Integrable motion of a swinging Atwood’s machine
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The motion of a swinging Atwood’s machine is shown to be integrable when the mass ratio is
three. Hamilton—Jacobi theory is used to explicitly exhibit the first integral.

I. INTRODUCTION

Arnold writes'

The collection of solvable “integrable” problems which
we have at our disposal is not large (one-dimensional prob-
lems, motion of a point in a central field, eulerian and la-
grangian motions of a rigid body, the problem of two fixed
centers, and motion along geodesics on the ellipsoid).
However, with the help of these “integrable cases,” we can
obtain meaningful information about many important sys-
tems by considering an integrable problem as a first ap-
proximation.

A more extensive set of soluble problems in particle dy-
namics is presented by Whittaker.” Many recent discover-
ies such as the Toda Lattice could also be added to this list.

We shall add another hidden treasure to this collection
by showing that the motion of a “swinging Atwood’s ma-
chine” (SAM) is integrable when the ratio of nonswinging
mass M tothe swinging mass misthree. SAM (Fig. 1) isan
ordinary Atwood’s machine, in which, however, one of the
weights is allowed to swing in a plane. Many of the elemen-
tary properties of SAM are discussed in a recent article in
this journal.?

In this paper Hamilton—Jacobi theory will be employed
to prove integrability when the mass ratio is three. Since
SAM has two-degrees of freedom, it will suffice to find a
single first integral in addition to the total energy. This
constant of the motion will arise as one of the separation
constants in the corresponding Hamilton—Jacobi equation.
It is totally nonobvious and this example provides a lovely
illustration of the Hamilton—Jacobi method in solving con-
crete problems which cannot be handled by more elemen-
tary techniques.

Hamilton—Jacobi theory is discussed in graduate courses
in classical mechanics."* However, it is often not stressed
that for most systems it is not possible to discover just the
right canonical transformation which leads to an exact so-
lution.’ This fact has been known since the time of Poincaré
(1982) who, along with Bruns, showed that in general,
most classical mechanics problems are not integrable, i.e.,
there do not exist N (the degrees of freedom ) single-valued
analytic time-independent functions on phase space satis-
fying dI /dt = 0.° Nevertheless, a surprising number of
problems which arise in physics do turn out to be integrable
and even separable in some coordinate system.

II. HAMILTON-JACOBI METHOD
The kinetic energy for SAM is

T=§(m+M)P+}imro? (n
where r and 8 are specified in Fig. 1. The potential energy is
V =gr(M + m cos 6), (2)

where g is the acceleration due to gravity. The total energy

142 Am. J. Phys. 54 (2), February 1986

is
E=T+V=1}(m+MP#
+11,mr292+gr(M—m cos 9). 3)

The corresponding Hamiltonian, obtained with the gener-
alized momentum ( p;, =L /3§;,, L =T —V):
P, = (m + M), (4a)
po =mrb, (4b)

is

) + gr(M — m cos 9).

(5
Now the game of Hamilton—Jacobi theory is to find some
canonical tranformation which will separate variables in

the Hamilton-Jacobi equation. A fortuitous choice for the
SAM Hamiltonian (5) is

r=4(*+7%, (6a)
6 =2 arctan[ (£ * —9°)/2én], (6b)

which is a coordinate transformation from polar coordi-
nates to parabolic cylinder coordinates plus a certain
stretch in the angular variable. The inverse transformation
of (6) is

Er=r[ +1+s5sin(8/2)], (7a)
?=r[ +1—sin(8/2)]. (7b)

The total energy in the new coordinates [apply tranforma-
tion (6) to (3)] is

E=[}(m+ME>+2mp*)E°
+ [§ (m + M) + 2mE* |7’
+ (M —3m)énén + (8/2) (€2 + ) !
X[(M+m)(E*+7*) + (M —=3m)Ep*], (8)

1 ) Pe
H( ,)=—(—+
P 2\ m+M mP

©

Fig. 1. SAM. Swinging Atwood’s machine. We consider the case where
M=13m.
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which simplifies if we set M = 3m, as is done throughout
the rest of this paper. In parabolic cylinder coordinates the
generalized momentum is (M = 3m),

Pe = 4§(§2 +77),
Py =4+ 77,
from which we calculate the Hamiltonian
H(pq) = [1/(§*+ 1]
X[ (P +p3) +28(E +9) ] =E.
(10)
The Hamilton-Jacobi equation formed from Hamiltonian
(10) is

2
(a_S)2+(_¢9_§) +16g (£*+7*) =8E(£* + 1),
LR (11)

where S is the generating function. The variables £ and 7
are clearly separated in the Hamilton-Jacobi equation
(11), so let the generating function bg expressed as the sum

(9a)
(9b)

S(&m) =S (&) +5,(m). (12)
Then on separating variables we find
2
(‘7—3) +16gE% — 8EE? =1, (13a)
23
2
_(_Q.g) —16gn* +8Ep* =1, (13b)
an ‘

where I is the separation constant. Solving for the generat-
ing function S in Egs. (13) gives the complete solution to
the Hamilton—Jacobi equation (11) as

Stgm.D =J(1+ 8EE” — 16864/ dE

+f( — I+ 8En* — 16gy") '\ dy.  (14)

Although (14) is exactly soluble in terms of elliptic inte-
grals,” we would instead like to turn our attention to deriv-
ing an explicit form for the other constant of the motion I.
To this end add (13a) and (13b) and use (9) and (10) to
eliminate the energy E. In this way we get the first integral

I=2(E*+ ) (PET — %97

+ 286 (& — ")/ (E2 + )] (15)
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In order to arrive at the first integral in our original coordi-
nate system we apply the inverse transformation (7) to
(15). The first integral in polar coordinates reads

I(r,#6,8) =r29[icos(—g—)_fgsin<_‘9_)]

2 2 »
. [ o
rzsm(—)cosz(—). 16
+ 3 > > (16)
A very hidden symmetry!
II1, DISCUSSION

We originally began to suspect that the motion was inte-
grable for M /m = 3 because of the singular behavior de-
scribed in Ref. 3 and numerical evidence.® These same
clues suggest the motion is integrable when

M/m=4n* —1=3,15,35,.. ..neZ

The case of n = 1 has been proven. The first integral (16)
turns out to be quadratic in the velocity terms. For n =2
we have demonstrated that if a first integral exists, then it is
not quadratic in velocities, but at least cubic. This proof is
based on work by Ankiewicz and Pask.”
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