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Abstract. Quite some time ago, Melde (experimentally)
and Rayleigh (theoretically) investigated one of the
earliest examples of a parametric oscillator. They showed
that a periodic modulation of a string’s length
(longitudinal excitation) gives rise to transverse string
vibrations. In this paper it is shown that a similar effect is
observed when a periodic torsional modulation is applied
to a wire; i.e., twisting a wire can parametrically excite
transverse vibrations.

The essential features of a parametric oscillator are
illustrated by a child on a swing. As shown in figure
1, during the down swing the child raises herself and
effectively decreases the length from the pivot to the
centre of mass. On the up swing, the centre of mass is
again lowered. In effect, the child is periodically
modulating the length of a physical pendulum, and to
efficiently pump energy into the swing the child must
stretch and stoop at twice the natural frequency. This
illustrates a prominent feature of a parametric oscil-
lator: to wit, a parametric resonance is strongest when
the frequency of parametric excitation is twice the
natural frequency [1].

Parametric oscillators are commonly found in both
the playground and the laboratory. A parametric
oscillation can occur when the parameter of a system
is modulated; parametric devices play an essential role
in several applications ranging from solid-state ampli-
fiers to frequency converters in lasers [2]. The linear
theory of parametric oscillators is generally described
by differential equations of the form

§=-w’(t)g o(t+T) = ()

where the frequency, w, is a periodic function of time.
For our example of the swing, the child modulates the
length, and hence frequency, of a physical pendulum.

One of the first experimental studies of a parametric
oscillator is Melde’s experiment, in which transverse
vibrations in a string are established by a purely lon-
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Riassunto. Molti anni fa Melde (sperimentalmente) e
Rayleigh (teoricamente) studiarono uno dei primi esempi
di oscillatore parametrico. Essi provarono che la
modulazione periodica della lunghezza di una corda
(eccitazione longitudinale) da luogo a vibrazioni
trasversali della corda. In questo articolo si mostra che up
effetto simile si osserva quando una modulazione
periodica di torsione venga applicata ad un filo: la
torsione di un filo pud eccitare parametricamente
vibrazioni trasversali.

gitudinal forcing. This forcing is achieved by connect-
ing one end of the string to a tuning fork moving
parallel to the string. In effect, the length (and hence
tension) of the string is modulated periodically, and
Melde discovered that this modulation leads to trans-
verse string oscillations. This early example of a
parametric oscillator was analysed theoretically by
Rayleigh [3]; improvements to the theory and the
experiment were achieved by Stephenson [4] and
Raman [5] respectively.

Wires are often used as strings in experimental
studies of string oscillations. Now wires can support
both torsional modulations as well as axial modula-
tions. This naturally raises the question: can torsional
modulations in wires parametrically excite transverse
oscillations? Or, more simply put, can a child swing by
twisting. In this paper we will show that indeed this is
the case. Basically, the torsional modulations lead to
a second-order change in the string’s length (apd
tension) so that torsional modulations can excite
transverse oscillations similar to those discovered by
Melde and Rayleigh. Although rather obvious, the
possibility of torsional parametric excitation in wires
does not seem to have been previously noted.

What is not obvious is: exactly how do torsional

oscillations change the length of a wire (or rod of

elastic material)? Indeed linear theory predicts that n®
change in length occurs, which is possibly the reasen
why this parametric mechanism is not previousl)-
mentioned. However, early experimental studigs .b.‘
Poynting [6] showed that for many wires, twisting
actually makes them longer! The problem was sol’
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theoretically only in 1953 by Rivlin [7] who showed, in
ment with Poynting’s experimental results, that
the extension in the rod is proportional to the square
of the twist [8]. Rivlin’s results along .with some
fascinating historical remarks on the deformation of
rods subject to twisting are provided by Truesdell [9].
The plan of this paper is now clear, using Poynt-
ing’s and Rivlin’s result—namely, that extension is
proportional to the square of the twist—a simple
theory of torsional parametric oscillations in wires is
constructed. As with many parametric oscillations we
will see that these parametric oscillations are modelled
by Mathieu’s equation. Both the theoretical treatment
and experimental observation of torsional parametric
oscillations in wires is easily accessible to under-
graduates and provides a lesson on exactly how non-
obvious some simple problems in continuum mechan-
ics can be. v
The linear wave equation for transverse string
displacements is [10]:

Fylor = 2O@ylox)  CO=TOk O

Parametric effects are allowed for by the possible time
dependence of c(7), the transverse wave speed, which
in_ turn depends on the tension 7(r) and the mass
density u. The transverse direction of the string is
denoted by y and the longitudinal direction by x. The
investigation of equation (1) is considerably simplified
by-expanding the linear wave equation in the Fourier
modes,

e il . (nnx

5 0 = 3 aosin( 7). e)
and examining the excitations of only the first mode
» rgsulting in,

6(11)7! ‘ 3)

Fi=—wp()n Wy =
The dot denotes differentiation WRT ¢, and / is the
string length in its reference configuration.

" Inorder to study torsional parametric excitations in
wires the functional dependence of wy(?) in a wire
subject to twisting must be specified. Following the
experimental results of Poynting and the theoretical
derivations of Rivlin, it will be assumed that

() = Ty + y6? )

where 6 is the degree of angular displacement and y is

a constant depending on the first- and second-order

c parameters as well as the geometry of the wire

[11}. 7, is the tension of the wire in its reference
configuration.

Lastly, assume a simple periodic dependence for

(1) of the form,
6(1) = cos w? )

Wwhere w is the angular frequency of torsional forcing.
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Substituting equations (4) and (5) in (3) yields
- o
»+ E[To + ycos’ (wn)]y; = 0 (6)
which is a form of Hill’s equation [12].
In fact, the simple change of variables
T=wt
6 = (T, + dy)/ul’?
(To + 3)/u )

£ = y/4ul’ ©®
u(@) =y,

allows equation (6) to be transformed into a special
form of Hill’s equation—the Mathieu equation. In
terms of the new variables u and t (prime now denotes
differentiation WRT 1) equation (6) becomes

u" + (8 + 2ecos 21)u = 0. ®)

Mathieu’s equation is well studied in parametric oscil-
lators and related processes. Perturbative solutions to
Mathieu’s equation are presented in many standard
texts [13]. Here, some of its properties relevant to
parametric oscillations are summarised.

When the forcing amplitude applied to the wire is
zero (y = 0 implies £ = 0 in equation (7)), then equa-
tion (8) admits a simple periodic solution of the form

u(f) = uycos(y/3ot + ©).

For small forcing amplitudes (¢ small), equation (9) is
still an approximate solution of equation (8), however
the ‘stability’ depends critically on the parameters
4,¢).

For fixed parameters § and &, equation (8) will
exhibit two types of solutions, bounded (stable) orbits
and unbounded (unstable) orbits. Usually, locating
the unstable regions in the (3, &) parameter space is of
interest since it is in these regions that parametric
oscillations are possible. The unbounded parametric
oscillations are typically asymptotic to limited cycles
that arise when a non-linear term is added to equation

Figure 1. Child on a swing. The child tucks and extends
her legs twice during each complete swing oscillation.
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Figure 2. Schematié of stable and unstable (shaded)
regions in parameter space of Mathieu's equations.

(8). This non-linear element, which must become
relevant at large amplitudes, prevents solutions from
becoming unbounded. However, large-amplitude
considerations are not required when calculating the
transition curves in the (4, &) plane between stable and
unstable orbits. These transition curves can be cal-
culated from perturbation theory (for small ¢),
numerical methods, or a combination thereof (see [13]
for details). The transition curves are important since
they delimit the critical parameter values necessary to
sustain parametric oscillations.

Quite generally (as is shown by Floquet theory)
equation (8) admits solutions of the form

u(t) = " Y(2) ®

where (z) is a periodic function of 7, and A is the
characteristic exponent determining the stability of
the solution. For Re(1) < 0, the solutions are stable,
and for Re(4) > 0 the solutions are unstable. The
transition curves are given by the intermediate case.
The transition curves showing the parameter values
resulting in stable and unstable motions are illustrated
in figure 2. The shaded regions show parameters
resulting in unstable orbits. These shaded regions are
now commonly known as ‘Arnold tongues’ after the
mathematician V I Arnold, and play an important
role in the theory of mode-locking and the transition
to chaos in diss*pative systems [14].

For ¢ = 0, all points on the § axis are usually stable
except for a set of integral or half-integral values of

the coordinate which are the base points of the Arnok
tongues [1]. These base points are subharmonics o
the natural frequency, and are the initial values fo,
which parametric oscillations are possible. For s

¢, regions of parametric instability open up above p,
points of parametric resonance. In practice only

first few resonance points are observable since the
slightest amount of friction damps out the highg,
order regions of instability. Thus, in an eXperimey
the easiest parametric resonance to observe occurs a
the first subharmonic, which should be twice the
natural frequency, as every child on a swing knowy
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