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LETTERS TO THE EDITOR

TORUS DOUBLING AND CHAOTIC STRING VIBRATIONS:
EXPERIMENTAL RESULTS

Non-linear and chaotic vibrations are well documented in mechanical systems [1];
however, to the best of our knowledge (and somewhat to our surprise) chaotic oscillations
have not previously been noted in experimental studies of string vibrations. Two recent
theoretical studies [2, 3] predict periodic, quasi-periodic, and chaotic vibrations when
strings are subject to large forcing amplitudes. In particular, Johnson and Bajaj [2]
illustrated a torus doubling [4, 5] transition to chaos in a single-mode model (coupled
Duffing oscillators) of a linear-elastic string.
| In this letter we describe a simple experiment that illustrates this torus doubling
¢ transition to chaos in a string. Additional non-linear and chaotic behavior is also observed
' (hysteresis, chaotic transients, period doubling, etc.,...), but we will focus on torus
doubling as it is easily observable and persists for a wide range of operating parameters.
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2. EXPERIMENT

Our experimental rig is similar to the one described by Gough [6]. A tungsten wire is
mounted between two heavy brass anchors. An electromagnet (or large permanent magnet)
is placed at the wire’s midpoint, exciting vibrations in the fundamental mode when a
sinusoidal current near the primary resonance passes through the wire. Both the horizontal
(X) and vertical (Y) string displacements are monitored with a pair of inexpensive slotted
‘ optical sensors consisting of a LED and phototransistor in a U-shaped plastic housing
. [7]. The X-Y string displacement can be directly viewed and digitized, or a lock-in
‘ amplifier can be employed to average over Jfast oscillations, providing the envelope of the
;’ amplitude-modulated string vibrations. Care must also be taken to isolate the rig mechani-
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cally and acoustically. Our system is mounted on a Newport floating optical table and a
cover provides acoustical isolation. Typical experimental parameters are listed in Table 1.

Both Fourier analysis and Poincaré sections [1] are essential as real-time diagnostics
and for trajectory identification. A Tektronics 1LS spectrum analyzer provides the former,

TABLE 1

Experimental string parameters
(typical values)

Description Value
‘, Length 80 mm
' Mass per unit length 0-59 g/m
Diameter 0-2mm
>’ Primary resonance 1kHz
Range of hysteresis 300 Hz
| Magnetic field strength 0-2T
, Current 0-2A
| Maximum displacement 3 mm
D Damping (8) [3] . 0-067
|
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while Poincaré sections are easily obtained by sampling the horizontal and vertical string
displacement once each period (stroboscopic map). A circuit converts the sinusoida
forcing function to a 50 us pulse which is then used to trigger the beam intensity of 3
storage oscilloscope. A single dot appears on the screen showing the X - Y string displace.
. ment sampled once each period, and the sampling phase is adjusted with a delay line.
As illustrated in Figure 1, both the string displacement and the Poincaré section (bright
dot) are visible at high beam intensities. Only the Poincaré section is invisible when the
oscilloscope’s beam intensity is decreased (Figure 2). Different attractors and qualitative
changes in string motion (bifurcations) are easily identified with these tools.

3. RESULTS

We examined the orbits and bifurcation sequences for a wide range of amplitudes and
detunings about the primary resonance. With either increasing forcing amplitude or
detuning we typically see the bifurcation scheme illustrated by the Poincaré sections in
Figures 1 and 2. Periodic planar motion (X (¢) = 0) appears (Figure 1(a)) at small detunings
from the primary linear resonance frequency (and moderate forcing amplitudes). This is
followed by an elliptical (non-planar) periodic orbit (Figure 1(b)). At moderate detunings,
quasi-periodic orbits occur, as indicated by the circle in the Poincaré section (Figures
1(c) and 2(a)). Next a torus doubling is observed (Figures 1(d) and 2(b)), and at slightly
greater detunings the motion is chaotic (Figures 2(c) and 2(d)). To confirm that these
orbits are chaotic attractors their correlation dimension [8] is computed from a digitized

Figure 1. String displacement recorded by optical sensors. The bright spot in each photograph shows where
the Poincaré section is recorded. (a) Planar periodic; (b) non-planar periodic; (c) quasi-periodic; (d) torus
doubling of quasi-periodic motion. Only half of the displacement amplitude (X (¢)>0) falls within the linear
range of the detectors.
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(o) (b)

Figure 2. Poincaré sections illustrating torus doubling transition to chaos. The sequence of pictures is in
sder of increasing forcing frequency. (a) Quasi-periodic; (b) torus doubled quasi-periodic motion; (c) chaotic
s000n soon after torus doubling; (d) chaotic motion with correlation dimension 2-7.

ume series. Correlation dimensions [8] between 2 and 3 are obtained for the attractors
a the end of the torus doubling cascade (Figures 2(c) and 2(d)), confirming the chaotic
uture of the string motion.

To summarize, we observe the following bifurcation sequence: periodic »
quasi-periodic > chaotic > quasi-periodic - periodic. As noted above, an inverse cascade of
‘orus doublings is often observed above the chaotic regime. We never observed more
*han four torus doublings in the quasi-periodic regime before the onset of chaotic motion.
The exact details of a bifurcation sequence depend on the specific operating parameters.
For instance, a sweep of the detuning frequency with small forcing amplitudes may result
‘3 sequence of the form periodic > quasi-periodic - periodic. And, of course, at very low
forcing amplitudes not even quasi-periodic motion is observed.

Torus doublings and, in addition, torus mergings, are observed for excitation frequencies
3ear the second harmonic. The torus mergings arise from a single period doubling that
occurs from the period one (non-planar) orbit. For excitations near the secondary
"esonance the following bifurcation scheme is commonly observed: period one - period
O~ 1wo separate tori-> tori merging - tori doubling. The single period doubling and
‘esultant tori merging seems to arise from the interaction of the two separate spatial
nodes of the linear approximation.

4. CONCLUSIONS

Our experiments show good qualitative agreement with the theoretical results described
b Johnson and Bajaj [2] for a torus doubling transition to chaos in strings. The apparatus
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is simple enough to be useful for general demonstrations of non-linear and chaotic
phenomena. As emphasized earlier [3], perhaps the most important application of experi.
ments with strings will be in testing ideas about spatial-temporal chaos [9]. By simply
increasing the forcing frequency, the system can be varied from a single-mode to 3
many-modes problem. The single-mode regime is well described by a low-dimensional
model; however, with the addition of new spatial modes at high forcing frequencies,
significant new bifurcation schemes (and degrees of freedom) are expected to come into
play as many modes become simultaneously unstable.
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