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Résumé. 2014 Le lagrangien

L03BC (r, 03B8) = 1/2(1 + 03BC)r2 +1/2r203B82 - r(03BC - cos 03B8)

avec 1  03BC ~ 3,1 est étudié en utilisant une section de Poincaré. Les résultats numériques suggèrent que le système
est intégrable pour 03BC = 3. Nous démontrons l’intégrabilité en explicitant une intégrale première du mouvement.

Abstract. 2014 The Lagrangian

L03BC (r, 03B8) = 1/2(1 + 03BC)r2 + 1 2r203B82- r(03BC - cos 03B8)

with 1  03BC ~ 3.1 is studied using a surface of section map. Regular and chaotic behaviour is exhibited. The nume-
rical evidence suggests the motion is integrable for 03BC = 3. Integrability is proved by explicitly exhibiting a first
integral.
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1. Introduction.

A conservative dynamical system depending on a
parameter with Lagrangian (L,, = Tit - Vu) of
the form

arises in a Swinging Atwood’s Machine (SAM) [1].
This is an ordinary Atwood’s Machine, in which

however, one of the weights can swing in a plane
(Fig. 1). The constant is the mass ratio of the non-
swinging to the swinging weight Perturbative tech-
niques are used to study the periodic orbits of SAM
in reference [1]. Therein a remarkable property is
discovered; if p = 3 then any trajectory that begins
at the origin will execute a symmetrical loop and
return to the origin no matter what the launch angle
or speed (see Fig. 2).

In this study the global dynamics of SAM are
explored by numerically constructing surface of section
(SOS) maps for various values of Jl,. This method of
investigation originated with Poincar6 and is explained
by Berry and others [2, 3]. The evolution of the global
dynamics are observed as u varies from one to three.

Fig. 1. - Swinging Atwood’s Machine. The mass ratio u =
M/m.

The qualitative picture that emerges suggests the
motion is integrable when p = 3. Integrability is

proved by finding a second invariant that is quadratic
in the velocities.
Examples of integrable mechanical systems with

two-degrees of freedom are still rare. Known cases
include Newtonian force under two-fixed centres,
and all central force problems. SAM is a very simple
mechanical system that exhibits a great richness of
behaviour. That such a simple system is integrable
for some parameter values is surprising. A greater
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Fig. 2. - Ejection/collision trajectors for SAM. When p = 3
all trajectories that are fired from the origin execute a sym-
metrical loop and return to the origin. Three different such
trajectories are shown.

understanding of how this occurs would be useful
in the analysis of other parameter dependent Hamil-
tonian systems.

2. Dynamics.
2.1 GENERALITIES. - The potential Vp is a homo-
geneous function of degree one. Thus the principle
of mechanical similarity applies [4]; the orbits on a
given energy surface can be rescaled to orbits at any
other energy. The dynamics generated by Vp are

independent of the energy constant. Throughout this
study set E = 1 without loss of generality.
The velocity of the swinging mass is zero at

which defines the zero-velocity curve. If p &#x3E; 1 then
equation (3) is an ellipse with one focus at the origin
and eccentricity 1 /u. Because Tu &#x3E; 0, the trajectories
are bounded by,

the zero-velocity ellipse.
Furthermore the system is symmetric about the

vertical y-axis (Fig. 2). Thus an orbit will be periodic
if any of the events below occurs twice in any com-
bination :

(i) the orbit is perpendicular to an axis of symmetry ;
(ii) the orbit reaches the zero-velocity curve.
In the latter case a periodic orbit is called an

oscillation, otherwise it is known as a rotation. The
simplest oscillation has been dubbed a smile (Fig. 3a)
[5]. Loops (Fig. 3b) and smiles will play an important
role in what follows.

Lastly, the equations of motion

Fig. 3. - Periodic orbits. Examples of oscillations are :

(a) smile, (b) loop. Examples of rotations are : (c) egg, (d)
weeble. The initial conditions - (ro, 00, Po, 80, p) - are :
(a) (1, 1.4,0,0,1.527); (b) (0.25, 0.35, 0, 2.83, 3) ; (c) ( l, 0, 1t, 1,
4.35) ; (d) (0.5, 0, n, 1, 1.95).

are singular at the origin. The acceleration is dis-
continuous at r = 0. Trajectories starting at the origin
are called ejections. Those arriving are termed col-
lisions. For p = 3 all ejections end in collisions.
In the region rlr max  1 an approximate solution to
equations (5) and (6) is [1] :

where 0, is the angle of closest approach. This moti-
vates the extension of ejection/collision orbits through
the origin by the rule :

Note that 8 = 8 for Jl = 4 n - 1 = 3, 15, 35...
2.2 SURFACE OF SECTION MAP. - Consider the state
space (r, 8, r, 0). The global dynamics of SAM may be
viewed via a SOS map defined as follows. With
E = 1 solve E = Tu + V. for 0. Now set 0 = 0 to get
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The SOS consists of all points (r, r) such that 0 is real.
The boundary of the SOS (0 = 0) is a parabola.
Every point on this SOS corresponds to a trajectory
of SAM. The equations of motion repeatedly map
this SOS onto itself. To see that this map is well
defined we must check that : (a) every orbit crosses the
0=0 axis, and (b) the map is continuous. Property (a)
is obvious [6], while (b) is true if we include the exten-
sion (Eq. (8)) of ejection/collision orbits. Fixed points
of the SOS map correspond to periodic orbits and
closed curves to KAM tori [2].
The SOS map is shown in figures 4 and 5 for increas-

ing values of p. This map is constructed numerically
by integrating [7] about 50 separate initial conditions
over many cycles and computing their intersection
with the SOS plane by a clever method proposed
by Henon [8].
2. 3 REsuLTs. - The central elliptic fixed point in
figure 4 (1.1) corresponds to the smile in figure 3a.
This elliptic isle dominates the state space topology
for p = 1 + s, e  1. In this regime the dynamics
are mostly regular because of the preponderance of
KAM tori. As it increases from one to three the region
of stability associated with the smile decreases.
However, it remains an elliptic fixed point throughout
until it crashes into the singularity at r = 0 when
p = 3. Interestingly the shape of the last KAM tori

changes as p increases. This occurs because the fixed
points surrounding the smile change from elliptic to
hyperbolic and back again. For instance, figure 4(1.5)
is a lovely illustration of four hyperbolic fixed points,
but these unstable fixed points are not present in
figures 4(1.4) or 4(1.6), and there is a corresponding
change in the last KAM tori.
Not unexpectedly, irregular motion becomes more

prominent as u increases. In figure 5(2.5) most of the
motion appears irregular. But in figure 5(2.8) two
new elliptic isles emerge out of the sea of chaos.
The new isles expand dramatically in figure 5(2.9)
and correspond to the loop orbit in figure 3b. Remark-
ably, in figure 5(3. 0) the state space appears to be

completely stratified by tori ; this is the hallmark of

integrability and suggests that the system is integrable
at p = 3. In figure 5(3.1) chaos again emerges.

Figure 5(15) also reveals no chaotic trajectories.
This leads us to the somewhat more speculative
conjecture that SAM is integrable when p = 4 n2 - 1,
nEZ+.

3. Equivalent integrable potential.
SAM’s dynamics are equivalent to the motion of a
particle of unit mass moving under the Cartesian
potential

Equation (11) is obtained from equations (1) and (2)
by the transformation :

For p = 3 equation (11) simplifies to

On converting the potential in equation (15) to

parabolic coordinates

we see that U(x, y) becomes

A. Ankiewicz and C. Pask [9] show that if a potential

is of the form

then the system is separable in parabolic cylinder
coordinates and the second invariant is quadratic
in the velocities. In our case g 1 (ç) = ç4 and g2(") = n4.
A second invariant for the potential U(x, y) of equation
(15) is [9]

4. Conclusion.

The global dynamics of SAM are explored by means
of a surface of section map. The class of periodic
orbits known as smiles is shown to be stable. SAM is
integrable when p = 3 and conjectured to be inte-
grable when u = 4 n2-1. The integrability property
may be related to the appearance of discrete sym-
metries in the equivalent « particle of unit mass »
problem. The connection between the local singular
behaviour and global integrability is currently being
explored.
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Fig. 4. - Surface of section map (r, r) ;1.1  u  2.2. The value of u is indicated in the upper right Both regular and
chaotic motion is exhibited. The central fixed point in (1.1) corresponds to the smile in figure 3a. Both the horizontal and
vertical axes are scaled separately. Each tick is 0.2. The horizontal axis goes from 0 to r Max. The vertical axis goes from
rmax to rmax’
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Fig. 5. - Continuation of surface of section map (r, f). See figure caption 4. The motion becomes first more irregular, 
then

more regular with the appearance of a new elliptic isle at (2.8). This elliptic fixed point corresponds to the loop in figure 
3b.

The loop dominates in (3.0) and the motion looks integrable.
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