V. CONCLUSION

The topological automaton model provides an interest-
ing extension of the standard cellular automaton. Changes
in topological structure and in dimensionality can more
easily be described by the newer model. It is hoped that
topological automata will provide insights into the dynam-
ics of physical systems, including statistical models of gases
and crystals, and theories of particle interaction.
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The nonlinear vibrations of an elastic string are studied. A string is capable of showing nonlinear
phenomena including periodic, quasiperiodic, and chaotic motions. Hysteresis is found using the
method of slowly varying amplitudes, and chaotic vibrations are predicted for an experimentally

accessible regime.

I. INTRODUCTION

Like a jump rope, strings tend to swing in a circle, a fact
well known to children and laboratory instructors.' When
both ends are fixed, it is often difficult to drive a string so
that motion is confined to a single transverse plane. Bor-
rowing terminology from optics, we would say that a string
prefers circular polarization to plane polarization. If the
string mounts are symmetric, then there is no preferred
plane of polarization. Musical instruments, however, often
use a bridge that breaks this symmetry leading to horizon-
tial and vertical polarizations possessing very different de-
cay rates.”> In addition to whirling, several other interest-
ing phenomena are easily observed in such forced strings,
including periodic and aperiodic cycling between large and
small amplitude motions.:

When a string vibrates, the length of the string must also
fluctuate, causing oscillations in the string’s tension. These
longitudinal oscillations occur at about twice the frequency
of the transverse vibrations. The coupling between trans-
verse and longitudinal string oscillations is essentially a
nonlinear phenomenon that is not captured by the familiar
linear model. This coupling was first analyzed by Ray-
leigh,* who was attempting to explain Melde’s experiment,
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which showed that a strictly longitudinal periodic forcing
gives rise to a transverse vibration when the period of forc-
ing is twice one of the modal frequencies.

Several authors®”’ argue that string oscillations are
properly modeled by nonlinear equations even when the
transverse displacement is small. In the linear model, it is
assumed that the longitudinal displacement of the string is
everywhere zero. This assumption, along with the small
transverse oscillation assumption, leads to the linear wave
equation. However, if both the longitudinal (i.e., tension)
and transverse displacements are small, then the simplest
model of a string is necessarily nonlinear. This point is
demonstrated by Narasimha,® who shows that it is neither
necessary nor justifiable to assume that there is no vari-
ation in tension.

Thus strings, like lasers and hydrodynamic systems, are
essentially nonlinear oscillators and should exhibit multi-
ple coexisting solutions (attractors), hysteresis, harmonic
distortion, periodic, quasiperiodic, and chaotic attractors.®

Nonlinear systems, and in particular systems with spa-
tial distribution, are currently receiving considerable theo-
retical and experimental attention. Spatial-temporal chaos
(turbulence) and pattern formation in far from equilibri-
um systems are the central problems being investigated.
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The elastic string is easily one of the simplest spatially dis-
tributed nonlinear systems imaginable; in addition to its
intrinsic theoretical interest, the dynamics of a nonlinear
elastic string could shed light onto the dynamics of more
complicated systems such as lasers. Theoretical studies of
nonlinear strings are simpler and more analytically tracta-
ble than those of lasers and hydrodynamic systems. More
importantly, experimental spatial-temporal studies of
string vibrations are relatively easy and inexpensive to per-
form using optical detection schemes.® Nonlinearity in
strings can also lead to important acoustical effects of prac-
tical interest to musicians, instrument makers, and acousti-
cal engineers. For instance, Gough'® has shown that non-
linearity can lead to the modulation of sounds from a cello
or a guitar, and that the whirling motion accounts for the
rattling heard when a string is strongly plucked or bowed.

In this article, we will study a very simple single-mode
model of string vibrations, which is a straightforward ex-
tension of the nonlinear oscillator studied by Morse and
Ingard.’ This single-mode model gives rise to a set of cou-
pled differential equations that were previously deduced by
several authors with methods of varying rigor."""'* Qur
simple picture, however, allows us to arrive at the single-
mode model in a very economical way, and the equations
thus derived are identical with those that arise from the
more cumbersome single-mode truncations of multimode
models. In addition, all the constants in the single-mode
model are easy to obtain from parameters in actual experi-
ments. In Secs. III-V, we undertake a systematic investiga-
tion of the single-mode model for both plane and circularly
polarized motions in the free and forced cases. Calculations
presented in these sections are mostly a summary of results
scattered throughout the literature. In Sec. VI, we observe
that the vibrating string can oscillate chaotically and we
proceed with the initial numerical studies to indicate under
what experimental circumstances instabilities and chaotic
oscillations should be observable.

This article, therefore, offers the first steps toward a
comprehensive theory of nonlinear and chaotic behavior in
vibrating strings. The relative ease with which strings can
be studied both theoretically and experimentally makes
them ideal candidates for current studies in nonlinear dy-
namics.

I1. SINGLE-MODE MODEL

A simple model of a string oscillating in its fundamental
mode is presented in Fig. 1. The ends of a massless spring
are fixed a distance / apart where the relaxed length of the
spring is /, and the spring constant is k. To the center of the
spring a mass is attached that is free to make oscillations in
the x-p plane centered at the origin. The mass is subject to
damping and forcing. For example, if the mass is composed
of steel, it can be driven by an oscillating magnetic field.
Note that motion in the two transverse directions—x and
y—is coupled directly, and also indirectly via the longitudi-
nal motion of the spring. Both of these coupling mecha-
nisms are nonlinear. The multimode extension of the sim-
ple model would, in addition, possess nonlinear couplings
among the normal modes of the linear problem.

The restoring force on the mass shown in Fig. 1 is

F= —4kr(1 — /17 + 4P), (1)

where the position of the mass is given by polar coordinates
(7,0) of the transverse plane. Expanding the left-hand side
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Fig. 1. Single-mode model for nonlinear string vibrations. String vibra-
tions are assumed to be in the fundamental mode and are measured in the
transverse x-y plane by the polar coordinates (,6).

of Eq. (1) in a series (» < /), we find that

o —sra-fE) -l o ]

which can be approximated by
2], r\?]
F=mp~ —4k(l—1 (f)[l __L_(_) ], 2
m¥ ( °)l +(1*10) ] 2)

a cubic restoring force. Notice the nonlinearity dominates

when /=1,

Defining

i =4k /m)[({=1,)/11], (3)
and

K=21/17(1 - 1), “4)
Then, from Eq. (2), we get

F+ wir(l + Kr?) =0, (5)

the equation of motion for a two-dimensional conservative
cubic oscillator. The behavior of Eq. (5) depends critically
upon the ratio ({p/1). If I; < I, the equilibrium at r =0 is
stable and we have a model for a string vibrating primarily
in its fundamental mode. On the other hand, if /,> /, then
the origin is an unstable equilibrium point, and two stable
equilibrium points exist at approximately »r = + /. This
latter case models an elastic beam. For our purpose, we will
only study the case /, </, i.e., K> 0. »

In general, we will want to consider damping and forcing
so Eq. (5) is modified to read

P+ Ar 4+ o (1 + Kr)r = f(wt), (6)

where f(wt) is a forcing term and A is the damping coeffi-
cient. In this article, we assume that the ends of the string
are symmetrically fixed, so that A is a scalar.

Equation (5) is also derived by Gough'® and Elliot,*"'4
both of whom relate w, and K to actual string parameters.
For instance, Gough shows that

w} = cr/l, (7
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and
K= (1/el)(w/2)?, (8)

where € is the longitudinal extension of a string of length /,
w, is the low-amplitude angular frequency of free vibra-
tion, and c is the transverse wave velocity. Again, we see
that the nonlinearity parameter K increases as the longitu-
dinal extension € approaches zero. That is, the nonlinearity
is enhanced when the longitudinal extension—and hence
the tension—is small. Nonlinear effects are also amplified
when the overall string length is shortened. For a Jargar
viola D string with a vibration amplitude of 1 mm, typical
values of the string parameters showing nonlinear effects
are: [=275 cm, wy=60 Hz, ¢=0.079 mm, and
K=0.128mm~2"°

Equation (6) constitutes our single-mode model for
nonlinear string vibrations and is the central result of Sec.
II. For some calculations, it will be advantageous to write
Eq. (6) in dimensionless form. To this end, consider the
transformation

T=ayt, S=r/l, (9)
giving

s+ B8+ (1 + as’)s = g(yr), (10)
where the prime denotes differentiation wrt 7 and

B=A/w, a=KIl}, g=f/lw}, and y=w/o,

(11)

Before we begin a systematic investigation of the single-
mode model, it is useful to look at the unforced—
f(wt) = O—linear problem. If the nonlinearity parameter
K is small, then Eq. (6) is simply a two-degree-of-freedom
linear harmonic oscillator with dampirig, which admits so-
lutions of the form

— At1/2

r = (A cos wyt, B sin wyt)e (12)

In the conservative limit (4 = 0), the orbits are ellipses
centered about the z axis. As we shall show later, one effect
of the nonlinearity is to cause these elliptical orbits to pre-
cess.

IIL, EXACT SOLUTIONS FOR CIRCULAR AND
PLANAR MOTION

The free conservative oscillator of Eq. (5) admits exact

solutions in two special circumstances. The first is the case
of circular motion at a constant radius R. In Fig. 1, we
could imagine circular orbits arising when the restoring
force just balances the centrifugal force. Plugging the an-
satz

(13)
into Eq. (5), we see that it is indeed a solution provided the
frequency is adjusted to

@2 = w5 (1 4+ KR?). (14)

The second solution appears when we consider planar
motion. If all the motion is confined to the x-z plane, then
the system is a single-degree-of-freedom oscillator whose
equation of motion in the dimensionless form obtained
from Eq. (10) is

x" +x4+ax’=0.

r = (R cos wt,R sin wt)

(15)
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The exact solution to Eq. (15) is,"
__ 1
(1 4 4aE)'/*

2 2
X I (_@___) -J (arccos x L—)],
[ @+ b? a a*+b*

where J(6,4) is an elliptic integral of the first kind and
I(¢) = J(w/2,¢); E is the energy constant

(16)

E=1x"+1x*+ (a/4)x* (17)
and
b2a* = (1/a) (V1 + 4aE +1). (18)

As in circular motion, the frequency in planar motion is
again shifted to a new value given by

v, = (r/2){(1 + 4aE)"*/I1 [@*/(a® + 8)]1}.  (19)

The exact solutions for circular and planar motion are use-
ful benchmarks for testing limiting cases of more general,
but not necessarily exact, results.

IV. PLANAR MOTION

Imagine that the ends of the string are fastened in such a
way that the string only vibrates in a single plane. Then the
nonlinear equation of motion for a string vibrating primar-
ily in its fundamental mode is a forced Duffing equation of
the form,

x" 4+ Bx' + (1 + ax?)x = g(y7), (20)

where Eq. (20) is calculated from Eq. (10) by assuming
that the motion is confined to the x-z plane in Fig. 1. The
forcing term will generally be taken as a periodic excitation
of the form

g(yr) = Fcos(y7). (21)

The literature studying the Duffing equation is extensive,
and it is well known that Eq. (20) is already complicated
enough to exhibit multiple periodic solutions, quasiperio-
dic orbits, and chaos.'® A good guide to nonchaotic proper-
ties of the Duffing equation is the book by Nayfeh and
Mook.'” Also, the book by Hayashi,'® Nonlinear Oscilla-
tions in Physical Systems, is highly recommended since it
deals almost exclusively with Duffing’s equation. In this
section, we examine frequency shifts and hysteresis in the
Duffing equation since these phenomena are easily ob-
served in strings.

As a first step toward studying the Duffing equation, let
us neglect the nonlinear term in Eq. (20) (a = 0) and look
at the solution to the resulting linear system with periodic
forcing,

x(ty=ae P cos[(1 —=B*)7+b]

+FL(1 =)+ B P eos(yr+ 6). (22)
The constants @ and b are determined from initial condi-
tions. After the transient solution dies out, the steady-state
response has the same frequency as the forcing term, but it
is phase shifted by an amount 8, which depends on S, y,
and F. As with all damped linear systems, the steady-state
response is independent of the initial conditions so that we
can speak of the solution. 4
In the linear solution, Eq. (22), large motions occur
when Fis large or when y = 1, the normalized natural un-
damped frequency. A primary (or main) resonance exists
when the natural frequency and the excitation frequency
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are close; under these circumstances, the nonlinear term in
Eq. (20) cannot be neglected. Thus, even for planar mo-
tion, a nonlinear model of string vibrations is required
when a resonance occurs, or the excitation amplitude is
large.

Returning to the Duffing oscillator, we generally expect
that in a nonlinear system the maximum response frequen-
cy will be detuned slightly from its natural frequency. An
estimate for this detuning is obtained by studying the un-
damped, free Duffing oscillator, by means of the method of
slowly varying amplitude.'® Write

x(7) = 4[A(T)e" + A*(1)e ™ "] (23)

and plug Eq. (23) into Eq. (15), while assuming A(7)
varies slowly in the sense that |4 "| €@°4. Then Eq. (15) is
approximated by

Q2iy)A' + [1 + 7 + (3a/4)|4|*14 =0, (24)

where we ignore all terms not at the driving frequency.
Equation (24) has a steady-state solution denoted by 4
whend4' =0,

=14 Ga/d)|4 % (25)
ie,?
X(7) =4 cos (y7). (26)

To first order, the nonlinearity increases the normalized
frequency by an amount depending on the amplitude of
oscillation and the nonlinearity parameter. This approxi-
mate value for a hard Duffing oscillator is consistent with
the exact result found in Sec. III.

Hysteretic effects are discovered when we apply the
slowly varying amplitude approximation to the forced
Duffing equation

x" 4+ Bx' + (1 + ax®)x = Fcos(y7). 27

Plugging Eq. (23) into Eq. (27) and again keeping only the
appropriate terms, we arrive at the complex amplitude
equation

(B+2)4" + [1 — ¥ + iBy + (3a/4)|A|)]A =F,
(28)

which in steady state (4 ' = 0) becomes
[1 -7+ iBy+ (3a/4)|A|*]A=F. (29)

To find the set of real equations for the steady state write
the complex amplitude in the form

A = ae®, (30)

where both @ and b are real constants. Then Eq. (29) sepa-
rates into two real equations

Bya = Fsin b, 31
and
[1 -9+ (3a/4)a*)a = Fcos b, (32)

which collectively determine both the phase and the ampli-
tude of the response. Squaring both Eqs. (31) and (32),
and then adding the results, we obtain a cubic equation in

(BN’ + [1 — ¥ + (3a/4)d®)*}a* = F?, (33)

illustrated in Fig. 2, which is known as the frequency-re-
sponse curve. In this approximation, the steady-state re-
sponse is given by

X =acos(yr — b), (34)

which is exactly tuned to the forcing excitation but phase
shifted by — b.
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Fig. 2. Schematic frequency-response curve of a vibrating string for exci-
tations at a primary resonance. Hysteretic effects are displayed including
a jump between different steady-state responses at points 4 and 6. The
dashed line indicates and unstable periodic orbit.

The frequency-response curve shown in Fig. 2 indicates
that a string vibrating in a plane should—near a primary
resonance—exhibit hysteresis due to the coexistence of two
stable states, and that a discontinuous transition between
these two states is possible when a parameter is slowly var-
ied, the so-called quasistatic approximation. To see these
effects, hold the excitation amplitude constant while slowly
scanning through the frequency. As indicated in Fig. 2, if
the frequency is increased, then the amplitude will switch
to a smaller value at point 3. On the other hand, if the
excitation frequency is slowly decreased, then the response
amplitude will switch up at point 6. In the region between
points 6 and 4, two stable periodic orbits and one unstable
periodic orbit (indicated by the dashed line) all coexist.?
This discontinuous jumping between two stable orbits is a
result of the nonlinear phase-amplitude relation [Eg.
(33)] and is, in fact, an example of a fold catastrophe.?*

In a linear system with damping, the steady state is inde-
pendent of the initial conditions. In contrast, the coexis-
tence of two or more stable steady states for the same pa-
rameter values in a nonlinear system indicates that the
initial conditions play a critical role in determining the sys-
tem’s overall response. To discover the globa! stability of an

Fig. 3. Schematic phase space for Duffing’s equation when two stable
periodic orbits (P, and P;), and one unstable periodic orbit (P,) all coex-
ist. The steady-state response depends critically on the initial conditions.
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orbit, the domain of attraction, i.e., the so-called basin of
attraction must be determined for the steady-state response
in question. A schematic for the basins of attraction in a
Duffing oscillator with three coexisting orbits is portrayed
in Fig. 3. The phase space of all initial conditions shows two
stable orbits P, and P, and one unstable orbit P,. The
shaded region shows all initial conditions that approach
the orbit P,, while the unshaded region shows all the initial
conditions that reach P,. In the region of P,, a small change
in the initial conditions can produce a large change in the
response of the system since it can result in two different
steady-state responses. The picture for the basins of attrac-
tion shown in Fig. 3 is over simplified. In general, basins of
attraction for a nonlinear system can be enormously com-
plex, and can only be constructed by numerical simula-
tions. Assessing the global stability of attractors in nonlin-
ear systems is currently a subject of intense research.?*

V. CIRCULAR MOTIONS

If a free planar oscillation is perturbed, then the subse-
quent evolution of the orbit is determined by the two-di-

mensional equation
F+Ar+ 0l (1 4+ Ke)r=0, (35)

which is Eq. (6) with no forcing term. We noted in Sec. 11
that the linear approximation to Eq. (35) results in ellipti-
cal motion. We shall use this observation to calculate an
approximate solution to Eq. (35) using a procedure put
forth by Gough'®; similar results were obtained by Elliot."*

Transform the problem of nonlinear free vibrations to a
reference frame rotating with an angular frequency . In
this rotating frame, Eq. (35) becomes

i+ A0 +20%i~ Qu+ i (1 +KuHhHu=0, (36)

where u is the new radial displacement vector subject to the
addition of a Coriolis and centrifugal acceleration. Let us
now look for a solution of the form

u(t) = [x(),p(0)] ="

X (X, cos @t + X; cos 3@t, Y, sin &t + Y5 sin 3@t).
(37)
Plugging Eq. (37) into Eq. (35) and keeping only the first-
order corrections in X, and Y, gives

(0% — Q2 — %)X, cos ot + (wy — Q* — 9&°)X; cos 3ot — 200 Y, cos bt

+ 03 K(X? cos® dt + Y? sin® @t)e ~*X, cos &t = 0.

A similar relation also holds for the y coordinate. On equat-
ing like Fourier components we discover, after consider-
able algebra,

=y [1+ BK/HXT+Ye M- (39

oVl =(—K/HX, Ve (40)
and

L L (K) i YD (41)

X, Y, \4) 99—l +Q)

If there is no damping (4 = 0), then this approximate
solution is periodic in the rotating reference frame and is
slightly distorted from an elliptical orbit. The angular fre-
quency @ is detuned from w,, by an amount proportional to
the mean-square radius vector X3 + Y3. In the original
stationary reference frame, Eq. (40) shows us that the or-
bit precesses at a rate €2, which is proportional to the orbital
area 7X,Y,. The angular frequency @ in Egs. (39)-(41) is
measured in the rotating reference frame. It is related to the
angular frequency in the stationary reference frame w by

w’ = (o + Q)2
— 02 {1 + (K /A [3(X? + ¥2) — 2X,¥,]e *}.(42)

Thus, in the stationary reference frame, the undamped mo-
tion is quasiperiodic unless @ and {2 are accidentally com-
mensurate. The damped oscillations are also elliptical in
character and precess as a rate 2. In both cases, the detun-
ing given by Eq.(42) is due to two sources: the nonlinear
planar motion detuning plus a detuning resulting from the
precessional frequency.

Solutions for forced circular motion, Eq. (6), will not be
studied here, suffice it to say that the system has five de-
grees of freedom and will exhibit all the nonlinear and cha-
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(38)

—

otic effects of dynamical systems of similar complexity.
Equation (6) can be viewed as a set of two coupled Duffing
equations. Some of the possible behavior of this system is
indicated in Sec. VI, where the results from numerical sim-
ulations are presented.

VI. CHAOTIC MOTIONS

One of the simplest ways to visualize the complexity of
string vibrations is through the construction of a bifurca-
tion diagram.® Such diagrams are useful aids in showing
the transition from periodic to chaotic behavior; bifurca-
tion diagrams can also demonstrate the existence of multi-
ple coexisting attractors. We will construct bifurcation dia-
grams for forced planar motion modeled by the Duffing
oscillator, Eq. (20); and the two-degree-of-freedom model
for forced circular motion, Eq. (10). In each case, we as-
sume the string is forced only in the x direction by the
sinusoidal term given in Eq. (21). For all simulations,
B =00037, a =86.2 (ie, K=0.114), y=0.99 (ie, a
1% detuning), and the forcing amplitude F varies between
50 and 55. All these dimensionless parameters correspond
to values that should be easy to realize experimentally.

To actually construct the bifurcation diagram, the dif-
ferential equations are solved numerically with ODE,** a
research tool of remarkable utility. The first 400 cycles are
disregarded since they are assumed to be part of the tran-
sient solution. In the next 400 oscillations, the values of
x(r,) are recorded where 7, = (v mod 27 = 0). That is,
the attracting solution is sampled by the stroboscopic
method once every period of forcing. The asymptotic solu-
tion is then used as the initial condition for the next simula-
tion where the value of Fis incremented by a small amount.
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Fig. 4. Bifurcation diagram [forcing amplitude vs x( 7, ) | for planar oscil-
lations of a vibrating string: (a) forward scan, (b) backward scan. Coex-
isting periodic orbits and chaotic motion are easily observed. The operat-
ing parameters are 8 = 0.0037, a = 86.2, and y = 0.99.

In this way, we can study the evolution of the attracting
orbits as one of control parameters is varied. Since the sys-
tem shows hysteresis, the bifurcation diagram depends on
the direction in which the parameter is scanned. In this
study, we show the results for the control parameter being
scanned in both directions.

The results for the Duffing oscillator [Eq. (20) ] are pre-
sented in Fig. 4. The first bifurcation diagram, Fig. 4(a),
shows the results of a forward scan, F: 50— 55; Fig. 4(b) is
a backward scan, F:50 — 55. Both scans show that two peri-
od 1 orbits coexist when Fe[54.5,55]. In fact, these are
exactly the two orbits calculated in Sec. IV. As shown in
Fig. 4(b), each of these orbits undergoes a period-doubling
cascade to chaos as F is decreased from 55 to 53. This is
followed by a period 3 window and then more chaotic be-
havior. At least two different chaotic attractors as well as a
period 3 orbit all coexist in some parameter regimes be-
tween Fe[50,53].

In Figs. 4 and 5, the orbit appears to hop between attrac-
tors as F'is incremented. This is an artifact of the way the
bifurcation diagrams are constructed. Fis incremented by
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Fig. 5. Bifurcation diagram [Forcing amplitude vs x(r,)] for circular
oscillations of a vibrating string: (a) forward scan; (b) backward scan.
Same operating parameters as Fig. 4; however, oscillations are not planar,
but circular. Strictly planar vibrations are observed at higher forcing am-
plitudes.

steps of 0.1, and the different basins of attraction are suffi-
ciently intertwined so that this finite step size for F can
throw the orbit onto another attractor. Even in an experi-
mental system, F might not vary continuously in the quasi-
static approximation (this is especially true for experi-
ments under computer control), and one might observe a
sudden switching between attractors in this parameter re-
gime. If a smaller increment size is employed, the period N
orbits and the chaotic attractors can be followed in more
detail.

The bifurcation diagram for forced circular motion, Eq.
(10), is presented in Fig. 5. Regions of period motion and
chaotic motion (or possibly quasiperiodic motion) are
easily distinguished. In this parameter region, all periodic
motions appear to be circular [i.e., y(7) #0]. Numerical
studies show that a transition from planar to circular mo-
tion takes place when F = 61.7.

Neither of these bifurcation diagrams are meant to be an
exhaustive or comprehensive study for the dynamics of a
vibrating string. They merely serve to indicate that the
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forced vibrations of a string can exhibit a rich variety of
complicated motions under realizable operating condi-
tions.

VII. CONCLUSION

We studied the nonlinear vibrations of an elastic string.
A string is capable of exhibiting several nonlinear phe-
nomena including periodic, quasiperiodic, and chaotic mo-
tions. Hysteresis is found using the method of slowly vary-
ing amplitudes and chaotic vibrations are predicted for
forced oscillations in an experimentally accessible regime.
Stabie periodic vibrations exist for planar and circular mo-
tions, and a numerical estimate of the threshold for the
transition from planar to circular motion is given.

This is a rich system for which the detailed comparison
between theory and experiment could provide very useful
insights into the nonlinear dynamics of spatially extended
systems. Additional studies are possible for the subhar-
monic periodic orbits, as well as stability calculations
showng, for instance, the transition from planar to circular
oscillations. An in-depth numerical study could also facili-
tate experimental studies looking for specific nonlinear ef-
fects. With the onset of chaotic behavior, it is reasonable to
expect that the single-mode model is not as applicable since
chaotic motion can serve to excite many modes, and this
suggests the formulation of a multimode model. The gen-
eral question of the “excitation of multiple modes” by
chaotic oscillations could be fruitfully explored by both
theoretical and experimental work on vibrating strings.
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