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Résumé. 2014 Nous analysons le mouvement d’un système mécanique non linéaire au voisinage d’une singularité
en utilisant une technique géométrique simple due à McGehee. Cette analyse peut se révéler utile dans la déter-
mination de l’existence d’un comportement intégrable ou chaotique.

Abstract 2014 The motion of a nonlinear mechanical system is analysed in the neighbourhood of a singularity using
a simple geometrical technique due to McGehee. The analysis can prove useful in determining the existence of
integrable or chaotic behaviour.
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1. Introductioa

A statement often made in classical mechanics is
« the state of the system is known for all time if its
initial state is known » [1]. This comment can be
misleading on two counts. First, although deter-
ministic, a Hamiltonian system may still be « sto-
chastic » in the sense that it exhibits sensitive depen-
dence to initial conditions [2]. The term « chaos &#x3E;&#x3E;
has been coined for such deterministic randomness
and the study of chaos in Hamiltonian systems is

currently an area of intensive research. A nice intro-
duction to the field is the book « Regular and Sto-
chastic Motion &#x3E;&#x3E; [3].

Second, Hamiltonian systems that arise in appli-
cations often have « singularities ». By a singularity
of a classical mechanical system we mean a point
where the acceleration is undefined. The simplest
example of a singularity is the collision of two or
more point particles in the Newtonian n-body problem.
At a collision the differential equations are no longer
defined and, moreover, orbits that pass close to a
singularity can behave in an erratic manner. Orbits
which are initially close can end up far apart after
passing near a singularity. Again, such sensitive

dependence on initial conditions is the signature of
chaos. Therefore in the case of collision orbits, we
see that the state of the system is not known for all
time, but only until the time of collision. Thus singu-
larities can be the source of chaotic behaviour.
The question naturally arises as to the possibility

of extending collision orbits through a singularity.
This is called the « regularization » problem. In

this paper we will solve the regularization problem
for a simple nonlinear mechanical system, - a Swing-
ing Atwood’s Machine (SAM), - using a geometrical
technique devised by McGehee [4]. McGehee’s idea
is to make a change of variables which will remove the
singularity from the Hamiltonian system. A good
introduction to the technique is given by Devaney [5, 6].
However, the potential for SAM is not of a type
previously studied, and consequently we employ
a variable transformation different from that used
by Devaney. We shall see that with the McGehee
technique, orbits which pass near the singularity
are simple to understand
At the other end of the spectrum from chaotic

motion is integrable motion. Recently it was shown
that SAM is integrable when the mass ratio is three [7].
The first clues suggesting integrability came from
the singularity analysis shown in this paper.
Our aim then is to illustrate a new application

of the McGehee technique and to suggest that such
an analysis may be useful in indicating when a Hamil-
tonian system with singularities is integrable.

2. SAM equations.
SAM is a simple Atwood’s machine in which one
of the weights is allowed to swing in a plane (Fig. 1).
In polar coordinates the equations of motion and
energy are [8] :
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Fig. 1. - SAM : swinging Atwood’s machine.

and

where 9 is the acceleration due to gravity and p = M/m
is the mass ratio. The equations are singular and
the acceleration is discontinuous at r = 0. A certain
class of orbits will begin and end at the singularity.
If r(t) -~ 0 as t increases we call the orbit a « collision ».
Alternatively, an « ejection &#x3E;&#x3E; orbit is one in which
r(t) -~ 0 as t decreases. There is no obvious way to
continue orbits through the singularity. In the next
section we shall see that ejection/collision orbits
can be continued (regularized) only for certain
values of M.

3. McGehee transformation.

By making a simple change of variables and rescaling
time it is possible to understand the behaviour of
orbits which pass close to the singularity. We wish
to examine the motion near the singularity as if it
were under a microscope and in slow motion. To do
this we first transform our second order system
to a first order system in the new variables

and

where s is the radial velocity and u is the tangential
velocity. The equations of motion (1) become

The system (4) is still singular at r = 0, however
this singularity can now be removed by choosing a
new time scale so that dt/dT = r, i.e.,

Letting a prime denote differentiation with respect
to -r we obtain from (4)

and 
.

Equations (6) are no longer Hamiltonian since a
noncanonical transformation is employed
The vector field (or flow) defined by (6) is equivalent

to (1) but the following remarks are in order. First,
the vector field is now defined at r = 0, but orbits
that start at r = 0 remain there for all time since
r = 0 implies r’ = 0. Second, the energy relation

is still valid even at r = 0. The surface generated by
(u, s, 0) at r = 0 for a fixed value of the energy will
be called the « collision surface » and is denoted by A.
Third, in the case of a collision, the orbit now takes
an infinitely long time to reach r = 0, and orbits
which pass close to a collision now spend a long time
near A. Most importantly, continuity of solutions
with respect to initial conditions implies that the
behaviour of near collision orbits can be gleaned from
a knowledge of solutions on A.

This motivates us to study the flow on A. Setting
r = 0 in (6) yields

along with the energy (from Eq. (7))

The collision manifold is easily seen to be a torus.
A cross-section of the torus is shown in figure 2.
The cross-section has two fixed points, the lower
one is unstable and represents the entrance angle of a
collision orbit The upper rest point is stable and the
starting point for an ejection orbit The full torus and
its flow are illustrated in figure 3. We see that there
are two circles of fixed points; the lower circle

is unstable and the upper

circle is stable.

Now, we want to know where orbits starting at
the lower circle (collisions) go to (ejections). To
understand how collision/ejection orbits match up,
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Fig. 2. - Cross-section of the collision manifold The flow
is easily constructed from the equations of motion and
energy.

Fig. 3. - The flow on and near the collision manifold. The
collision manifold is a torus so 0 = 0 and 0 = 2 n are
identified.

equation (8) can be solved exactly by noting

so dI/d0 = 1/u. Hence

and

i.e.,

which has a solution of the form

where A and 6 are contants. Letting 0, be the « entering

angle » and 0~ be the « exiting angle », then u(8~) _
= 0 since the tangential velocity u must be

zero to get onto and off of the collision manifold
This implies

A little algebra and noting that 0 is 2 ~c periodic gives

Hence, in general, there are two possible exiting
angles for a given collision angle. To understand how
the sign ambiguity arises consider an orbit which

passes close to collision as depicted in figure 4. If
the orbit comes in a little above the singularity it
will wrap around by before exiting;
however, if it comes in a little below the singularity
it will wrap around by - Jf+Jl before exiting.

In general, singularities can cause instability since
arbitrarily close trajectories can end up far apart
after passing near the neighbourhood of a singularity.
The exiting angle is not well defined (and the problem
is « nonregularizeable ») except in the special case
where 6e = 0, ± 2 ~ which implies

When p = 3, 15, 35..., the sensible way to regularize
the flow is by the rule

i.e., let the collision angle equal the exit angle. For
all other values of 03BC there appears to be no natural
way to regularize the flow.
We have investigated the case 0. = (Jc + Nn for

N odd. However, the numerical evidence suggests
that these cases are not integrable.

Fig. 4. - Near collision orbits of SAM. The (r, 9) plane is
depicted around r = 0. The singularity quickly seperates
nearby trajectories.
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4. Conclusion.

The type of singularity analysis illustrated in the

previous section can be used to indicate when a
Hamiltonian system with singularities will, or will
not, exhibit chaotic motion. To wit, if the flow is
not regularizeable we expect the singularity to serve
as a source of instability for the system. Alternatively,
if the flow is regularizeable, this indicates that the

system may be integrable since regularizeability is a
necessary (but not sufficient) condition for integrabi-
lity. In fact, SAM is integrable for p = 3 and there
is numerical evidence to indicate SAM is integrable

for the other values of p specified by equation (17)
191.
The McGehee technique also points out the role

noncanonical transformations can play in classical
mechanics. Such transformations are rarely men-
tioned in classical mechanics courses because of the
emphasis placed on canonical transformations due
to their greater theoretical value.
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