This can be expressed in terms of 8 using Eq. (Al).

e=1/2p(1—p/r) 162 (A3)

In the small angle limit, e~A=~A cos 6, so from Eq. (44),
the torque is

r=—mg[d+p(1—p/r)~1]0. (A4)

Thus the angular frequency of a physical pendulum that ro-
tates on a pin of radius p passing through a hole of radius
(Fig. 13) is given by Egs. (6) and (7) of Sec. II A. In the case
of the rigid rod, this yields a small correction. However, for
a ring rotating on a pin, it is a major effect.

The moment of inertia of a ring with inner radius r and
outer radius r’, about an axis perpendicular to the ring at a
distance r from the center, is

IIm=1/2(r*+r'?)+r?

so its period of oscillation on a pin of radius p is

T=2 \/1/2(r2+r’2)+r2
" " Nglr+ pl(1=pin]

This reduces to the textbook formula 2+/27/g for an infi-
nitely thin ring on an infinitely thin pin (knife edge) and
agrees with the period given by the exact expression for the
acceleration of a ring on a pin.'*

(A5)

Table IV gives comparisons of theory and experiments for
an aluminum ring of inner radius »="7.78 cm oscillating on
pins of various diameters.
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We identify all the periodic orbits of the integrable swinging Atwood’s machine by calculating the
rotation number of each orbit on its invariant tori in phase space, and also providing explicit
formulas for the initial conditions needed to generate each orbit. © 1995 American Association of

Physics Teachers.

I. INTRODUCTION

Integrable Hamiltonian systems typically display an infin-
ity of distinct periodic and quasiperiodic orbits. The bounded
Kepler problem often studied in classical mechanics is not
typical in this respect since it only exhibits periodic orbits of
a simple type. This is because the Kepler problem has a third
invariant, the Runge~Lenz vector,! in addition to the energy
and angular momentum. This third invariant forces all the
bounded motions to be periodic. A somewhat more typical
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example of an integrable two-degree of freedom Hamiltonian
system is the swinging Atwood’s machine when the mass
ratio (w=M/m) of the nonswinging to swinging mass is
equal to three.??

Numerical studies of the integrable swinging Atwood’s
machine exhibit a plethora of distinct periodic and quasiperi-
odic orbits, and when viewed in configuration space it ap-
pears to be a difficult task to organize and classify all these
different types of orbits.

© 1995 American Association of Physics Teachers 121



The modern view of classical mechanics emphasizes the
“geometry of phase space,” and with this geometric perspec-
tive the problem of the classification of orbits in integrable
Hamiltonian systems becomes elementary. A basic result of
the geometric approach to classical mechanics states that the
topology of the invariant manifold M of integrable Hamil-
tonian systems must be an n-dimensional torus.* In particu-
lar, for a two-degree of freedom Hamiltonian system with
just two invariants, each orbit in the four-dimensional phase
space must be confined to a two-dimensional torus, a hollow
donut. Further, all orbits which arise from flows on a two-
dimensional torus must be either a periodic or quasiperiodic
winding of the torus. In the latter case the quasiperiodic orbit
will densely cover the whole torus.

The “‘natural” way then to classify the orbits is to calcu-
late the rotation number about a torus: the ratio of winding
about each generator of the torus. For quasiperiodic orbits
this rotation number is irrational, and it is a single number
that uniquely identifies the orbit. In the case of a periodic
orbit, this number is rational and it uniquely identifies a fam-
ily of periodic orbits all of the same type or shape when
viewed in configuration space. Thus the rotation number,
which uniquely indexes each torus (and hence each type of
orbit) in the phase space of an integrable Hamiltonian sys-
tem, provides the most natural solution to the problem of
identifying the orbits of a two-degree of freedom integrable
Hamiltonian system.

In this paper we use some classical results of classical
mechanics (Hamilton—Jacobi theory) along with the modern
perspective of classical mechanics (the geometry of phase
space) in order to identify and classify all the periodic orbits
of the integrable swinging Atwood’s machine. It is hoped
that this elementary but physically realistic example might
find use in an advanced classical mechanics course which
attempts to introduce the flavor of a modern approach to
classical mechanics.

II. THE ORBIT EQUATION

Taking polar coordinates in the vertical plane where the
weight of swinging mass m moves, the total energy of the
system is

M+m _ 1 .
E=T+V=— P2+ 3 mr0*+gr(M—m cos 6).
(1
The conjugate momenta p, and p, are
p,=(M+m)r, (2a)
pe=mr2é. (2b)
So the Hamiltonian of the problem is given by
2 2
_ 1 p, Dy
H(r,o,Pr,Po)—E Am_-l.m—rf +gr(M—m cos 6).

€)

As shown in Ref. 3, it is convenient to change to another set
of canonical coordinates where the equations of motion be-
come simpler, especially if we want to do Hamilton—Jacobi
theory. Let the coordinate transformation to (£,7) be defined
by

&= r[1+sin(6/2)], (4a)
n=*r[1—sin(6/2)]. (4b)
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The inverse change of coordinates is
r=(&+9)/2, (5a)
=2 arctan[ (£’ 7°)/2£n], (5b)

and the generating function F,(r,6,p,,p,) which deter-
mines the extension of this change of position coordinates to
a canonical transformation in phase space will be

F2(r,0apg’p7y)= Vr[1+51n(0/2)]17§

+ Vr[1-sin(6/2)]p,. (6)
Hence,
_OF, N1+sin(6/2)  J1-sin(6/2)
b, r 2\/; D¢ 2\/; Py
_§P§+ 77P7,
T e

_0F, \/;cos(0/2) \/;005(0/2)
LT 4\/1+sin(0/2)p5 4\/1—-sin(0/2)p7'

_mPs 6P,
—

(7b)

Since we know (see Ref. 5) that the system is integrable only
when M/m=3, we set M=3 and m=1 throughout this pa-
per. For these values of the parameters, Eq. (3) becomes,
after introducing Egs. (5) and (7),

H(¢ — 1 E 2, 2 4y 4
s TP &P y) P g Petpy)t28(E+ 7)),
(8)

the expression of the Hamiltonian of the system in the new
set of coordinates.

We recall that the idea behind Hamilton—Jacobi theory is
to find a generating function S(&, 7, 8;,8,,t) for a canonical
change from (§,%,p¢,p,) to a new set of variables
(a4 ,05,4,8,) which are constant along the motion, i.e., such
that the Hamiltonian expressed in terms of the new variables
is identically zero. The function S with this property satisfies
the first-order partial differential equation

H( 3S S +as_
g’ﬂ’ ag’ (91]

ot 0,
and the constants B3;, B, will be the two independent con-
stants which will come out of the integration of Eq. (9).
Therefore, by construction, solving Eq. (9) is equivalent to
solving the equations of motion.

As shown in Ref. 6, Eq. (9) for Hamiltonian Eq. (8) sepa-
rates and yields a solution in terms of quadratures, i.e., the
problem reduces to that of computing certain integrals. More
precisely, let us consider Eq. (9), where H is the Hamiltonian
given by Eg. (8), and try a solution of the form

S(&m,0)=81(£) +82(7) +55(1). (10)
Then, Eq. (9) becomes
1[ds? ds;
et -3 BN 44 4
8(d§+d7; 2g(&+7")
Clearly, each member must be equal to a constant, 8;, and
moreover, since by definition

)

1
&+

ds;
= E‘ (11)
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aS
Pe= % , (123)
a8
p 7 % , (12b)
this constant must be the total energy of the system, i.e.,
Bl =E’ (13)
and so
S,(t)=—Et. (14)

Equation (9) then reduces to another separable equation in £

and 7,
1(dS\? , 1 (d )2 .
Ty —E&=—=|-] = +E 7%
3 ( T E¢ 8\ dy 2gn"+Eqy
(15)
Again, both members must be equal to the second integration

constant 8,, which we shall name 7/8. Therefore, denoting
by s(x,E,I),

S
+2g§4 2

s(x,E,I)=f VI-16gy*+8Ey?dy, (16)
k

where k is some constant to be fixed later, the solution
S(¢,7,E,1,1) is, up to two independent additive constants,

S(g,ﬂ,E,I,t)=S(§,E,1)+S(ﬂ,E,_I)_‘Et. (17)

The equations of the canonical transformation whose gener-
ating function is S which will give the complete solution of
the problem are

as os
a;= aE aE (§,E I)+ (77,E I) (183)
(§E 1)+ (77,E =1, (18b)
_6’S _0s
pf_éz- _‘% (§7E9I)7 (180)
ds ds
Pr= 50 = om (n.E,—1). (18d)

Note that the two independent additive constants are now
included in Eqgs. (18a) and (18b). Equation (18b) is the orbit
equation, which gives a relation between the position coor-
dinates ¢ and # in terms of the constants E, I, and «,. Add-
ing the information contained in Eq. (18a), that contains time
explicitly, we shall obtain the trajectories equations. It is
therefore clear that the other constant a; plays the role of the
initial time. The last two equations of Egs. (18) complete the
description of the motion in phase space.

Let us now focus our attention on the orbit equation, to
obtain an explicit expression in terms of known functions.
First, we note that, as pointed out in Ref. 7, we may always
choose appropriate time and length units to set E=g=1.
From now on, we shall assume that we are working in these
units. In particular, the parameter I will always take values in
the interval [—1,1]. Then, the orbit equation becomes

1 (¢ dy 1 (7 dy
a = — —_—
22 Jy JI—16y*+8y2 2 Ji, V=I-16y°18y°
=g B(&D+ 5 O(n0). (19)
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Fixing the constants k; and k, at appropriate values and
assuming for now that /=0, we obtain

E(&D=Y (&), (20a)
O(n,N)=Y,(n,ID), (20b)
where
Yi(x, D)= f ’ s , (21a)
0 (@ =y*) (B’ +y?)
Yo(x,0)= f ’ il , (21b)
x (=y)yP-d?)
and
4 4 ’
I B .
4 4
On the other hand, we also have, for 1<<0,
E(&N=-Y,(¢,-D), (23a)
O(n0)=~Y(n,—1). (23b)

Therefore, the orbit equation may always be expressed in
terms of the functions Y,(x,/) and Y,(x,7), I=0. Now, both
Y, and Y, are elliptic integrals of the first kind (see, for
instance, Ref. 8). More precisely, we have, denoting as usual
by F(¢|m) the elliptic integral

Flolm)= f:u-m sin® @) V2d ¢

- f:zsm“’[(1—y2><1—my2)]—”2dy, 24)

' 2
Yi(x,D)= ‘\/\/TT—;FUPJ”M),

(25a)
Yy(x.)=\/ __r | (25b)
Z(x, )“ 1+\/m (QDZ m2)
with
1+\1+1
m1(1)= b i ’ (26a)
21+1
(= 2V1-1 (26b)
T
and
2
sin(p(x,1)=\/ 8xyit!
' 4x*A+1+D+1 72
42+ =1
sin @y(x,0)=  [LT#F FVI7L 27b)

211
Hence, for /=0 the orbit equation may be written
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Fig. 1. Rotation number p([) as a function of the invariant I.
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/ V2
+ -

where ¢(§,1), m(I), ¢2(n,1), and m,(I) are given by Egs.
(26) and (27). For I<0, by Eq. (23), the orbit equation is
obtained from Eq. (28) by interchanging £ and 7.

Using Eq. (28) and a symbolic math program, and going
back to the original coordinates r, 6, it is easy to obtain plots
of the orbits of the system in the plane.

ar= Flo(&D|m()]

Py

III. LOW-ORDER PERIODIC ORBITS (TORUS
KNOTS)

The system we are dealing with is nondegenerate and so
we expect to find periodic and quasiperiodic orbits, accord-
ing to the value of I that we pick in a certain energy level.
Since we are studying an integrable Hamiltonian system, all
these orbits, both the periodic and the quasiperiodic will lie
on tori in the phase space, which form the closure of the
quasiperiodic orbits in one case, and which will be foliated
by the periodic orbits in the other case. This determines the
knot type of the periodic orbits: all of them must be torus
knots. A torus knot is characterized by two integers, n, m,
that measure the number of times the curve winds around
each generator of the torus. The rational rotation number p
associated to each of the tori foliated by periodic orbits will
measure the ratio n/m. Therefore, if we want to know which
torus knots are realized as orbits of our system, or if we want
to know how to pick the “simplest” torus knots, i.e., those
for which both n and m are small integers, we need infor-
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Fig. 2. Cross sections (at §=0) of invariant tori for a few values of [. I=0
corresponds to the “teardrop-heart” orbits while /=1 corresponds to the
“loop” orbit, a degenerate torus at r=0.25.

mation on the dependence of the rotation number on the
parameter /. The range of the function p(Z) will tell us which
are the low-order resonances and hence which are the low-
order torus knots, and the form of the function itself will tell
us where to look for these knots, i.e., which approximate
value for I we should take. The appropriate variables to
study this question are action-angle variables.

Recall that, in general, the action variable J; is given by
$ p,dq;, where the integral is taken along a period of the
projection of the orbit on the g;, p; plane. The angles are the
canonical conjugate of the actions, and the Hamiltonian in
this set of variables depends only on the J;. The angles
change with time with constant frequencies, given by the
partial derivatives of H with respect to the J;. Hence, in our
case, the rotation number associated to the motion on the
two-dimensional tori that foliate the energy level E=1 will
be given by

1y PHI3,
PD= ZHrar,’

where the derivatives must be evaluated along H(J,,J,)=1.
Now, from Egs. (6.3) and (6.4) we have

(29)

J(E, D)= §P§d§: fﬁ %d‘f

_ §; J+8EE—168de=j(E.I),

(30a)
Jo(E,I ﬂg dn= al d
2\E, PATM am n
= iﬁ J-I+8E7n*—1675*dy
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Fig. 3. A few periodic orbits and their rotation numbers with initial condi-
tions (rg,8g,7g,6): (a) (0.25,0,0.353 353,2.828 43), (b) (0.25,0,0.438 269,
1.925 33), (c) (0.25,0,0.458 094,1.603), (d) (0.25,0,0.469 171,1.382 83).

=J(E,~-1I), (30b)

where we have recovered the dependence on E since it is
essential for the computation of Eq. (29). From the identity
E[J(ED),J(E,)]=FE we get

T2an Ta-r
I_aE/ﬁJl_ 71“(’)_01(’ ) o1
PID=5prar, = " a7, iy T iy )
7( 1) (91( )
But
aj 1 3§ dy
— )=z ¢ —— 32
TR VI+8y*—16y* (2
and so, for I=0,
P
V(c*~yH)(y*—d?)
p(I)=
dy
(33)

$ V(@®=y*)(y2+b?)’

where a, b, ¢, and d are given by Eq. (22), while as in Eq.
(23),

p(=D)=1/p(I) (34)

holds. Hence, it is enough to study the function p on the
interval [0,1]. This last identity arises from the time revers-
ibility of the system since the first integral is invariant under
a change in the velocity sign.

As we have already seen, the indefinite integrals corre-
spond to elliptic functions of the first kind. Now, the integrals
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in Eq. (33) are the corresponding complete elliptic integrals
of the first kind K(m) (see, for instance, Ref. 8). In terms of
these functions, Eq. (33) becomes

()= [ 231+ K[my(I)]
1+1—1K[m(D]’
where m(I) and m,(I) are given by Eq. (26). This expres-

sion and the range p([0,1]) can be easily computed using for
K(m) the polynomial approximation

(35)

K(1—m)=(ag+a;m+a,m*)+(by+b;m+b,m?)

Xlog(1/m)+ e(m), (36)
where |e(m)|<3.107° and a,=1.386 29, a;=0.111 97,
a,=0.072 52, by=0.5, b;=0.121 34, and
b,=0.028 87.

Figure 1 is a plot of p(I) vs I. The graph shows a mono-
tonic function with p(0)=1 and p(1)=m/(2V*K
[(14v2)/2*?])~1.100 69. Thus, no periodic orbit can ex-
ist in the integrable swinging Atwood’s machine with rota-
tion number greater than about 1.100 69. The simplest peri-
odic orbits will therefore be of fairly high period and will
have rotation numbers like 11/10, 12/11, 13/12, and so on.

In order to plot some of these periodic orbits it is useful to
express the initial conditions as a function of I. Then to
locate a periodic orbit with a given rational rotation number,
all we need to do is calculate the inverse function
p~Y(n/m)=I and then use this value of / to find the initial
conditions needed to generated an orbit with rotation number
p=n/m.

To find a formula for the initial conditions we note that at
the surface of section #=0, the energy E(r,0,r, ) and first
integral I(r,0,r,6) are with E=g=1 (Ref. 9):

27+ 20 +2r=1, (37)
and

1=16r24. (38)
Eliminating 6 between these two invariants we find
_ 1 \[ 1 \[ 1 2 P
r(r,I)=i—\E (E—r)t (E—r) T den? (39)

All real solutions of Eq. (39) with I €[0,1] represent cross
sections of the invariant tori at #=0. A few of these cross
sections are shown in Fig. 2. The “first” torus occurs at /=0
and corresponds to the family of “teardrop-heart” ejection—
collision orbits previously studied.® The “last” torus occurs
at I=1 and corresponds with the “loop” periodic orbit
shown in Fig. 3(a). This last torus is degenerate, and it is the
only periodic orbit in the integrable swinging Atwood’s ma-
chine which may have a nonrational rotation number. All
other orbits on the tori between 0<</<<1 are either a family
of periodic orbits if p([) is rational, or a single quasiperiodic
orbit otherwise. Equations (39) and (38) with r=0.25 and
6=0 provide explicit initial conditions for an orbit with any
value of /. The ““last torus” (loop orbit) has the initial con-
ditions (rg,6y,r¢,60)=~(0.25,0,0.353 553,2.828 43).

Figure 3 illustrates a few of the simpler periodic orbits that
occur in the integrable swinging Atwood’s machine.
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IV. LOOP ORBIT

We conclude by showing that it is possible to write down
an explicit exact solution for the loop orbit (E=g=1). In
the (¢ 7) coordinates, initial conditions for the loop orbit are
E=1=1/2 with {&=v2/2 and %=0. And it is easy to check
that 7=0. So, the solution of the loop orbit in the (£ 7)
coordinates is particularly simple, namely: ¢=§(¢) and
7n=1/2 for all ¢t. Now, using Eq. (5), we find that on trans-
forming back to the original (,8) coordinates this orbit gets
mapped to:

1 0 0 0
r_(9)= 7 sec( —2—) ’sec( 5) —tan( E)

1 ] 0 ]
r ()= 7 sec(i) [sec(z) +tan(—2—)

for —Gy<6<6,), (40b)

where the range of the solution on the second branch of the
orbit (Eq. 40b) can be determined by setting the velocities
(r,6) equal to zero in the energy Eq. (1),

r[3—cos(8)]=1 (41)

and the second invariant I(r, B,r',?}),9

for 0=0=<2m,

(40a)

7] 0]
1672 sin(i) cosz( f) =1, 42)

which is equal to one for the loop orbit. Solving for 8 we find

00=arcc0s(—5+4\/§)~0.854 rad. (43)
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L. INTRODUCTION

Vera Rubin has stated that ““all of us, men and women
alike, need permission to enter and continue in the world of
science.”! This “permission” can take the form of society’s
acceptance of men and women as scientists. The question
becomes whether men and women are equally accepted in
these roles. Given the androcentric nature of our culture in
general and the scientific community in particular, the an-
swer must be a reluctant “no.” One obvious way in which
society sends this message to young women is in its selection
of scientific “heroes” or role models. For example, the
Smithsonian Air and Space Museum’s first planetarium show
in 1976 highlighted 200 years of American astronomy and
included only male astronomers.! Are we to assume that
women have made no significant contributions to astronomy
in that time?

126 Am. J. Phys. 63 (2), February 1995

Female students have been caught in a vicious cycle of
lack of role models, lack of self-confidence, and a societal
belief that women are less good at science.? It is time to
break the cycle. The problems facing women in science are
becoming highly publicized, especially given the fact that by
the year 2000, those joining the work force will be com-
prised of 85% women and minorities.> Today women repre-
sent 11% of all scientists and engineers, although they com-
prise 45% of the work force.> In this work, the role of
textbooks in ‘““warming the chilly climate” for women in
astronomy will be studied. Astronomy textbooks are espe-
cially important because it is estimated that one of eight
young adults in the U. S. has had an astronomy course* and
more students have studied astronomy in the last five de-
cades than in all previous centuries combined.’
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