)=0, ()
Because there is no dissipative force in this problem, the
total energy
E=T+ V=i MP+im(*+r0%+ griM — mcos 6)
(10)
must be conserved—and it is easy to check [using Eqs. (4)
and (5)] that E = 0. The angular momentum of the swing-
ing mass (mr*@) is not conserved, of course, because of the
gravitational torque.
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III. QUALITATIVE BEHAVIOR

In this section we consider the qualitative behavior of the
trajectory of the swinging mass. First, some terminology.
We shall call the motion “bounded” if # remains less than
some fixed value for all time:

Bounded trajectory: rt)<r,,, forall 1>0.

[It turns out that SAM ’s motion is bounded if M > m. The
proof is given in the Appendix. Although runaway (un-
bounded) solutions are of some interest, we shall confine
our attention in this paper to bounded orbits, and hence the
mass ratio u will always be greater than 1.] The motion is
“periodic” if after some time 7 it repeats itself:

Periodictrajectory: rt+ 7)=r{t)andB(t + 7) =0 (t),for
all £>0.

We call the trajectory “singular” if at some point 7 goes to
zero. The simplest way to set up a singular orbit is to fire m
outward from the origin, so that /0) = 0. In fact, since the
system is invariant under time reversal and time transla-
tion, we may as well arrange things so that our singular
trajectories always begin this way:

Singular trajectory: r{0)=0.

If m subsequently collides with the pulley (never mind if it
bounces off or passes through), M, which had been falling,
must instantaneously reverse direction. So the tension in
the rope is infinite, at such a moment, and for our purposes
the motion terminates:

Terminating singular trajectory: Hr)=nr{0)=0, for
some 7> 0.

In some respects terminating singular trajectories are anal-
ogous to periodic (necessarily nonsingular) trajectories.

In Figs. 3-6 we display a number of computer-generated
solutions to the equations of motion, to illustrate each kind
of trajectory. The graphs in Fig. 3 are bounded and nonsin-
gular; in each case m is released from rest at 8, = 90° and

Fig. 3. Nonsingular trajectories. The mass ratio ( u) is given in the upper
left corner of each graph. The center (r = 0) is indicated with a cross. In
each case the swinging bob was released from rest one unit to the right of
the center.
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Fig. 4. Periodic trajectories. Mass ratio ( £)is given in the upper left corner
of each graph. Swinging mass again released from rest at r, = 1, 6, = 90°.

allowed to run for several swings.” We surveyed the range
fromp = 1tox = 10in small increments, and picked out a
sample of nine which give some indication of the variety
available. Most of the curves have an ergodic appearance,
and presumably would eventually fill in some region of the
space. Others, however, are close to periodic. In the next
study the computer was instructed to search the vicinity of
each approximately periodic graph, using much finer mass
increments. A sampling of the results is given in Fig. 4.
(Each graph represents the superposition of many full cy-
cles, so the width of the line is some measure of the depar-
ture from perfect periodicity.)

The third collection (Fig. 5) is a similar assortment of
singular trajectories. This time m is launched from the ori-

Fig. 5. Singular trajectories. Mass ratio (u) in upper left corner. The
swinging mass was launched horizontally from the center, with an initial
velocity 7, = 4.
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Fig. 7. Type A. The center is indicated by a cross. Swinging bob was
released from rest at 7, = 2, with 6, ranging from 0.3-3.0 rad, in steps of
0.3 rad. Corresponding mass ratios are listed in Table I.

Fig. 6. Terminating trajectories. Mass ratio (u) in upper left corner.
Swinging mass again launched from the center, with 8, = 90° and i, = 4.

gin at an angle® of 6, = 90°. As before, we surveyed the
range from =1 to x4 =10 in small increments, and
picked out a representative sample. For most of the graphs
there is no suggestion that m will return to the origin. How-
ever, several of the graphs come close to terminating, and
once again we had the computer search their neighbor-
hoods using finer increments. The results are given in Fig.
6.

It is clear visually that there is a kind of natural hierar-
chy in the periodic and terminating trajectories. The cup-
shaped “type A” solution at u = 1.665 is in some sense the
“simplest” periodic orbit, while the oval-shaped “type B”
solution at u = 3.000 is the simplest terminating trajec-
tory. In the next two sections we shall study these two cases
in greater detail.

IV.TYPE A

The type A solution we found in Sec. III assumed an
initial angle of 90°, but of course we can obtain similar tra-
Jectories for any 6, provided we use the appropriate value
of u.? Figure 7 displays a collection of computer-generated
type A trajectories for 6, ranging from 0.3-3.0 rad (u
ranges from 1.023 to 2.906). In each case the swinging mass
was released from rest, at an initial distance 7, = 2 (in arbi-
trary units).* Question: how do we determine the correct u,
for a given starting angle 6,? It can, of course, be found
numerically; the computer values are given in the first col-
umn of Table 1, and plotted in Fig. 8. But we would like a
JSormula for the function x(6,) which generates type A solu-
tions.

It is easy to discover a small-angle approximation of
1l(6,), by observing that (a) for 6,«€1, » changes very little, so
the trajectory is close to that of a simple pendulum, and (b)
for any periodic motion the average tension in the rope
must equal Mg. We obtain a condition on the mass ratio,
then, by computing the average tension in a simple pendu-
lum, and setting it equal to Mg. Now, the tension in a sim-
ple pendulum is

F=mr?+ mg cos 6, (11)
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and for small angles the motion is simple harmonic:

0 = 0, cos wt, where w* = g/r. (12)
The average tension is therefore
(F) = mr@}w*(sin® wt ) + mg{cos(d, cos wt)). (13

Table I. Mass ratios for type A. Computer-generated values are compared
with the theoretical estimates given by Egs. (15) and (17).

Angle Numerical 1+ 6374 Jolbo) + 6372
0.1 1.002502 1.002500 1.002502
0.2 1.010027 1.010000 1.010025
0.3 1.022637 1.022500 1.022626
04 1.040427 1.040000 1.040398
0.5 1.063523 1.062500 1.063470
0.6 1.092068 1.090000 1.092005
0.7 1.126214 1.122500 1.126201
0.8 1.166103 1.160000 1.166287
0.9 1.211845 1.202500 1.212524
1.0 1.263503 1.250000 1.265198
1.1 1.321066 1.302500 1.324622
1.2 1.384436 1.360000 1.391133
1.3 1.453404 1.422500 1.465086
1.4 1.527647 1.490000 1.546855
1.5 1.606727 1.562500 1.636828
1.6 1.690092 1.640000 1.735402
1.7 1.777096 1.722500 1.842985
1.8 1.867017 1.810000 1.959986
1.9 1.959080 1.902500 2.086819
2.0 2.052481 2.000000 2.223891
2.1 2.146415 2.102500 2.371607
2.2 2.240097 2.210000 2.530362
23 2.332783 2.322500 2.700540
24 2.423785 2.440000 2.882508
25 2.512484 2.562500 3.076616
2.6 2.598347 2.690000 3.283195
2.7 2.680929 2.822500 3.502551
2.8 2.759885 2.960000 3.734964
29 2.834975 3.102500 3.980688
30 2.906076 3.250000 4.239948
31 2.973206 3.402500 4.512936
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Fig. 8. Mass ratios for type A. The values in Table I are graphed. The
vertical axis represents the mass ratio ( 4); the horizontal axis is starting
angle (6,), in radians. The solid line gives the computer results; the dashed
line gives the theoretical estimate of Eq. (15); the dotted line is the theoreti-
cal estimate of Eq. (17). .

The argument of cos(, cos @t ) is small; keeping terms to
order 2 in the Taylor expansion gives

(F)=mg{0%(sin*wt) + 1 — (03/2){cos’ wt )}
=mg(l + 62/4), (14)

since (sin® wt ) = (cos? wt ) = 1. Setting (F ) = Mg yields
the formula

p=1+163. (15)

Alternatively, we can evaluate the second term in Eq. (13)
exactly—it is a Bessel function:

(cos(f, cos wt )) = ?a:r- sz/w cos(f, cos wt Jdt = Jy(6,),
(16)

giving
B=03/2+Jg(6o) (17)

[which reduces to Eq. (15) when Jj, is expanded to second
order]. These formulas are compared with the numerical
data in Table I and Fig. 8. As expected, there is good agree-
ment for small angles. Surprisingly, they remain fairly ac-
curate even for relatively large angles. Equation (17) is dis-
tinctly better up to about 90°, beyond which neither
formula is terribly good, though Eq. (15) is somewhat supe-
rior.

At the other extreme (6, close to 180°) the numerical
results appear to be heading for x = 3, and this limiting
value can be confirmed theoretically as follows. When
6,~ 180°, the swinging mass is dropped from a point almost
directly above the pulley; it falls practically straight down,
with the acceleration of gravity, until it is very close to the
pulley, whereupon it executes a sudden hairpin turn
around the pulley and flies straight up again on the other
side. Most of the time the mass is essentially in free fall, but
for a split second it is subject to a huge tension in the rope,
as it reverses direction. Now, the point is that this sudden
jerk must accomplish a precisely 360° turn—if m is too
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Table II. Mass ratios for simple terminating orbits. For starting angles (6,)
in radians, computer-determined mass ratios are listed for the four sim-
plest terminating trajectories. The top line gives the “magic mass” for-
mula prediction [Eq. (36)].

Angle Bl B2 B3 B4
Magic 3.000 1.500 1.250 1.154
0.1 3.000 1.500 " 1.250 1.154
0.2 3.000 1.501 1.250 1.154
0.3 3.000 1.502 1.251 1.155
0.4 3.000 1.505 1.252 1.155
0.5 3.000 1.507 1.254 1.156
0.6 3.000 1.511 1.255 1.157
0.7 3.000 1.515 1.258 1.157
0.8 3.000 1.520 1.260 1.158
0.9 3.000 1.525 1.263 1.161
1.0 3.000 1.532 1.266 1.163
1.1 3.000 1.539 1.270 1.166
12 3.000 1.548 1.275 1.168
1.3 3.000 1.558 1.280 1.171
1.4 3.000 1.570 1.286 1.175
15 3.000 1.583 1.293 1.179
1.6 3.000 1.598 1.301 1.182
17 3.000 1.616 1.310 1.188
1.8 3.000 1.637 1.321 1.194
1.9 3.000 1.661 1.334 1.201
2.0 3.000 . 1.690 1.349 1.209
2.1 3.000 1.725 1.367 1.218
22 3.000 1.767 1.390 1.229
2.3 3.000 1.819 1.418 1.250
24 3.000 1.883 1.453 1.259
2.5 3.000 1.965 1.500 1.279
2.6 3.000 2071 1.564 1.305
2.7 3.000 2.208 1.656 1.338
2.8 3.000 2.381 1.804 1.383
2.9 3.000 2.582 2.056 1.446
3.0 3.000 2.780 2474 1.536
3.1 3.000 2.944 2.879 1.654

heavy, it will not make the full turn, and if m is too light it
will execute a complete loop and then some. Our problem,
then, is to analyze the motion during the bend in the hair-
pin, when the tension in the rope dominates the force of
gravity, so that we may set g = 0 in the equations of mo-
tion: .

(14+ p)F=r02, (18)

rd + 20 =0. (19)
The angular equation says that (d /dt }(*8) = 0, s0 "0 = |,
a constant (in this régime angular momentum is con-
served). Eliminating € from the radial equation, we have

(1+ pF=1%/r. (20)

Letting u = 1/r, and eliminating ¢ in favor of § [+ = (dr/
du)(du/d0 )(d6 /dt), etc.], we find

du _ 1 “, 1)
do? 1+ p)
and the general solution is
u(@)=A cos k(6 — 6,), 22)
where
k=1/1+p (23)

and 6, is the angle of closest approach (where « is a maxi-
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mum). We want this to occur at the bottom of the swing, so
6,=0,and

H@) = 1/4 cos 6. (24)
Now, for a perfect U-turn, »— oo (for the first time) at + 7,
which means that « = 1, and therefore u = 3, Q.E.D. [By
the same reasoning, the limiting mass ratio for a Joop—
4 = 2.812 in Fig. 4—would be u(m) = 15.]

The equations of motion,

(1+ wi=r0>+ glcos 6 — p), (7

76 +2+0 + gsin =0, (8)
can be solved, for the case of a type A trajectory, in the form
of a perturbative expansion in powers of 8, {which, it
should be noted, is the largest value 6 assumes):
radial equation: (1+ p)p= gl — p)
angular equation: 0=0.
The general solution to the radial equation, to this order, is

) =4 +Bt+ig(_1;ﬁ),2,

2 14+ p

The constants A and B are determined by the initial condi-
tions:

[i-(O) =0=B=0

HO)=ro=>A =1,
and the mass ratio is fixed by requiring that the motion be
i |

Zeroth order.[

radial equation:

Second order.[ .
angular equation:

rd +210 + g =0.

The angular equation is unchanged from first order, so the

solution (@ (t) = 6, cos wt; ® = \ g/r,) carries over to sec-
ond order. Putting this into the radial equation, we find

(1 4+ u)f =r6lo®cos’ wt+ g(l — u — 103 cos® wt).

Now the first term on the right is already of second order,
so it suffices to use r = r, in that position. Thus

(1+ w)f= g[l— p+ 63(sin® ot — } cos® wt)]
= g[1— p+(03/4)(1 —3cos20t)]. (27)

(1+ pp=ré*+ gl —

bounded:

bounded = u = 1.
Thus to zeroth order we have

r(t) =r,; 6(t) undetermined; with u = 1. (25)
radial equation: 1+ pr= g1 — p)
angular equation: 78 + 2#0 + g0 =0.
The radial equation is unchanged from zeroth order, so the

solution (Mt ) = ro, 4 = 1) carries over to first order. Putting
this into the angular equation, we have

First order.

roé + g68=0,
with the general solution

O(t)=Acoswt + Bsinwt, o =g/,

The constants 4 and B are determined by the initial condi-
tions:
6(0)=0=>B=0
6(0)=6,=>4=0,
Thus to first order we have
Ht)=ry 0{t)=06,cos wt,
withy = 1and w =/ g/7,. (26)
Not surprisingly, this is nothing but a simple pendulum.

8%/2 — p)

]

Notice that the swinging pendulum drives the radial mo-
tion at double the angular frequency. This is as it should be,
since the centrifugal pseudoforce hits a maximum twice in
each cycle. The general solution to Eq. (27) is

_ & f{i_ 9_3)2
nt) A+Bt+2(1+#) [(1 rt t

2

36
+ 2 ° cosZwt]

61)2

05 1.0

Fig. 9. Perturbative type A trajectories. These graphs
compare the exact (computer-generated) type A solu-

tions (solid lines) with the third-order perturbation the-
ory (dotted lines}, as given by Egs. (29) and (30). In each

20

case the swinging bob was released from rest at 7, = 2;
the starting angles (6,) are given in the upper right cor-
ner, in radians.
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and

HO)=0=B=0
T2+ p) 8?
bounded = u =1+ 03/4.

The latter neatly reproduces Eq. (15), and we conclude
that, to second order,

rt)=rol — 3 0%sin"wr); 6(t)=6,coswt;
withw =y g/roandu=1+03/4. (28)

Third order. In the same way, the third-order calculation
yields

At) = rofl — 3 62 sin® @t ),

) =r,=>A4=r,

0(t) =6, cos @t (1 + 3 0% sin® @t ), (29)
with
D=0(l+ 302, o=yg/r, andu=1+63/4
(30)

A comparison between the third-order perturbative ap-
proximation and computer-generated trajectories is given
in Fig. 9. The approximation is very good for small angles;
not surprisingly, there are noticeable discrepancies when
8, exceeds 90°.

V.TYPEB

In Sec. IV we analyzed type A solutions (the simplest
periodic trajectories) as perturbations on the simple pendu-
lum. In this section we study type B solutions (the simplest
terminating trajectories) as perturbations on the simple
Atwood’s Machine. As before, we shall expand the equa-
tions of motion in powers of g, with a view to answering
two questions: (i) for what mass ratios ©(6,) do terminating
trajectories occur, and (ii) what is the {approximate) shape
of the orbit?

We consider, then, the case in which mass m is fired
outward from the origin, with an initial speed v, at an initial
angle 6,.

radial equation:
angular equation:
General solution:

rt)=4 +Bt+lg(l_—'“)t2.
2 \1+4+ 4

1+ p)f =gl — p)

t L
Zeroth order { 0=0.

Initial conditions:
[r(O) =054=0
HO)=v=B=vu.
To zeroth order, then,

r(t)=vt-—%at2, wherea=('l-t—_l)g. (31)

p+1

This is. of course, a simple Atwood’s Machine, in which the
lighter mass is thrown straight down, and returns to the
pulley after a time

7= 20/a, (32)
at which point the motion terminates.
(1+ p)f = g(1 — p)
ré + 276 + g6 =0.

radial equation:

First order. { .
angular equation:
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The radial equation is unchanged; putting the zeroth-order
solution for r{z ) into the angular equation, we have

(vt —}at)f + 2 —at)p + g =0. (33)
Assuming the solution admits a Taylor expansion, we may
write

9it)= 3 b,t", (34)

n=0

and, upon substitution into Eq. (33), obtain the following
recursion formula for the coefficients: :

buy1 =b, (W 2nln +3) — g), n=0123,... (35
vin + 1)(n +2)
If the sequence continues indefinitely, then for large n,
b, ~b,(a/2v)
and we have

o fat\” 1
ot~ %, (27;) T 1= (at/2)

which blows up as +—r. The solutions we seek, however,
maintain a small angle throughout the motion; evidently
they occur only when the sequence of b,’s truncates at
some maximal n:

by,1=0=>(@/2INN+3)= g.

In this case 6 (t) is a polynominal® of degree N. Using Eq.
(31) to eliminate a, we find

~W+1NN+2)
N24+3N-2"
We shall call this the “magic mass” formula; it tells us
the mass ratios which lead to terminating singular trajec-
tories, in the limit of small angles. Figure 10 displays com-

puter-generated solutions to the equations of motion for
the first nine such terminating orbits, using 8, = 0.5 rad.

N=123,... (36)

3.000 1} 1s07 1t t2s4
3.000 1.500 1250
1 b
J
! i a 2. j —;3
I 1156 1 1108 1078
1154 1105 1077
4
4 5 6
— —— ———
1059 1 [ 10a7 17T 1038
1.059 ]| a7 ]| 1038
7 8 4 9

Fig. 10. Small-angle terminating trajectories. The top number on the left is
the computer-determined value of the mass ratio ( ). The number under-
neath is the “magic mass” formula prediction [Eq. (36)]; the value of ¥ is
given in the lower right corner of each graph. In each case the swinging
mass was launched from the center with a starting angle 8, = 0.5 rad; the
initial velocity F, varies.
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Fig. 11. Mass ratios for simple terminating orbits. The values in Table II
are presented graphically. The vertical axis gives the mass ratio ( u); the
horizontal axis is the starting angle (8,) in radians. The top line, at 2 = 3, is
for type B1; the next graph down is type B2; next comes type B3; and the
bottom graph is type B4.

Even for so large an angle, the agreement with the magic
mass formula is remarkably good. Nevertheless, Eq. (36)
was derived using a small-angle approximation, and we
must expect departures from it when 6, is increased. Table
II lists computer values of g for type Bl (¥ = 1), type B2
(N = 2), type B3 (N = 3), and type B4 (N = 4), as §,, ranges
from 0.1-3.1 rad. These values are plotted in Fig. 11.

The numerical data reveal a striking and most unexpect-
ed feature: for Type B1, the magic mass is independent of
the starting angle. If 4 =3, m will execute one symmetrical
loop and return to the pulley, no matter what the launch

angle (or the speed). You may recall that this is not the first

time u = 3 has come into the story: this was also the limit-
ing mass ratio for type A trajectories which begin at
8,~ 180°. Indeed, in this limit the type B1 solution is noth-
ing but a type A trajectory with two extra vertical pieces,
and the argument of Sec. IV, paragraph 3, will serve us

13

| 1

Fig. 12. Perturbative type B1 trajectories. These graphs compare the exact
(computer-generated) type B1 solutions (solid lines) with the fifth-order
perturbation theory (dotted lines), as given by Eqs. (37) and (38). In each
case the swinging mass was launched from the center, the initial velocity
of #, varies; the starting angles (6,) are given in the upper right corner, in
radians.
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again to explain why u—3 as 6,—7. But it is still a puzzle
why u = 3 for all angles in between.

The perturbation series for type B1 can of course be car-
ried to higher order in 8,, much as we did for type A in Sec.
IV. We shall not present the details, but merely quote the
answer, correct to order

r(t)=(4v2/g)w[1—}‘6§w—%Bf;w(w-—-g)], (37)

O(t) =0 [1+105w +105ww —4)], (38)
where
w=z1-z), w=1-2z z= gt/4v. (39)

Notice that the time it takes to complete the orbit [r = 4v/
g, consistent with Eq. (32), since u = 3 here] is—like u—
independent of 8,. Figure 12 shows a comparison between
the numerical solutions and perturbation approximation.
As expected, the agreement is excellent for small angles,
but not so good for 8, above 7/2.

VI. CONCLUSION

The Swinging Atwood’s Machine exhibits a variety of
interesting kinds of motion, of which we have studied only
a few. This is a rich system, and much remains to be done.
For instance, there are the higher-order terminating trajec-
tories and higher-order periodic orbits (loops of varying
complexity). Among the nonsingular trajectories, we have
considered only those which start from rest, and we have
said nothing at all about nonbounded motion { < 1). More-
over, as a simple nonlinear system with two degrees of free-
dom, it may be illuminating to apply to SAM the powerful
but abstract ideas developed by Poincaré and Birkhoff® and
more recent authors.
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APPENDIX

Theorem: If M>m then SAM’s motion is bounded
[H2)<7max for £>0]. Conversely, if the motion is bounded
and nonterminating [0 < Mz )<7., for £>0] then M>m
(with the trivial exception of stationary balance at m = M ).

Proof: (a) Suppose M > m. Conservation of energy limits
the height to which M can rise, and therefore puts an upper
bound on . Specifically [using Eq. (10)):

E = MP + im(i* + 0) + gr{M —m cos 6)
> grM — mcos 8)> griM — m).
This is always true. Now, if M > m, it follows that
r<E/gM —m),

so the motion is bounded.

(b)) Suppose the motion is bounded and nonterminating.
The essential idea is this: looking at M, the average tension
in the string (F) must balance Mg (for bounded motion);
looking at m, the average vertical component of the tension
must balance mg. Thus

(F) = Mg while (Fcos 8 ) = mg. (A1)

Since cos €< 1, it follows that m<M (and if m = M we must
have @ = 0 with the system at rest). To prove Egs. (A1)

Tufillaro, Abbott, and Griffiths 902



formally, define the average of a quantity ¢(t ) in the natural
way:

(g)=1lim L fq(t \dt. (A2)
o T Jo,
The tension in the string is given by
F=M(g+i). (A3)

For bounded motion the average acceleration of M is zero,
() = 0, and therefore

(F)=Mg.
Meanwhile, letting y = r cos 6, we have

j=Fcos@—2#0sin@ —rfsin @ —rf%cos 6.  (A4)
Using the angular equation (8) to eliminate 6:
j=Fcos@—r@2cosf + gsin®6,
whereupon [applying the radial equation (9)]:
mj = mg — Fcos 6. (A5)

For bounded motion, { ) = 0, and hence
(Fcos @) =mg.

Instability in automobile braking
W.G. Unruh®

* Present address: Department of Physics, Boston University, Boston,
MA.

'E. Breitenberger and R. D. Mueller, J. Math. Phys. 22, 6 (1981); T. E.
Cayton, Am. J. Phys. 45, 723 (1977); L. Falk, Am. J. Phys. 46, 1120
{(1978); M. G. Rusbridge, Am. J. Phys. 48, 146 (1980); A. H. Nayfeh and
D. T. Mook, Nonlinear Oscillations (Wiley, New York, 1979), p. 369.

2Thetransformation { r,0,¢ }—{ k 27,6,k } carriessolutionstotheequations
of motion into new solutions, for any constant &, so the trajectories scale
in r. In each graph the scale used is indicated by the ticks along the

margins. Thus in Figs. 3 and 4 we have chosen r, = 1. We used g = 10
throughout this study.

*Type A occurs when m, released from rest, first crosses the vertical axis
with purely horizontal velocity (i.e., # = 0 when € = 0). If 2 is a little too
large the crossing will occur with 7 < 0; if  is too small, 7> 0. This obser-
vation can be developed into a rigorous proof for the existence of type A
solutions (Nicholas Tufillaro, senior thesis, Reed College, 1983).

“See footnote 2.

56 (¢ )is in fact a Gegenbauer Polynomial ofindex 1 in the variable (1 — at /
v):0(t) = G} (1 — at /v). See F. W.Byron and R. W. Fuller, Mathematics
of Classical and Quantum Physics (Addison-Wesley, Reading, MA,

1969), Vol. I, Chap. 5.

%See, for example, V. 1. Amnold, Mathematical Methods of Classical Me-
chanics (Springer-Verlag, New York, 1978); or G. D. Birkhoff, “Surface
Transformations and their Dynamical Applications,” in Collected Math-
ematical Papers (Dover, New York, 1966), Vol. 2.

Department of Physics, University of British Columbia, Vancouver, B.C., Canada V6T 246
(Received 1 May 1981; accepted for publication 21 November 1983)

It is shown that the simplest theory for the behavior of automobile tires under braking leads to an
instability which causes the car to spin around in cars whose rear wheels lock before the front.

L. INTRODUCTION

While driving on icy Winnipeg streets in my youth, I
would often notice cars spinning around when they braked.
Similarly, cars are often seen spinning around when brak-
ing hard in trying to avoid an accident. Yet my V.W. Bug
was disconcertingly stable while skidding on ice. The sud-
denness and the short timescale (~ a few seconds) of the
spin in the former cases, and complete absence of spinning
in the latter led me to suspect that there was an inherent
instability in some cars under hard braking.

In presenting the theory which I believe explains this
phenomenon, I would like to begin by posing a problem.
The brakes on my car have failed and I can fix either the
front or the rear brakes. Which set of brakes should I fix if I
am concerned with stability against spinning while brak-
ing? I have asked a large number of physicists this question,
and the answer almost invariably is “the rear brakes.” The
reasoning seems to be as follows: When the rear wheels are
locked, there will be a friction force between the rear tires
and the road directed opposite to the diréction of motion of
the car (see Fig. 1). If the car rotates, this friction force will
apply a torque about the center of mass which tends to
straighten out the car. The image they have seems to be that
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applying the rear brakes is like pulling on the rear of the car
with a rope. Since pulling is known to be much more stable
than pushing, rear brakes should be more stable than the
front brakes. This reasoning is wrong because it neglects
the friction forces which act on the front wheels if the car is
pointing in a direction which differs from its velocity direc-
tion. The front tires can roll only about one axis, i.e., about
the wheel axle. If the car has a component of velocity along
the axle, the tire must be slipping sideways. Since the sur-
face of the tire is slipping, the full frictional force will deve-
lop between the tire and the road. Furthermore, this fric-
tion will be directed parallel to the axle. Since this force is
perpendicular to the centerline of the car and is of the same
order of magnitude as the friction force on the rear wheel,
its torque about the center of mass will be much larger than
that of the rear wheels. This torque is furthermore of such a
sense as to increase the deviation angle between the car’s
pointing direction and the velocity vector, producing an
instability.’

If, on the other hand, the front wheels are locked and the
rear wheels are free, the role of front and rear wheels in the
above argument is interchanged. The larger torque is now
exerted by the friction force on the side slipping rear
wheels. Now, however, this torque is such as to bring the
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