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Swinging Atwood’s Machine : integrability and dynamics
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Abstract. 2014 We consider the Swinging Atwood’s Machine model (SAM) and show that it is non-
integrable whenever the mass ratio 03BC is greather than 3. This solves negatively the conjecture,
based in numerical experiments, that the SAM is integrable for 03BC = 4 n 2 - 1, n ~ N. We study
the transversal heteroclinic orbits of the system and explain why does the system « look »
integrable for these values of 03BC.
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1. Introduction.

The Swinging Atwood’s machine (SAM) is a two degrees of freedom Hamiltonian system
depending on a real parameter g e [0, + oo ) that corresponds to a very simple physical
model (see Sect. 2 and Fig. 1). However, the orbits of the system are in general highly

.

Fig. 1. SAM : Swinging Atwood’s Machine.
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complex, as shown by numerical experiments (see [1, 2]). For &#x3E; = 3, the system is known to
be integrable, and numerical experiments sugest that it is integrable whenever g = 4 n 2 - 1,
n E N (see Fig. 2).

Fig. 2. - Surface of section map (r, r). Cases a = 2, » = 3 » = 8 and M, - 15.

In a previous work (see [3]) we gave a qualitative description of all the SAM orbits for
IL E (0, 1 ). In this paper we consider the case » &#x3E; 1 and show that there exists a transversal
heteroclinic orbit in every energy level (thus, the SAM equations for IL = 3 is one of the few
examples of integrable systems with transversal heteroclinic orbits) and that the system is
always non-integrable for every IL, except possibly for a discrete set of values in the interval
( 1, 3 ], see sections 4 and 3, respectively. This gives a negative answer to the integrability
conjecture, but the question remains of explaining why does the system « look » integrable for
IL = 4 n2 - 1, n &#x3E; 2 (see Fig. 2). In fact regular behaviour in non-integrable Hamiltonian
systems is not a surprising phenomena when we are dealing with systems which are close to
integrable ones, but this is not the case, since the SAM equations are non-integrable for every
U&#x3E;3.

In section 5, we study for u = 4 n 2 _ 1, n -- 2, the orbits which pass close to the transversal
heteroclinic orbits and show that they remain confined to a small region of their energy levels,
which explains why chaotic behaviour is not apparent in a rough numerical experiments.
Moreover, we characterize the qualitative behaviour of these orbits, and show that they are
formed by sequences of 2 nir direct or retrogade rotations around the origin, separated by
motions for which the r-coordinate (radial coordinate) has a well defined extremum at
o = 7r. Although we do not prove the conjugacy of this set of orbits with a shift on a symbolic ! ¡
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alphabet (which in this case would be formed by + 2 n7r rotations and - 2 n w rotations), the
impredictable nature of these solutions becomes clear, since close initial conditions may
determine direct or retrogade rotations.

2. SAM equations.

The Swinging Atwood’s machine is the mechanical system shown in figure 1. The system
consists of two masses, M and m, connected by a non extensible string. The mass
M is allowed to move only along the vertical direction, while the mass m is allowed to move on
a plane, and both masses are subjected to gravity.

In terms of the coordinates (r, 0 ) shown in figure 1, the total energy equation is

where g denotes the acceleration due to gravity. Introducing the generalized momenta
, the corresponding Hamiltonian is

Motion will therefore be determined by the Hamilton equations associated to (2),

3. Integrability.

System (2) is said to be integrable if there exists another complex analytic integral besides the
energy.
Consider the canonical change of coordinates given by

where , Then, the dynamics of (2) is equivalent to the dynamics of the

Hamiltonian

The kinetic energy term is now of the form required to apply Ziglin-Yoshida’s
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criterium of non-integrability of Hamiltonians with potentials given by homogeneous
functions of integer degree (see [4], or [5] for a general review of non-integrability criteria).
Moreover, the potential function of (5),

is homogeneous of degree k = 1. Thus, we have brought the SAM’s Hamiltonian (2) to an
equivalent Hamiltonian formulation which is in the conditions of Ziglin-Yoshida’s criterium.
For homogeneous potentials V (x, y) of degree k = 1, this criterium says that if

where V xy is the Hessian matrix of V (x, y) and (CI, C2) is a solution of the system

then the Hamiltonian H(x, y, p , p Y) = 1 (pX + p 2) + V (x, y) is non-integrable.x y

Computing A for system (5), we have the following result.

THEOREM 1. - If for every integer’ &#x3E; 2, then system (2)

is non-integrable. In particular, if then system (2) is non-

integrable.
For li = 3 system (2) is known to be integrable, since an additional analytic integral has

been found explicitely in [1] and [2], where it was also conjectured that system (2) should be
integrable for every » = 4 j 2 - 1, j integer and greater than 2. This conjecture, to which
theorem 1 gives a negative answer, was based on numerical evidence (see Fig. 2). When we
are dealing with non-integrable Hamiltonians close to integrable ones, numerical experiments
are often misleading, since « most » invariant manifolds (KAM tori and stable and unstable
manifolds of invariant one-manifolds) persist in the perturbed system. However, from
theorem 1, we see that this is not the case for » = 4 j 2 - 1, j :&#x3E; 2. In section 5 we give an
explanation for the aparent regularity of the orbits of system (2) when g takes any of these
values.

4. Transversal heteroclinic orbits.

In this section we shall study the existence of transversal heteroclinic orbits, i.e., orbits which
lie on the transversal intersection of the stable and the unstable manifolds of two distinct
invariant objects and are assymptotic to two equilibrium points. These orbits are usually
related to the existence of chaotic dynamics.
Equations (3) are singular at r = 0. This singularity is due only to the fact that they are

written in polar coordinates, since the potential and its derivatives are regular at

r = 0. We shall introduce a change of variables and time scale that map the singularity onto a
two dimensional torus on the boundary of each energy level, and allows us to extend the flow
over this boundary.
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Let then , with u = M/m. In terms of

the new variables, the equations of motion become

where the dot denotes the derivative with respect to the new time scale T, and the energy
relation (2) becomes,

Letting r z 0 in (7), we obtain the collision manifold Ah = { ( r, 0, v, u ) : r = 0, 8 E S 1,
u 2 + v 2 - 2 h } , which lies on the boundary of the energy level Ih given by
Ih = {(r, 0, v, u ) : (7) hol ds } and represents the singularity r = 0.
The flow on Ah is given by letting r --&#x3E; 0 in (6). It is easy to check that the solution on

Ah are as shown in figure 3 : the circles S+ and S- are formed by equilibrium points,
connected by orbits whose 8 -coordinate increases (JL + 1)1/2 Ir.

Fig. 3. - The collision manifold A, and the phase space rh = Ih U A.

Thus, with this regularization, we have introduced in the system two circles of equilibrium
points, and compactified the sets Ih where motion take place by extending the flow to their
boundary Ah 
From (6) it is easy to check that there exist two orbits y( 0 0), 0 0 = 0, 71’, in every energy

level Ih, h &#x3E; 0, such that 0 ( T ) =- 0 0, u ( T ) - 0 and r ( T ) tends to r = 0 when r --&#x3E; + oo and
when T - - oo . Therefore, y (00), 00 = 0, 7T, is an heteroclinic orbit since it tends to an

equilibrium point on S+ (resp. on S- ) when T - - oo (resp. r --&#x3E; + oo). We shall say that
’)’ (00), 00 = 0, 7T, is transversal in lh if the stable manifold of S-, W ( S- ), and the unstable
manifold of S+ , WU(S+), intersect transversally allong y (0 0).

Since S+ and S- are normally hyperbolic invariant circles, WU(S+) and W(S- ) exist and
are two-dimensional smooth manifolds (see [6]). In order to study the transversality of
y (00), 00 = 0, ir, we must know the geometry of WU,S(S+’-) in a neighbourhood of
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y (00) at least to first order. From (6), the normal first order variational equations in a
neighbourhood of y ( 00) are

where ro ( T ), vo ( T ) are the solutions of (6) along y ( 00) that verifies vo (o ) = 0. Then, the
angle lp U( T) that the intersection of WU(S+) with the plane v = v o ( T ) forms with the
u = 0 axis on this plane is

with (J ( T), u ( T ) solutions of (8) such that lim u ( T ) = 0. Hence, cp U( T) is the solution of
T--v-00

cP(T, Q) = - gm 2(1 + IL )1/2 cos 0 0 ro(T) COs2 cp - vo(T ) sin cp cos cp - (u + 1 )1/2sin2 cp (9)

with assymptotic condition lim Q ( T) = 0.
T --&#x3E; - 00

It is easy to check numerically that for 00 = ir, Q u( o ) E (0, TT /2) for every 1£ &#x3E; 1. This

result may also be proved analytically using the techniques introduced in [7]. Similarly, the
angle Qs’(t) that the intersection of Ws ( S- ) with the plane v =vo(T) forms with the
u = 0 axis on this plane is the solution of (9) with assymptotic condition lim Q s(t = 0,

T -&#x3E; + 00

and, if 0 0 = TT, cpS(O) E (- ir /2, 0 ) for every IL &#x3E; 1. Hence, the intersection of WU(S+) and
Ws (S- ) along y(7r) is transversal at (ro(0), ir, 0, 0 ). See figure 4.

Fig. 4. - Local behaviour of W-U(S+ ) n { v = 0 } and Ws ( S- ) n { v = 0 } .

Now suppose that for some T *,
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Then, we have

Hence, if WU(S+), Ws ( S- ) intersect transversally at one point of y (7r ), they intersect
transversally along y ( 7r ), and we have proved the following.

THEOREM 2. - For every M e ( 1, + oo ) and h &#x3E; 0, Yh(7r) is a transversal heteroclinic orbit.

Since transversal heteroclinic orbits usually give rise to chaotic dynamics, one should expect
system (2) to be non-integrable for every IL &#x3E; 1 and this is indeed confirmed by Theorem 1,
with the possible exception of a discrete set of values of IL. Actually, the integrable case
IL = 3 is one of the few examples of integrable systems with transversal heteroclinic orbits ;
other examples of this pathological feature have been constructed in [8] and [9].

In the following section, we shall use the results obtained so far to describe qualitatively the
behaviour of the orbits of (2) when u = 4 n 2 - l, n :&#x3E; 2, and to explain why does the system
« look » integrable for these values of 1£ (see Fig. 2 again).

5. Dynamical description.

When IL e (0, 1 ) and h  0, the phase of constant energy h, Ih (resp. 1h), is an open solid

ellipsoid (resp. closed solid ellipsoid) and the boundary corresponds to the infinity manifold
(which replaces the singularity r = + oo). In these cases it is possible to describe the

qualitative behaviour of the global flow on Ih, see [3] : every solution, with the exception of
the homothetic orbits, is doubly assymptotic to infinity, crossing the 0 = 0 axis a finite or
infinite number of times according to wether IL e (0, 1 / 17 ) or IL e ( 1 / 17, 1 ).
The purpose of this section is, using the knowledge of the flow on the collision manifold and

the existence of the transversal heteroclinic orbit YH(IT) (see Theorem 2), to show the
behaviour of the solutions of SAM which are close to this heteroclinic orbit when

IL E ( l, + oo ) and h &#x3E; 0. For dynamical description of the solutions we shall use symbolic
dynamics ; first we shall define the motions (or symbols).
Let 0 E S and denote by 1 = [ o - d, 0 + d ], for some 8 &#x3E; 0. We say that a solution of

(6), p ( T ) _ (r (,r ), 0 (,r ), v (,r u (7- », T E [ T 1, 7-2], realizes a motion of type  0 and we
represent it by 8 , when 0 ( T ) e Î for every T e [T 1, T 2 ] and r ( T ), T E [ T 1, T 2 ] , has exactly one
relative maximum. See figure 5.
We shall represent by (A, s (k), B ), A and B are motions of type 81 1 and 02 respectively,

and s(k)e {k,-k} where k E N, the set of solutions of (6) p ( T ) _
(r(7), (J (7), v ( T ), u ( T ) ), T e [71, 74], such that satisfy : 72, T 3, T 1: T 2  T 3  T 4, where :

p ( T ), T e [ T 1, 72], realizes a motion of type A,
p ( T ), r e [73, T 4 ], realizes a motion of type B, and
p ( T ), T E [,r 2, -r 3 1, verifies  0 =(t)= 0, r ( T ) has only one relative minimum, and if

s(k) = k (resp. s(k) = - k) then 0 ( T ), T E [t-2, T 3 ] , increases (resp. decreases)
2 k7T + (0 2 - 0 1). In figure 6 we have represented the orbits which realizes (Ob 2, 0 2 ) and
(e n - 2, 02)
Let Q, k E N. We shall define Tl (k) as the sequence of length f of motions of rotation type
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Fig. 5. - Motions of type 0 (on the positions plane of polar coordinates (r, 0 )).

Fig. 6. - Solutions which realize ( 01, 2, if2) and ( 01, - 2, 0 2 ) here we have draw the projections on the
positions plane of polar coordinate r(O).

where Õi E Sand si(k) E { k, - k }
for i = 0,..., 1. A solutionp(T) of (6) realizes Tt(k) if it belongs to the sets (°0, so(k), 01),
(°1, SI (k), 0 2) ... , ( 0l _ 1, s p _ 1 (k ), Ol) as time increases.
Our fundamental result concerning the dynamical description of the orbits of (6) is stated in

the following theorem.

THEOREM 3. - Suppose u = 4 k2 - 1, kEN, and h &#x3E; 0. Then, given f E N, there exists a
neighbourhood U of p(O) E ’Yh(7T) n {v = O} such that for every p E UBWS(S-) the orbit
through p realizes a sequence Tl ( k ) with 01 = ff for i = 0,..., 1.

Proof. - Consider a neighbourhood N of yh (7r ) in the plane ( v = 0 } in Ih. According to the
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results of the previous section, the manifolds WU(S+), W (S- ) intersect this neighbourhood
as shown in figure 7, defining the four open sectors S1, S2, S3, 84.

Fig. 7. - Dynamical behaviour of the solutions in a neighbourhood of p (o) E y h (7r ), when
J.L = 4 k 2 - 1, k E N, and h &#x3E; 0. The points of the open sector SI, S2, S3, S4 realize

(77, 2013 k, 1T, - k, 1T ), ( 7r, - k, 1T, k, 1T ), (77-, k,,7r, k, 7T ), (7T, k, 7r, - k, 7T ), respectively.

If N is small enough, the orbits through N will follow close to the homothetic orbit until
they reach a neighbourhood of the collision manifold, and then they will follow closely to the
flow on A. Since by hypothesis u = 4 k2 - 1, the 0 coordinate of the orbits on

A changes by 2 kir between S+ and S- (see Fig. 2) and so this will take them again to a
neighbourhood of yh (7r ). Following this way the orbits through the boundary of N in forward
or backward time, we conclude that the forward and backward image of N by the flow is
another neighbourhood N’ of ’rh ( ’TT’) n {v = O}, divided also into four sectors SI,
S2, S3 and S4 by the manifolds WU(SI +), Ws ( S- ) .
Moreover, the sectors Si, i = 1 - 4, determine the type of motion that an orbit in N may

realize. For instance, it is clear from figure 3 and figure 4 that an orbit through
p in N will realizes, as time runs forward, an orbit of the form (jr, k, ’TT’ ) or (’TT’, - k, 7r )
according to wether p lies on one side or another of W (S- ). Similarly, the behaviour when
time runs backwards is also determined by the sectors Si, i = 1 - 4, in fact, depending on
which side of wu(S+ ). Thus we obtain the table of figure 7, and the result follows.
The reason why it is possible to make the large time qualitative predictions of the

preceeding theorem is that for u = 4 k2 - 1, kEN, the flow on the collision manifold is such
that the orbits that start close to the heteroclinic orbit yh,(7r) will always stay close either to
Yh (Ir) ot to A. This explains also why the system seems to be integrable in numerical
experiments. In fact, the chaotic orbits associated to the transversal intersection of

WU(S+) and W(S-) at ’rh (’TT’) will remain confined to a neighbourhood of ’rh(’TT’) and of
li on each energy level. Therefore, it will be very hard to detect them in a numerical

computation of the Poincaré map of the 0 = 0 plane in Ih, since all these orbits will

correspond to points which pass very close to r = 0, v = 0.
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