Schrodinger equation has been used with — /instead of i multiplying the
time derivative!
5The solution in this case is similar to the one we outline for positive E.
See E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge
U.P., London, 1963), 4th ed., pp. 347-349.

"The lecture demonstration was observed by H. J. M. at Imperial College,
London, in the late 1950s. Presumably, it exists in many other places.

2We consider only the case when E,, is a constant.

3C. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932).

“The reader of Zener’s paper should beware that the time-dependent

Unbounded orbits of a swinging Atwood’s machine
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The motion of a swinging Atwood’s machine is examined when the orbits are unbounded.
Expressions for the asymptotic behavior of the orbits are derived that exhibit either an infinite
number of oscillations or no oscillations, depending only on a critical value of the mass ratio.

L INTRODUCTION

A swinging Atwood’s machine (SAM)! is a simple me-
chanical system consisting of an ordinary Atwood’s ma-
chine, in which, however, one of the weights is allowed to
swing in a plane (Fig. 1). SAM is a nonlinear Hamiltonian
system with 2 deg of freedom and hence can display period-
ic, quasiperiodic, and chaotic behavior.” It is also a simple
enough system so that it is amenable to analytic, numeric,
and experimental studies by undergraduates.>* SAM is in-
tegrable® when the mass ratio (u = M /m) is 3, and all the
orbits are either periodic or quasiperiodic. For most other
values of the mass ratio, SAM can show chaotic behav-
ior,®” a complete analysis of which is still lacking. In fact,
the characterization of all motions occurring in 2-deg-of-
freedom Hamiltonian systems is still an unsolved problem
at the forefront of research in nonlinear dynamics.

In this article, we analyze the unbounded motions of
SAM that occur when the mass ratio < 1. Despite the fact
that the system is nonlinear, we show that a complete pic-
ture of all unbounded motions emerges from an asymptotic
analysis of unbounded orbits. In particular, we find that if
pe(1/17,1], then the orbits cross the downward vertical
(@ = 0) axis an infinite number of times as r approaches
infinity. On the other hand, if £€(0,1/17], then the orbits
do not oscillate about this axis.

II. HILL’S REGION

The Hamiltonian for SAM in the polar coordinates indi-
cated by Fig. 1 is

H(pg) =i( . +”—?’) +er(p—cos®), (1)
2\14pu r? :

where the canonical momentaarep, = (1 + u)#,p, = 6.

For convenience, we divide out a factor of m from the ener-

gy constant so that the Hamiltonian is solely a function of
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4. The Hamiltonian is of the usual type consisting of a
kinetic energy term,

1( P pﬁ)
T=_— 21, 2
2 (1 +u + r? (2)
plus the potential energy
V=gr(u—cos8). (3)

The potential energy for SAM is a homogeneous function
of degree 1 and hence the principle of mechanical similarity

‘applies®; the orbits on a given energy surface can be re-

scaled to orbits on other energy surfaces. Therefore, the
dynamics generated by SAM are independent of the energy
constant. See the Appendix for details.

The fact that the kinetic energy of a Hamiltonian can be
positive definite often restricts the motion of a conservative
system to a subregion of configuration space, the so-called
Hill’s region of the mechanical system. Let 4 denote a par-
ticular value for the energy. To find the Hill’s region for
SAM, observe that the velocity is zero (p, = p, = 0) when

R,(0) =h/g(u —cos ), (4)

Fig. 1. Swinging Atwood’s Machine (SAM). The configuration space
variables are the polar coordinates of the swinging bob—(7,6). The mass
ratiog =M /m.
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Fig. 2. Hill’s region for SAM when 4 > 1. Motions are confined to the
interior of the zero velocity curve (ZVC).

which defines the zero velocity curve (ZVC) for SAM. The
interior of the ZVC is the Hill’s region for SAM. Orbits
cannot exist in the exterior of the ZVC because the kinetic
energy is positive definite.

The shape of the ZVC depends both on ¢ and A. For
example, suppose u > 1. Then gr(u — cos 8) >0 and, there-
fore, 41 >0. The motion is bounded by gr(u — cos 8) <A, i.e.,

r<h /g(u — cos 6).

All the orbits are bounded by the ZVC, which in this case is
an ellipse with one focus at the origin and eccentricity 1/u
(Fig. 2). Unbounded orbits only exist when u<1.

Consider the Hill’s region for # = 1. As shown in Fig. 3,

the motion is bounded in all directions except for 6 = 0.
From (4) it is easy to see that as R, (8) —» 0, 8—0 in the
ZVC. This means that any unbounded orbit must also have
the property that (¢) approaches 0 as r(¢) goes to infinity.
In fact, as illustrated in Fig. 4, numerical solutions show
that almost all initial conditions lead to unbounded orbits
that oscillate about the § = 0 axis. This is not so surprising
when we consider that the centrifugal pseudoforce of the
swinging bob imparts an effective “extra weight” to this
mass. It is now easy to see that as r(¢) becomes large, the
asymptotic motion is simply that of an ordinary Atwood’s
machine with equal masses traveling at a constant speed,

o) =vh/m, ‘ (5)

where h, the energy constant, can be calculated from the

I

Ry

Fig. 3. Hill’s region for SAM when =1 and £> 0.
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Fig. 4. Unbounded orbit for SAM showing damped oscillations about the
downward (6 = 0) axis.

initial conditions. The asymptotic value for the radial ve-
locity is easily checked by numerical simulations.

When u < 1, the energy constant can also be negative.
The shape of the Hill’s region for i < 1 is shown in Fig. 5.
The region where the motion is unbounded opens up to
6e[ — arccos u, arccos p2] since gr(u — cos 8) <h implies
6e[ — arccos(u — h /gr), arccos(u — h /gr)]. From an
examination of just Fig. 5, we might conclude that un-
bounded asymptotic motions could oscillate with arbitrary
angular amplitude provided they remain within the Hill’s
region. However, numerical simulations show that when
1< 1,6(t) approaches QO as r(t) approaches infinity. That is,
unbounded motions oscillate with a smaller and smaller
amplitude even when 2 < 1. Moreover, the radial accelera-
tion becomes constant, approaching the Atwood’s accel-
eration given by

a=[(u~1)/(u+1)]g (6)

In Sec. IIT we shall use these facts to study the asymptotic
motion in more detail.

III, UNBOUNDED MOTIONS

From Ref. 1 the equations of motion for SAM are the
“radial equation,”

(14+p)F=rB?+g(cos 6 —p), ¢
and the “angular equation,”
rd +2+0 + gsin 6=0. (8)

In Sec. II, we saw that the radial component of the un-
bounded motions of SAM approach that of an ordinary
Atwood’s machine. This occurs because in the limit as
t— o, and r(t) - o, the angle 6(¢) -0. Taking this limit

ZvC /\

24

YA S .
(@) (b) ©)

Fig. 5. Hill's region of SAM for u < 1: (a) case 4 <0; (b) case h = 0; and
(c) case > 0. Here, we have used the notation < = arccos(u).
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in the radial equation (7) and plugging the resulting
Atwood’s solution into the angular equation (8) allows us
to study the unbounded asymptotic orbits of SAM.

A, Case p=1

Keeping only the first-order terms in 6, and setting
u =1, we get from (7),

F=0=r(t) =ro+Vh/mi, €))

where the integration constant is determined from the en-
ergy relation. Plugging the asymptotic solution to the radi-
al equation (9) into the angular equation (8) yields

(Fo+VR/MmM )0+ 2yh/m 0+ gJh/m =0, (10)

where we assumed sin 8~ 8. Equation (10) can be trans-
formed into a Bessel equation® of order 1 by the change of

variables,
r=20Im/h (ro+Vh/mt)g, @=0ro+Vh/mt
(1)

resulting in

d? d.
Pt ZE v (P - ng=0
a7 $=
The properties of the Bessel equation (12) can be translat-
ed into the properties of the angular motion of the swinging
bob by examining

e(t)———’——rp

Vo +

[\/-\[(’o+\/- ] )

To uncover the qualitative properties of the Bessel equa-
tion—and hence the angular equation——consider the addi-
tional change of variables'® applied to (12),

(12)

@ =u/T (14)
leading to

u' 4+ (1 =3/47")u=0, (15)
which for large 7 becomes approximately

u' +u=0, (16)
with solution u = 4 cos(7 + B), i.e.,

@(1) = (4 /{r)cos(7 + B), a7

where 4 and B are constants.

From (17) and (13), we can now predict the asymptotic
properties of the unbounded orbits when . = 1. Specifical-
ly, we see that the angle 6(¢) decays sinusoidally to zero,
and that the magnitudes of its extrema decrease like
(ro + VA /m 1) 732, Despite the fact that the angle de-
creases, the sweep defined by s=r0 = (r, + VA /m 1)8(1)
grows sinusoidally in time with the magnitude of its ex-

trema monotonically increasing like (7, + VA /m t)"/*.
Both of these predictions are easy to check and observe by
numerical simulations.

B. Case p<1 _
In this case, the small angle limit of (7) results in
(I +p)i=(1—p)g=r(t) =r,+ jat?
where a is the Atwood’s acceleration defined by Eq. (6).If
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by convention we agree to take f, = \27,/a> 0, then the
Atwood’s solution can be reexpressed as

r(t) =lat? 1,>0. (18)
To study the asymptotic behavior of the unbounded mo-
tions, we plug the Atwood’s solution (18) into the angular
equation (8) of SAM. The result, after a little algebra, is
o2 (1 + /‘) 9=0,

t 1 -
where again we assumed sin 8= 6. Equation (19) is easily
solved with the transformation 7 = In ¢ yielding

a6 . do (1—!-#)
49 1399 H(1Hr)g-q,
dr* + d7'+ l—p

alinear equation with constant coefficients. There are three
possible motions depending on whether u>1/17, u
= 1/17, oru < 1/17. In the last two cases, it is easy to show
that the bob is falling too quickly for there to be oscillations
about the 6 = 0 axis.
Damped oscillations of the form

0ty =Ct 32 cos(alnt+ D),

a=y(1Tu—1)/4(1 — u) (21)

occur when > 1/17. Here, C and D are constants deter-
mined by the initial data. This is similar to the 4 = 1 case
except that the angle decays toward zeroliket ~%/2, and the
sweep increases according to ¢!

4+ (19)

(20)

IV. SUMMARY

We analyzed the unbounded orbits of a swinging

- Atwood’s machine that occur when the mass ratio u<1. If

1#€(1,1/17), then these orbits undergo damped oscillations
about the @ = 0 axis with decay rates predicted from an
asymptotlc analysis of the equations of motion for a swing-
ing Atwood’s machine. If ue(0,1/17], then the angular
variable also decays toward zero without crossing the
0 = 0 axis, except possibly in the nonasymptotic regime.
Our analysis provides a rather complete picture for the un-
bounded orbits of a swinging Atwood’s machine.
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APPENDIX: RESCALED SAM HAMILTONIAN

Studying the general dynamics that arise from SAM can
be simplified somewhat by rescaling the Hamiltonian. For
instance, the energy can be rescaled by the similarity trans-
formation,®

172

F=h, t=h1/2t’ Br=h""p, Po=h"

which carries the Hamiltonian (1) from H = & toH =lor
H = — 1according to 4> 0and & <0, respectively. There-
fore, it is sufficient to study the energy levels H = 1, H = 0,

1/2

and H = — 1. In addition, the gravity constant can be re-
scaled by
g=hg, ;—_— h —l/zt: b= h —l/zpr’ ﬁo =h _1/2170’

SO we can set g = 1 without loss of generality.
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The effect of the mass of the center spring in the one-dimensional coupled harmonic oscillator is
calculated and shown to have a small but noticeable effect on the periods of the normal modes of
oscillation. Sophomore engineering students have developed the experimental technique using
only stop watches, an analytic balance, and a standard Ealing™ air track.

I. INTRODUCTION

The mechanical coupled harmonic oscillator (Fig. 1)
consisting of three springs alternating with two masses in a
straight line, stretched between two fixed walls, and mov-
ing in the direction of the line without friction, has long
been a student’s early introduction to normal modes and
coupled linear differential equations."” An early experi-
ment in a student’s experience is often simple harmonic
motion using a mass suspended vertically by a spring. In
laboratory manuals, the correction for the spring’s mass is
either ignored® or suggested without proof to be § the mass
of the spring.* It is just as well because the value | is only
applied to the cylindrical spring (the proof'is typically left
for exercises in texts>®) since there is still disagreement in
the literature for the tapered spring.®'® The proof of the }
value will be reviewed so that the method can be extended
to the middle spring. Finally the periods of the normal
modes will be calculated and demonstrated using an air
track.

II. REVIEW OF THE EFFECT OF A SPRING
FIXED AT ONE END

Consider the system (Fig. 2) of a simple harmonic oscil-
lator consisting of a block of mass M connected to one end
of a spring of mass m and stiffness (Hooke’s constant) k.
The frictionless motion is confined to one horizontal di-
mension, and the other end of the spring is fixed. The neu-
tral length of the spring is L, and the displacement (x) of
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the block is measured from the location of the block when
the spring is neutral. The kinetic energy of the block is
{M5* and the potential energy of the spring is {kx’. The
kinetic energy of the spring is the integral of the kinetic
energy of each mass element dm of the spring. It is assumed
that the spring is uniformly stretched'' so that the linear
mass density o = dm/dz = m/Z, where o is uniform at
any instant and Z = x + L. It is further assumed that the
velocity of dm is z such that

/2 =x/Z. (1)
Hence, the spring’s kinetic energy becomes
K,=— f # dm
2 Jo

sp

=2 Z
2(‘”‘2)J Pdz=1T 2)
2Z o 23
The total energy of the system is
E= (M + m/3)x* + Jkx*. (3)

Since the energy is constant,

K
M, y

Z

Fig. 1. The one-dimensional mechanical coupled harmonic oscillator.
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