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We describe a detailed experimental investigation into the dynamics of a sinusoidally forced string.
We find qualitative agreement with the predictions of the averaged equations of motion for a string
in the high damping regime. At low damping we observe more complex phenomena not present in
the averaged equations. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Analysis of the motions of strings has motivated a surp
ing amount of science: From ancient Greeks investiga
the length rations which produce harmonious sounds
d’Alembert who developed the theory of partial different
equations in order to model the motions of a string.1 Our
reasons for studying the motions of a string are captured
by the words of P.M. Morse2 who wrote in 1936: ‘‘The string
is the simplest case of a system with an infinite number
allowed frequencies, and it is best to discuss some of
properties common to all such systems for as simple a
system as we can find, lest the mathematical complicat
completely obscure the physical ideas.’’ More recent theo
ical and numerical investigations3–8 have predicted a wide
variety of nonlinear phenomena in the motion of a sinus
dally forced stretched string: for example, torus-doubling
furcations, boundary crises, and chaos. In this paper we
scribe an experiment which attempts a more extens
investigation than earlier efforts to look for chaot
motions7,9–11 and related nonlinear phenomena in the vib
tion of strings and verifies, in the most part, these pred
tions.

We previously reported a simple exploratory experim
which established the existence of chaotic motions
strings.9 This previous experiment successfully observed
torus-doubling transition to chaos, but lacked the control a
precision necessary for a thorough investigation of the
namics of a sinusoidally forced string.

A more comprehensive experimental apparatus was
signed for this second more detailed study. This w
prompted both by a desire to improve the initial string e
periment, and by further theoretical work, particularly that
Bajaj and Johnson,5,6 which indicated that several other in
teresting nonlinear phenomena, such as boundary cr
should occur in the string system.

This paper describes the results of this second invest
tion into a string’s dynamics and is organized as follows.
order to make this paper self-contained, Sec. II outlines
derivation of the averaged equations of motion used to mo
the dynamics of a string and provides an extensive overv
of the nonlinear phenomena predicted by these equati
Section III and the Appendix describes the experimental
paratus. Section IV presents the results of our experime
investigation.

It is hoped that some of these results could be incorpora
into standard mechanics courses that touch on the linear
nonlinear motions of a string, as well as theoretical and
1157 Am. J. Phys.72 ~9!, September 2004 http://aapt.org
-
g
to

ll

f
e
a

ns
t-

i-
-
e-
e

-
-

t
n
e
d
-

e-
s
-
f

es,

a-

e
el
w
s.
-

tal

d
nd
-

perimental courses that are specifically focused on the s
nonlinear dynamics.12–17For a basic background on some
the concepts and terms used in nonlinear dynamics and
paper—such as Hopf bifurcation, Logistic map, or Lore
attractor, and so on—see an introductory text such as
book by Strogatz.13

II. MODELS OF STRINGS

We consider a string stretched between two fixed mou
When the string vibrates transverse to its resting configu
tion, its length must also fluctuate. This coupling between
transverse motions and the longitudinal motions is nonline
even for small oscillation amplitudes. The simplest intere
ing model of a vibrating string, which takes account of th
effect and allows for motion in only one transverse directio
yields a forced damped Duffing equation.18

This section starts with the full equations of motion for
forced, damped, taut string. Then, following the work of B
jaj and Johnson,5,6 these equations are reduced to the fun
mental mode, but also allow motion in two transverse dir
tions. Using averaging theory this results in fo
simultaneous ordinary differential equations, which we c
the averaged equations of motion. These equations are
basis for the predictions of basic nonlinear behavior a
chaos which we search for experimentally.

A. Narasimha’s equations of motion

The nonlinear equations of motion governing the behav
of a string date back at least to Kirchhoff~1883!.7,8 In this
section these equations are presented as derived
Narasimha18 and the assumptions implicit in them are sum
marized.

Narasimha models the string as a long thin circular cyl
der composed of a linear elastic solid under tensionT0 , and
subject to an external forcingf(x,t) transverse to the restin
axis. The exact equations of motion for the transverse~v! and
longitudinal (u) amplitudes of oscillation of such a strin
are, in units of the length of the string (l ), mass per unit
length (m0), and velocity of propagation of transverse wav
(AT0 /m0)

S 12
]u

]xD ü5c1
2 ]L

]x
, ~1!
1157/ajp © 2004 American Association of Physics Teachers



ex

un

rs

ha

e

ec
-

de
er
th

ns

-

-
n.

hat
rec-
des
-
s-
ar
-
he
ns.
ua-

ua-
n

d
ly
are

a-
s
-

S 12
]u

]xD v̈5c1
2

]S ]v

]x
L D

]x
1f~x,t !, ~2!

where

L5
11c1

2l2c2
2l21c3

3l3

c1
2~11l!S 12

]u

]xD , ~3!

l5S 11S ]v

]xD 2D 1/2S 12
]u

]xD 21

21. ~4!

Now Narasimha performs a perturbation analysis by
panding the apparent strainl to

l5
]u

]x
1

1

2 S ]v

]xD 2

1S ]u

]xD 2

2
1

8 S ]v

]xD 2S S ]v

]xD 2

24
]u

]xD
1¯ . ~5!

If we assume that the oscillation amplitudes (u and v! are
small, then we can approximatel as

l'
]u

]x
1

1

2 S ]v

]xD 2

. ~6!

If we approximate the apparent strain asl' ]u/]x, then the
transverse and longitudinal motions of the string are
coupled and the transverse amplitudes~v! obey a linear wave
equation. The approximation in Eq.~6! is then the lowest
order inclusion of the longitudinal coupling to the transve
motions.

A simple geometric argument leads to the conclusion t
for small transverse amplitudes,uvu;d, the longitudinal am-
plitude isu;d2. For forced motions of the string we use th
amplitude of forcinge as a small parameter,f5e f 0(x,t).
Expanding the longitudinal amplitudeu, and the transverse
amplitudev, in e we get

v5e~v01e2v11e4v21...!, ~7!

u5e2~u01e2u11e4u21...!. ~8!

The equation for the transverse motions is found by negl
ing all but the lowest powers ofe, and adding a phenomeno
logical damping termb. The damping is assumeda priori to
be linearly related to the velocity, and is designed to mo
the complex loss mechanisms such as air resistance, int
friction, and movements of the endpoints. This yields
equation of motion

v̈01bv0v̇02
d2v0

dx2 F11
c1

2

2 E
0

1U dv0

dx U
2

dxG5f0~x,t !. ~9!

In standard units, the equations of motion for the tra
verse amplitudesr (x,t) are

r̈12bv0ṙ2
d2r

dx2 Fc0
21

c1
2

2l E0

lUdr

dxU
2

dxG5
1

m
f~x,t !, ~10!

whereb is the damping on the fundamental mode,v0 is the
fundamental frequency of transverse vibration,c0 is the
transverse wave speed,c1 the longitudinal wave speed,m is
the mass per unit length, andf(x,t) is the external forcing
per unit length.
1158 Am. J. Phys., Vol. 72, No. 9, September 2004
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If we expand the transverse amplitudesr (x,t) and the
forcing f(x,t) in a Fourier series,5 then the boundary condi
tions force the cosine terms to be zero and we get

r ~x,t !5 (
n51

`

rn~ t !sin
npx

l
, ~11!

f~x,t !5 (
n51

`

fn~ t !sin
npx

l
. ~12!

Substituting into the equations of motion@Eq. ~10!# we get
an equation for thenth mode

r̈n12bv0ṙn1vn
2rnF11

1

4s (
j 51

` U j r jp

l U2G5
1

m
fn~x,t !,

~13!

wherevn5nv0 ands5(c0 /c1)2.
Now if we assume that the external forcing is along they

axis, excites only the fundamental modef (t)5f1(t)•ey , and
restrictsr (x,t) to lie only along they axis

S ey5S 1
0D D ,

i.e., let r 5r1 , then Eq.~13! becomes

r̈ 12bv0ṙ 1v0
2r @11jr 2#5

1

m
f ~ t !, ~14!

wherej5 p2/4sl2. This is a forced damped Duffing’s equa
tion governing motion confined to one transverse directio4

B. Averaged equations of motion

Next we turn our attention to getting modal equations t
take into account possible motions in both transverse di
tions. The equations of motion for the transverse amplitu
of the string@Eq. ~10!#, take into account the coupling be
tween the longitudinal motions of the string and its tran
verse motions. Keeping only the lowest order nonline
terms, Miles,19 and Bajaj and Johnson5,6 reduce these equa
tions to a set of four ordinary differential equations for t
amplitudes of the motion averaged over the fast oscillatio
This section follows their derivation of these averaged eq
tions of motion.

We start with the modal expansion of Narasimha’s eq
tion of motion @Eq. ~13!#, and assume that the forcing is i
the vertical plane only and sinusoidal with frequencyv close
to the fundamental frequencyv1 . We write it as~using a
scaling chosen with the benefit of hindsight!

f15
emlv1

2

p
cosvtey , ~15!

wheree is an amplitude of excitation and will be considere
‘‘small.’’ We assume that the forcing frequency excites on
the fundamental mode, and that the higher order modes
excited only through their nonlinear coupling to the fund
mental mode. TheN mode truncation of the modal equation
can now be written, explicitly including a ‘‘smallness’’ pa
rameterê, as
1158Timothy C. Molteno and Nicholas B. Tufillaro
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j 51

N

j 21uzj u2znG ,

~16!

where8 represents differentiation with respect to the time
calet15vt and

zn5
rnpn3/2

2l ~es!1/3, ~17!

a54dS s

e2D 1/3 v

v1
, ~18!

b52S s

e2D 1/3F S v

v1
D 2

21G , ~19!

ê5
1

4 S e2

s D 1/3

. ~20!

The dimensionless parametersa and b represent damping
and detuning from the natural frequency of the fundame
mode. Bajaj and Johnson6 show that the energy of the un
forced modes~to O( ê)) decay exponentially to zero. Thi
justifies taking a single mode truncation of these modal eq
tions which gives us the equations of motion

z91z5 ê@cost1ey22az822bz924uzu2z#. ~21!

While it is possible to directly solve this truncated mod
equation numerically, averaging over the fast oscillations
the string produces a model which is more easily analyz
Bajaj and Johnson6 show that, in most of the parameter r
gimes of interest here, predictions from the averaged eq
tions are in close agreement with direct numerical solutio
Our experiment described in Sec. III will hopefully she
some light on the behavior of an averaged quantity, in th
regions of parameter space where the averaging assump
are violated.

Before we apply the method of averaging it is conveni
to express the equations of motion as a system of first o
ordinary differential equations

x85y, ~22!

y85
1

112bê
@2x1 ê~2 cost1ey22ay24uxu2x!#. ~23!

Note that asx,y are two-dimensional vectors, this is a syste
of four coupled ordinary differential equations.

The system of equations@Eqs. ~22! and ~23!# is trans-
formed into a form suitable for application of the method
averaging by the invertible van der Pol transformation20

S p̂
q̂D5AS x

yD , ~24!

where

A5S cost1 2sint1

sint1 cost1
D , ~25!

A215S cost1 sint1

2sint1 cost1
D , ~26!
1159 Am. J. Phys., Vol. 72, No. 9, September 2004
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A85S 2sint1 2cost1

cost1 2sint1
D . ~27!

Therefore we can transform the equations of motion@Eqs.
~22! and ~23!# to

S p̂8
q̂8 D5A8S x

yD1AS x8
y8 D , ~28!

which, substituting forA, A8, and x8 from Eq. ~22!, is
equivalent to

p̂852~x1y8!sint1 , ~29!

q̂85~x1y8!cost1 . ~30!

Now substituting fory8 in terms ofx and y @Eq. ~23!# and
then forx,y in terms ofp̂ and q̂ using Eq.~24!, we get

p̂8~112bê!52 ê@~ p̂ cost11q̂ sint1!~2b

24~p2 cos2 t11q2 sin2 t11p̂"q̂ sint1!!

12a~ p̂ sint12q̂ cost1!

12 cost1ey#sint1 , ~31!

q̂8~112bê!51 ê@~ p̂ cost11q̂ sint1!~2b

24~p2 cos2 t11q2 sin2 t11p̂"q̂ sint1!!

12a~ p̂ sint12q̂ cost1!

12 cost1ey#cost1 . ~32!

We now have the equations of motion in a ‘‘standa
form’’ suitable for the application of averaging techniques

p̂85 êg1~ p̂,q̂,t1 ,ê !, ~33!

q̂85 êg2~ p̂,q̂,t1 ,ê !, ~34!

where the functionsg1 andg2 are periodic~period 2p! in t1 .
The associated autonomous averaged system is defined~see,
for example, Guckenheimer and Holmes20! as

p85 ê
1

2p E
0

2p

g1~ p̂,q̂,t1,0!dt11O~ ê2!, ~35!

q85 ê
1

2p E
0

2p

g2~ p̂,q̂,t1,0!dt11O~ ê2!. ~36!

Carrying out this integration we arrive at theaveraged equa-
tions of motion

p1852ap12~b21.5E!q11Mp2 , ~37!

p2852ap22~b21.5E!q22Mp1 , ~38!

q1852aq11~b21.5E!p11Mq211, ~39!

q2852aq21~b21.5E!p22Mq1 , ~40!

where

E5p1
21p2

21q1
21q2

2 ~41!

and

M5p1q22p2q1 . ~42!

These equations are identical to those obtained by Mile19

who used the method of multiple time scales. The com
nents p1 and q1 are slowly varying averaged amplitude
called theplanar components of motion because they lie
the plane of forcing. The variablesp2 andq2 are called the
nonplanar components. Both represent motion in th
1159Timothy C. Molteno and Nicholas B. Tufillaro
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‘‘modulated’’ frequency well bellow the ‘‘carrier’’ frequency
set by the forcing frequency.

The averaging theorem states that forê small enough the
following results hold between the original and averag
systems: If there is a hyperbolic fixed point of the averag
system, then the original system possesses a unique h
bolic periodic orbit of the same stability type, and that pe
odic solutions of the averaged equations correspond to
siperiodic solutions of the original system of equations.
particular if a Hopf or saddle-node bifurcation occurs in t
averaged system, then the Poincare´ map of the original sys-
tem also undergoes a Hopf or saddle-node bifurcation. Ad
tionally, if the averaged system has a hyperbolic perio
orbit g, then the Poincare´ map has an invariant closed curv
near g and the original system has a hyperbolic invaria
torus.

There are no results at present which make a formal c
nection between chaotic solutions of the averaged equat
and the original system. Additionally the above stateme
only apply for sufficiently smallê. However, extensive nu
merical solutions of Bajaj and Johnson between the orig
and averaged equations indicate that chaotic motions
related behavior also exist between both models. The n
section summarizes the results of these theoretical and
merical investigations by Bajaj and Johnson5,6 for the solu-
tions to the averaged equations of motion of a string.

C. Predicted string dynamics

The averaged equations of motion were investigated
Miles20 and subsequently by Bajaj and Johnson.5,6 Miles dis-
covered torus doubling bifurcation sequences, but n
which resulted in a chaotic attractor. Johnson and Bajaj
amined higher damping regimes and discovered chaotic
lutions connected to a new periodic branch of solutions. T
solution they termed theIsolated Branchsince it is not con-
nected to theHopf Branchin the parameter region explore
by Miles. Further exploration uncovered many interest
phenomena including the formation of a homoclinic orb
boundary crises, and intermittency. We summarize som
the predicted results in this concluding theory section. Fo
more complete discussion and illustrations see the paper
Bajaj and Johnson.5,6

The averaged equations of motion for the string are inv
ant under sign change of the nonplanar components of
motion (p2 ,q2)→(2p2 ,2q2). This means that for every
solution found numerically, there is another mirror-image
lution which is found by making this sign change.

We start the discussion of the dynamics generated by th
equations~37!–~40! with a summary of the behavior of the
fixed points which are known, from the averaging theorem20

to correspond to periodic trajectories of the unaveraged e
tions of motion@Eqs.~31! and ~32!#.

1. Fixed points

The fixed points of the averaged equations can be de
mined as functions of the detuning parameterb, and the
damping parametera. The plot of the amplitude of the ave
aged motionE, against detuningb for some fixed dampinga
is called aconstant amplitude response curve. These curves
are simply the familiar resonance curves, plotting amplitu
of oscillation versus frequency.
1160 Am. J. Phys., Vol. 72, No. 9, September 2004
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The stability of the fixed points divides the motions of th
string into several classes catalogued by their damping
ues. These are:

d a.0.991. All motions are confined to the plane of excit
tion (p25q250). These are the only stable constant so
tions to the averaged equations in this regime, and
amplitude is a single valued function of the detuning. Th
is called theplanar solution branch.

d a,0.991. The motions on the planar solution branch c
become multivalued over some frequency intervals. Ty
cal response curves in this regime, are confined to
plane, but in some detuning frequency intervals denoted
Db there are three possible steady state solutions. In
regime, the string exhibits hysteresis as the detuning
varied. That is constant amplitude response curves exh
different transition jumps depending on whether the f
quency scan is slowing increasing or decreasing—a
called ‘‘upward’’ or ‘‘downward’’ scan. These transition
occur when the current planar solution branch loses sta
ity and the motion jumps to another stable branch wh
are typically created via saddle-node bifurcations.

d a,0.687. Orbits are no longer confined to the plane
excitation. These are the so-called ‘‘whirling’’ motion
There are at least two non-planar whirling solutions—
clockwise and counterclockwise orbit—because of the
flection symmetry in the (p25q250) plane. These
branches are single valued for damping values larger t
a50.477. The transition from planar to non-planar moti
is usually quite easy to detect experimentally since
string literally ‘‘pops’’ out from a single plane of motion a
a parameter is changed.

d a,0.477 The nonplanar whirling solutions can also b
come multivalued, so again the system can exhibit jum
between different orbits and show complex hysteresis
fects as the control parameters are slowly varied.

2. Periodic solutions

The plane defined byp25q250, i.e., the plane of forcing,
is an invariant manifold of the averaged equations for
string @Eqs.~37!–~40!#. Bendixson’s criterion for the nonex
istence of limit cycles in a two-dimensional flows says tha
the expression

]p18

]p1
1

]q18

]q1

is not identically zero and does not change sign, then th
are no closed orbits. For motions restricted to the plane
forcing, this expression is equal to22a and therefore there
are no planar periodic solutions to the averaged equati
Any periodic solutions must arise as solutions of the co
plete four-dimensional equations of motion.

3. Hopf branch

Hopf bifurcations occur in the nonplanar branch fora
,0.577. These lead to limit-cycles~they occur in pairs due
to symmetry! which are stable for damping values near
0.577. These motions are said to lie on the Hopf solut
branch. As the damping is lowered below this value, the lim
cycles undergo period-doubling bifurcations. Starting w
the Hopf bifurcation which creates the Hopf branch, there
1160Timothy C. Molteno and Nicholas B. Tufillaro
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a sequence of period-doubling bifurcations followed by
verse period-doubling bifurcations back to the point at wh
the Hopf branch disappears in an inverse Hopf bifurcati
These periodic solutions of the averaged equations of mo
correspond to quasiperiodic motions of the string.

The loci in thea–b plane for the onset and disappearan
of quasiperiodicity form the Hopf bifurcation set. In the e
perimental section we show data outlining a Hopf bifurcat
set.

4. Isolated branch

While numerically investigating the Hopf solution branc
Johnson and Bajaj5 discovered another disconnected but c
existing solution branch. They conjectured that it arises
cause of a global saddle-node bifurcation which cause
stable and unstable limit-cycle to appear for low enou
damping. Thisisolated solution branch possesses motio
with characteristics that are qualitatively different from t
Hopf branch orbits. In particular, the isolated branch orb
exhibit ‘‘sharp’’ points in their orbit plots, which allow them
to be distingished from the Hopf branch orbits. For lo
enough damping, the isolated solution branch is connecte
the Hopf branch by an unstable limit-cycle. Because the
lated branch is created by a saddle-node bifurcation, we
pect to see hysteresis in its connection to the Hopf branc
this regime.

5. Chaotic solutions

According to the model equations, the isolated branch
dergoes a sequence of period-doubling bifurcations wh
eventually results in the appearance of a chaotic attractor
the damping is reduced below the point where the isola
branch merges with the Hopf branch, a series of isola
branches are created via saddle-node bifurcations and su
quently merge with the main solution branch. This seque
of orbit creation followed by merger, followed by anoth
creation, terminates in the formation of a homoclinic orb
The orbit originates from a saddle-type fixed point who
eigenvalues satisfy Shilnikov’s criterion. Bajaj and Johns
conjecture that the Shilnikov mechanism20 is responsible for
the stretching and folding which causes the chaos.
Shilnikov mechanism involves a homoclinic orbit from
fixed point which has one real, and a complex conjugate
of eigenvalues.21 If the magnitude of the real eigenvalue
larger than the real part of the complex pair, then Shilnik
showed that return maps defined near the homoclinic o
contain horseshoes22—stretching and folding maps whic
produce chaotic behavior.

For orbits near to the homoclinic orbit, there is a branch
solutions which encircle both nonplanar fixed points~again,
there are two because of the symmetry under sign cha
(p2 ,q2)↔(2p2 ,2q2)). According to simulations, this
branch undergoes a series of bifurcations which leads to
formation of Lorenz type chaotic attractors~roughly, chaotic
attractors which encircle two fixed points!.22

6. Crises

For damping values below 0.495, the chaotic solutions
suddenly be destroyed by a boundary crisis.23 The chaotic
attractor comes into contact with the stable manifold o
fixed point and the chaos is extinguished. The points
which this crisis occurs move closer to the Hopf bifurcati
1161 Am. J. Phys., Vol. 72, No. 9, September 2004
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points as the damping is reduced further. This reduces
interval of detuning in which the interesting periodic an
chaotic motions can occur. Bajaj and Johnson conclude
eventually for a50.25, ‘‘practically all initial conditions
lead to the lower planar steady-state constant solution.’’

D. Summary of predictions

The early work of Miles19 and the more recent work o
Bajaj and Johnson5,6 provided a lot of information about in
teresting behavior to look for in the motions of a string. Th
predict that:

d For small enough damping, the nonplanar solutions
comes unstable and form, via a Hopf bifurcation, the Ho
branch—a branch of limit-cycle solutions~quasiperiodicity
of the string’s motion!. This branch exhibits period
doubling bifurcations but these do not lead to a chao
attractor.

d At lower values of damping, there is another coexisti
branch of limit-cycle solutions, the isolated branch, whi
is created via a saddle-node bifurcation.

d The isolated branch has a period-doubling transition
chaos which results in a Ro¨ssler type chaotic attractor.22

d For lower damping still, a series of isolated branches
pear ~via saddle-node bifurcations! and merge with the
Hopf branch. This sequence ends in the creation of a
moclinic orbit, whose fixed point has eigenvalues whi
satisfy Shilnikov’s inequality. Lorenz type chaotic attra
tors are found in the neighborhood of this homoclinic o
bit.

d Finally as the damping is reduced yet again, the cha
attractors are progressively destroyed by boundary cri
eventually eliminating all interesting behavior complete

The rest of this paper describes experiments which were
signed to explore these predictions.

III. EXPERIMENTAL APPARATUS

Our string experiment is constructed from a thin wi
which is subject to an external periodic forcing. The wire
driven by passing a sinusoidal current through it while re
ing in a permanent magnetic field. The force per unit len
along the wire is a product of the the magnetic field stren
and the current in the wire. The forcing method is used
cause most theoretical studies assume a constant excit
per unit length when modeling the string. A disadvantage
this forcing technique is that the string must be made o
nonmagnetic material, otherwise the motion will be confin
to a plane. A magnetic material can be used when pu
planar oscillations are desired. Also, because of heating
the wire, the system is prone to slow temperature dri
which effectively cause a very slow parameter variati
~drift! in the wire’s length.

Several types of wires were tested. This experimenta
showed that a thoriated tungsten wire, 0.15 mm in diame
worked well. Tungsten is nonmagnetic so the nonplanar m
tions are not damped. Further, under the conditions of
experiment, the wire was well within its linear elastic r
sponse regime. The nonlinear behavior observed here is
not an effect of the material nonlinearity, but arises from t
fundamental geometry of the string deformation.

The wire is mounted between two clamps, held apart b
steel frame which also forms the yoke of the forcing magn
1161Timothy C. Molteno and Nicholas B. Tufillaro
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Mounted along the yoke are five pairs of rare earth cera
~RES 190! magnets~Philips catalog No. 4313 059 6601!
which provide a field of 0.2 T along the forcing length of th
wire. The clamps are electrically insulated from one anot
by two pieces of polyvinyl chloride, one of which holds th
amplitude detector. Figure 1 shows a schematic and of
mounting fixture.

The amplitude detector consists of an infrared photo di
~OP 165D! coupled to a match infrared phototransistor~OP
505D! mounted in a low-Q plastic block. Partial occlusion o
the beam by the string causes the amount of light at
phototransistor to vary with the position of the string.24

In addition to the rig for holding the wire, we also deve
oped a digital electronic system for signal synthesis, proc
ing, and visualization which is described in the Append
and in great detail in Refs. 10 and 25. The system allows
the real-time control and real-time signal analysis of
string’s vibrations. The string controller provides contr
over the forcing of the string as well as triggering outputs
data collection. Its basic functions are to take an input squ
wave and provide the following outputs:

d a forcing sine wave;
d the sampling trigger at regular intervals 32 times per fo

ing period; and
d a pulse once per forcing period for controlling the intens

of an oscilloscope beam~for analog Poincare´ sections!.12

We sample the motion of the string an integer number
times per forcing period. This sampling technique allows
to average the amplitude of the string over one forcing
riod.

The current electronics could easily be replaced with
peripheral component interconnect~PCI! plug-in board such
as National Instruments PCI-6036E for signal synthesis, c
trol, and data collection. Such a board can be programm
usingMATLAB’S Data Acquisition Toolbox. For instance, w
recently built such a low-cost system to do stimulu
response testing and model creation for nonlinear electr
circuits.26,27

IV. EXPERIMENTAL RESULTS

The results of the string experiment are presented in o
of increasing complexity: starting with simple periodic m
tions and ending with chaotic oscillations.

A. Periodic motion

After the constant solutions, the next simplest solutions
a sinusoidally forced pretensioned string are periodic, w
period equal to the forcing signal. These periodic solutio
are characterized by their rms amplitudeRi(t), which is re-
lated to the slowly varying averaged amplitudes (pi ,qi), by

Fig. 1. Schematic of the string mounting system.
1162 Am. J. Phys., Vol. 72, No. 9, September 2004
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R1(t) andR2(t) represent slowly varying amplitudes of th
planar and nonplanar components of the motion, respe
tively. When the motions are periodic, these amplitudes
constant.

Fixing the forcing amplitude to give the desired dampi
~a!, and then measuring the rms amplitude of the strin
response for a range of forcing frequencies, gives a cons
amplitude response~CAR! curve. The interesting range o
forcing frequencies, for large damping, is typically less th
25 Hz on either side of the resonance (f 0). Figure 2 shows a
series of experimental CAR curves which are in qualitat
agreement with the predictions of the averaged mod
Similar experimental results are presented by Hansonet al.11

The damping at which the rms amplitude becomes multiv
ued ~onset of hysteresis! provides the first quantitative tes
between the experiment and the averaged equations m
The model predicts that this should happen for values oa
,0.991. In the experiment this is only observed to occur
values ofa,0.65.

Fig. 2. Constant amplitude response curves from the string experimen~a!
before the onset of nonplanar motion and~b! after nonplanar motion. Some
hysteresis is evident between the ‘‘upscans’’~1! and ‘‘downscans’’~o!.
1162Timothy C. Molteno and Nicholas B. Tufillaro
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As the forcing amplitude is increased, the amplitude of
nonplanar components starts to increase and the string be
to whirl around its resting state. The onset of nonplanar m
tion is predicted to occur at values ofa,0.687, and is ob-
served experimentally at values ofa,0.45. Notice that the
ratio of the two values~experiment to theory! is approxi-
mately the same ('0.65) in both instances. This might su
gest that the difference may be due to errors in measu
fixed parameters of the experimental system, such as
forcing length of the string or the magnetic field streng
Alternatively, it could be that the model fails to account a
curately for some basic phenomenon like damping, or t
quantitative discrepancies could also arise due to some o
assumptions made in deriving the averaged model equat

Because the model is symmetric about the vertical a
two nonplanar~whirling! motions coexist corresponding t
different directions of whirling~clockwise or counterclock-
wise!. These two solutions can not be distinguished by th
CAR curves, but can be distinguished by plotting the no
planar average amplitudesp2 versusq2 . The solutions ap-
pear as fixed points in either the upper right, or lower l
quadrant of thep–q plane, according to the direction of th
whirling. In the experiment one of these directions is p
ferred, thus apparently breaking the symmetry present in
averaged equations. Whirling motions of either directi
could be induced by deliberate perturbation, but left to
own devices the system would almost invariably jump
nonplanar motion in one particular direction. This asymm
try could be introduced by a nonuniformity in the silicon
coating applied to the wire for damping, or by asymmetr
in the clamps holding the wire.

B. Quasiperiodic motion

As the amplitude of forcing is increased, the string c
jump, via a Hopf bifurcation, from periodic orbits describe
in the previous section to more complex motions with a
riodically modulated amplitude. These quasiperiodic motio
are the first step in the torus doubling route to chaos p
dicted by Bajaj and Johnson5 and described experimentall
by Molteno and Tufillaro.9

The nonplanar periodic motions are roughly elliptical
cross section, and quasiperiodicity arises when this elli
starts to precess. Figure 3 shows an experimental recor
of the variations in the rms amplitude of a quasiperio
signal from the string experiment. The period of the amp
tude modulation in this example is approximately 250 fo
ing periods. Thus, the modulation frequency is slow co
pared to the forcing frequency. The use of averaging the
in deriving the ‘‘averaged equations of motion’’ would thu
appear to be appropriate in this regime. Additionally, t
long period of this modulation may be one reason why p
vious experimenters have found amplitude modulated c
otic motion difficult to observe. Most experiments have be
performed on strings with a frequency of free vibration mo
than 1 order of magnitude lower than in this experiment~for
example O’Reilly and Holmes7 used 88 Hz!. Therefore, the
modulation period is several seconds, during which time
system is susceptible to low frequency noise, which is v
difficult to eliminate.

The Hopf bifurcation set is recorded by scanning the fo
ing frequency~changingb! for a series of different forcing
amplitudes~changinga! and noting the onset and disappea
ance of quasiperiodicity. Figure 4 shows the experimen
1163 Am. J. Phys., Vol. 72, No. 9, September 2004
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Hopf bifurcation set recorded from the damped string. T
lower branch of the plot corresponds to creation of the
Hopf branch and the upper branch corresponds ot its des
tion. For damping values lower than those shown on t
plot, the onset of quasiperiodicity occura at approximat
the same detuning, but the Hopf branch is destroyed by
apparent crisis. The detuning at which this crisis is very s
sitive to small perturbations, the Hopf branch appears to
losing stability both as the damping is lowered and as
detuning is increased.

In contrast, the upper branch of the Hopf bifurcation s
predicted from the averaged equations model extends ov
greater range of damping values. The bifurcation sets fr
the experiment and the averaged model have many feat
in common despite the apparent instability of the Ho
branch in the experiment, which leads to its early destr
tion. The critical point found experimentally for the onset
quasiperiodicity isa50.38,b53.4, whereas analysis of th
averaged equations yieldsa50.577,b53. Once again, the
ratio of experimental to theoretical damping for this critic
point is approximately 0.65.

Fig. 3. A time series of the planar rms ampltitude for an experimen
solution after the onset of quasiperiodicity.

Fig. 4. The experimental Hopf bifurcation set after being transformed to
~a,b! plane.
1163Timothy C. Molteno and Nicholas B. Tufillaro
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C. Hopf branch: period doubling

For damping values just below the onset of quasiperio
motion, the rms amplitude of the string show a perio
doubling bifurcation. A typical experimental sequen
of motions observed on the Hopf branch when scann
the forcing frequency is shown in Fig. 5. This contains
succession of plots of the nonplanar average amplitu
(p2 versusq2) which show the bifurcation sequenceperiod
one→period two→period four→period two→period one.

Periods larger than period four were not observed in
string experiment. This may be due to parameter drift wh
could obscure the observation of delicate motions on sm
parameter intervals, or it may reflect the actual dynam
These period doubling bifurcations of the averaged mot
correspond to torus doubling bifurcations of the amplitude
the string. This behavior is consistent with that of the Ho
solution branch of the averaged equations of motion. In
parameter regime, soon after the onset of quasiperiodi
there seems to be excellent qualitative agreement betw
experiment and the averaged model.

D. Isolated branch and chaos

As the forcing amplitude increases beyond the value
which the Hopf branch appears, the string’s motion can ju
to a qualitatively different type of quasiperiodic solutio
This jump exhibits hysteresis, i.e., the new motions persis
the forcing amplitude is reduced immediately after the ju
occurs. Thus, the new motion can coexist with the Ho
branch solutions. An example of these new motions is sho

Fig. 5. A simple experimental recording of a bifurcation sequence show
a period doubling bifurcation sequence followed by an inverse period d
bling bifurcation in the Hopf branch. The forcing frequency is the bifurc
tion parameter (I rms50.108 A, f 51300 Hz,a50.408).

Fig. 6. Two qualitatively different quasiperiodic~period-one nonplanar rms
amplitude! experimental plots. Both take with a forcing amplitude ofI rms

50.110 and at the same forcing frequency:~a! Hopf branch and~b! isolated
branch.
1164 Am. J. Phys., Vol. 72, No. 9, September 2004
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in Fig. 6~b! which also shows for comparison a solution fro
the Hopf branch@Fig. 6~a!#. The distinguishing characteristi
is a peak~sharply pointed section of the trajectory! where the
orbit is attracted towards the upper planar fixed point wh
is unstable~leading to the nonplanar solutions!. All these
observations are consistent with the conjecture that th
new orbits correspond to the isolated branch solutions of
averaged equations.

On the isolated branch, an increase in the forcing am
tude results in a period doubling cascade~of the rms signal!
which can lead to the formation of a chaotic attractor. This
demonstrated in the bifurcation sequence shown in Fig
which starts on the Hopf branch, jumps to the isolat
branch, and then period doubles to form a chaotic attrac
This is followed by an inverse sequence of bifurcation
which leads back to the Hopf branch. These observations
once again consistent with the predictions made from
averaged model. An interesting feature of these bifurcat

g
u-

Fig. 7. A bifurcation sequence showing the merging of the Hopf branch
the isolated branch~going through chaotic motions and ending in crisis!. ~a!
The period-one solution on the Hopf branch.~b! Period-two motion.~c!
Period-four motion; these are stable over a small parameter range and c
hard to observe because of parameter drift.~d! Back to period two with no
chaotic window. The period two shows ‘‘characteristics’’ of the isolat
branch solution before it merges with the period one isolated branch orb~e!
Period-one isolated branch orbit.~f! Period-two isolated branch orbit.~g!
Chaotic isolated branch orbit.~h! Back to period-two isolated branch orbi
~i! Period-one isolated branch orbit at end of the bifurcation sequence w
goes through chaos.~j! Isolated branch is destroyed by a crisis.
1164Timothy C. Molteno and Nicholas B. Tufillaro



hic
at
io
h
es

m
y
d
h

ci
e
ue
s.
rs
lin
o

ng
is
e

io

y

-
ig

i-
r

a

iti
ie
on

t
m
a

tin
i-
te

m
in
im
th

t t
-
b
o
i

ge

ed
iate

nd

he
sequences is the presence of period-two solutions w
share characteristics of both the Hopf branch and the isol
branch. Such solutions are not described in the simulat
of Bajaj and Johnson.5,6 However, until an exhaustive searc
has been carried out, we don’t know whether or not th
results are consistent with the averaged model.

Some of the plots in Fig. 7 provide an example of a co
plex sequence of bifurcations first termed ‘‘bubbles’’ b
Knobloch and Weiss.28 They are also seen by Bajaj an
Johnson in their simulations of the averaged equations. T
is significant because these bubble sequences are asso
with homoclinic orbits whose fixed point has eigenvalu
which satisfy Shilnikov’s inequality, i.e., the real eigenval
is larger than the real part of the complex eigenvalue20

Shilnikov showed that in this circumstance there are ho
shoes present in return maps defined near the homoc
orbit. This provides anecdotal evidence that the Shilnik
mechanism is causing chaos in this parameter regime.

Figure 8~a! shows a chaotic time series from the stri
experiment in thep2–q2 plane. The power spectrum of th
time series@see Fig. 8~b!# shows the continuous structur
consistent with either chaotic motion or colored noise.

1. First return map

Averaging over the fast oscillations reduces the dimens
of the trajectory by one. Similarly, if a Poincare´ section can
be defined on this reduced trajectory then the trajector
further reduced to the orbit of a mapxn115 f (xn) and the
dimension is reduced by one again. This map,f , called the
first return map, is conveniently displayed by plottingxn

againstxn11 .
If we take xn to be thenth point @measured at the inter

section of the chaotic trajectory and the line indicated in F
8~a!# then we get the first return map shown in Fig. 8~c!. The
simplicity of this map is striking and illustrates the low d
mensionality of chaos in a string. It is a unimodal map ve
similar to the Logistic map22 ~the canonical example of
simple deterministic chaotic system! and indicates that the
stretching and folding of a horseshoe is causing the sens
dependence to initial conditions in these chaotic time ser
Despite the complexity of the partial differential equati
model first proposed by Kirchhoff~formally an infinite-
dimensional dynamical system!, our study provides direc
evidence that for some parameter regions the chaotic
tions of a string can be modeled by a simple unimodal m
~a one-dimensional dynamical system!. This conclusion is
supported by dimension calculations using a box-coun
algorithm29 which indicates that the dimension of the orig
nal attractor is about 2.3, as well as by a more sophistica
‘‘topological’’ analysis of these data sets.22

2. Banded chaos

Not all the chaotic time series in this parameter regi
show a continuous unimodal first return map. In most
stances, if the attractor appears soon after a period-two l
cycle, then the period-two solution seems to dominate
chaos and the strange attractor looks like a band abou
period-two orbit@see Fig. 9~a!#. The unstable period-one so
lutions are not in the closure of the invariant set formed
the chaotic attractor. This appearance of a banded cha
attractor, which is dominated by the period two oribt is sim
lar to that seen in the numerical solutions of the avera
equations of Miles for spherical pendulum.30
1165 Am. J. Phys., Vol. 72, No. 9, September 2004
h
ed
ns

e

-

is
ated
s

e-
ic

v

n

is

.

y

ve
s.

o-
p

g

d

e
-
it
e
he

y
tic
-
d

During the transition to chaotic behavior, the doubl
torus usually breakes into a chaotic band in the immed
neighborhood of the torus. We call thisbanded chaos. The
chaotic bands then become wider until they finally join a

Fig. 8. Experimental chaotic time seriesI rms50.11, f 051.38 kHz.~a! Each
point represents thep2 , q2 variables sampled once per forcing period. T
return time for this time series is approximately 250 forcing periods.~b! The
power spectrum.~c! The first return map at the Poincare´ section. Thexi

values are the intersection of the chaotic trajectory at the line shown in~a!.
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occupy the neighborhood of the period one orbit~undoubled
torus!. This sequence of motions is seen in both simulatio
of the model equations and the experiment.

E. Crisis

As the forcing amplitude is increased beyond the point
onset of chaos in the isolated branch, the chaotic atttra
can suddenly be destroyed by a boundary crisis.23,31 This is
perhaps not surprising as Grebogiet al.23 show that these
crises are common in systems which are close to unimo
maps. Figure 10 shows a time delay embedded experime
time series of the planar rms amplitude before and after
crisis point.

F. Intermittency

Transitions to intermittent chaos are seen in the string
periment. The intermittency transition to chaos begins wit
periodic state, then burst to an intermittent state as a par
eter is increased above a critical value. These bursts ap
at seemingly random times, but become frequent as a co
parameter is increased. Figure 11 shows an experime
time series during which bursts are occurring at a relativ

Fig. 9. Chaotic orbit showing ‘‘banded’’ chaos.~a! Chaotic time series soon
after the period-two limit cycle.~b! First return map showing the absence
a period-one orbit resulting in a ‘‘banded’’ structure.
1166 Am. J. Phys., Vol. 72, No. 9, September 2004
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high rate. This figure is one of the more complex types
behavior which are observed at low damping. This interm
tent behavior does not seem to be predicted by the equa
for the averaged model.

Fig. 10. Boundary crisis:~a! nonplanar rms amplitude~in arbitrary units!
plot just before a boundary crisis and~b! after boundary crisis, the ‘‘ghost’’
of the strange attractor in~a! is clearly visible.

Fig. 11. Intermittency of the nonplanar rms amplitude,I rms528 mA, a
50.1. Time is in units of forcing periods.
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G. Very low damping

Bajaj and Johnson conclude, from their observations of
behavior of the averaged equations of motion, that for dam
ing values smaller thana50.25 all the interesting motions o
te string system are destroyed by boundary crises: ‘‘ . . .
as the damping is lowered, the frequency over which
non-planar complex motions exist decrease, so much so
for a50.25 the critical frequencies at which crisis occu
essentially coincide withb1* andb2* and practically all ini-
tial conditions lead to the lower planar steady-state cons
solution.’’ In the above quoteb1* and b2* are the Hopf
bifurcation ~creation and merger! points. Our experimen
finds more exciting dynamics in this parameter region. F
damping values neara50.05, many complex nonplanar mo
tions are found.

In the low-damping regime, persistent chaotic motions
observed over a wide range of forcing amplitudes and de
ings. We observe both Lorenz and Ro¨ssler22 like chaos~see
Fig. 12!. Some typical parameters for which these motio
are found areDt51 s, f 051.3375 kHz,f 51.45 kHz with

d I rms534.7 mA. Lorenz like chaos ata50.090, and
d I rms531.5 mA. Rössler like chaos ata50.095.

To plot these results we use the ‘‘differential-integral’’ em
bedding described by Gilmore and Lefranc.22 Specifically, if
x1( i ) is the sampled data, then this embedding is defined
y1( i )5x( i )1exp(21/t)x1( i 21), y2( i )5x( i ), and y3( i )
5x( i )2x( i 21), wheret is chosen to cover several oscilla
tions, but not long enough to show a systematic drift~vary-
ing mean value! in the embedded data.

If the forcing is increased the motion gets far more co
plicated with multiple, coexisting attractors—many of the
chaotic. The motions of the string in this low-damping r
gime appear to mirror those of the string with a higher dam
ing, modulated by a third, much lower, frequency.

V. CONCLUSION

We have examined the dynamics of a forced taut str
and found good qualitative agreement with predictions fr

Fig. 12. Lorenz like chaotic attractor in the non-planar component of mo
for a50.1. This data have been embedded from a single nonplanar
series using the differential-integral embedding.
1167 Am. J. Phys., Vol. 72, No. 9, September 2004
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the averaged equations of motion in the high damping
gime. These equations are derived by truncating to the f
damental mode and averaging out the fast forcing time sc
but allow for motion in both transverse directions with im
plicit coupling via longitudinal motion. Quantitative agree
ment was not present since we found a systematic shift in
parameters required to observe bifurcations predicted by
averaged equation model. In addition we found a rich se
complex motions occurring at low damping and large det
ings which do not appear to occur in the averaged mode

It is possible that the model could be improved by inclu
ing a more realistic description of the damping. Air res
tance and internal friction are not, contrary to the assum
tions of the model, proportional to the velocity of the strin
over the entire decay envelope. Altering the damping mo
may yield a more comprehensive agreement with these
perimental results. We should note, however, that Bajaj
Johnson5 also compared parameter values for various bif
cations in the the averaged equation model with the una
aged string model and also found that bifurcation param
values where shifted between these different models.

We have tried to make these data sets widely available
ftp download, and some of the data described in this pa
have been investigated by other researchers exploring
topics as nonlinear noise reduction, chaotic synchronizat
topological analysis of chaotic time series, and
on.21,22,32–40There is still much to be learned from the sou
of one string vibrating.

APPENDIX: STRING CONTROLLER AND
PARAMETER CONVERSIONS

To collect data for the string experiment we need
sample the motion an integer number of times per forc
period. An appropriate sampling trigger can be genera
with a phase locked loop~PLL!, locking a high frequency
square wave to a square wave of the same frequency a
forcing sine wave. Unfortunately, such PLL’s can be ve
difficult to design without phase drift.

Therefore we used a different approach. Instead of obt
ing the sampling trigger from the forcing signal, the forcin
signal is derived from a high frequency ('100 kHz) square
wave from which the sampling trigger is also derived. Th
has many advantages but poses several technical probl
Namely, producing a sine wave from a square wave keep
the amplitude of the sine wave independent of the freque
of the square wave. This is important since a common
perimental procedure is to scan the forcing frequency wh
observing the resulting behavior. The solution lay in a fil
module based on a National Semiconductor LMF60 CIN-
sixth-order, switch-capacitor, Butterworth low-pass filt
chip. This chip gives 36 dB per octave suppression abov
critical frequency f c which is determined by an externa
clock input divided by 50. If this external clock has fre
quency times the desired sine-wave output frequency t
the cutoff frequency is 1.28 times the input square wa
frequency. The filter then attenuates thenth harmonic com-
ponent of the input square wave by a factor of 1022.81n, and
the deviation from sinusoidal of the output of the filter can
calculated by evaluating the filter function for the Fouri
components of the input and summing these together.
filtered out function becomes 4/p (cos(vt)2108.9cos(3vt)
1...). This gives a noise level~from filter imperfections! of
less than 1026%.
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Signals from the strings are sampled and averaged in
time on a digital signal processor designed and constru
for the task at hand. The ADSP 2105 Digital Signal Proc
sor ~DSP!, made by Analog Devices Ltd., is the main pr
cessing unit. It is a 16 bit device with a pipelined Harva
Architecture, a peak performance of 60 million operations
and an instruction set optimized for digital signal processi
The data are sampled at 16 bit resolution and average on
DSP computer over one cycle~32 samples! to producep and
q components. This averaged data are then transmitted
host computer~Macintosh SE/30! via a small computer sys
tem interface port. A more detailed description of the ha
ware and software used in this experiment is given in Ref
and the paper by Brundell and Molteno.25

The parameters of the averaged equations of motion
dimensionless. In order to investigate phenomena in the
rameter ranges examined by Bajaj and Johnson5,6 and to
make a quantitative comparison to the theoretical models
need to express these parameters as functions of easil
tered experimental quantities. The parameters of interest

d f 0 , the frequency of free vibration~small amplitude! of the
fundamental mode, controlled by adjusting the tension
length of the string;

d Dt, the 90%–10% decay time for the amplitude of t
string once forcing is switched off. This determines t
natural damping which is equal to the decay rate towa
equilibrium behavior divided by 2p f 0 . Dt is controlled by
the application of a silicone coating to the string as
O’Reilly and Holmes;7

d f , the frequency of excitation; and
d I rms, the rms excitation current~a measure of the strengt

of the excitation!.

The expressions relating the parameters used in the a
aged equations of motion~a,b! to the experimental param
eters shown in Table I are

a5
ka f 0

DtI rms
2/3 , b5

kb~ f 22 f 0
2!

I rms
2/3 . ~A1!

The constants of proportionality, also in terms of the expe
mental parameters~see Table I! are given by

ka5
4 log 9l 2m

~2B2Ylf
2!1/3, kb5

8l 2~p2m2r!1/3

~2B2Ylf
2!1/3 . ~A2!

The parameter ranges investigated by Bajaj and John
wereaP@0.1,1# andbP@0,5#. With Dt50.1 s, these theo

Table I. Parameters of the string experiment. These are used to dete
the formulas for conversion between experimental and numerical pa
eters.

Symbol Quantity Value

l length 0.07 m
l F forcing length 0.045 m
m mass per unit length 3.3931024 kg m21

r density 2.13104 kg m23

Y Young’s modulus 197 7783106 N m22

B Magnetic field strength 0.260.05 T
Dt 90%–10% decay time 0.1 s
f 0 free vibration frequency 1.385 kHz

I rms forcing current 20–600 mA
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in the range I rmsP@20 mA,600 mA# and f P@ f 0 , f 0

180 Hz#.
The phenomenological damping inserted into the eq

tions of motion implies an exponential decay towards
resting state of the string. In the experiment damping is m
complex, and it does not depend linearly on the velocity o
the entire decay envelope. However, as we are using a li
damping model, we take a linear fit of the logarithm of t
decaying amplitude as the damping term used in the eq
tions of motion. This linear fit to a nonlinear function cou
be the cause of some discrepancies between the mode
experiment.
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Steam Engine Half Model. Up to the middle of the 20th century, introductory textbooks had cutaway drawings of steam engines, and apparatus
turers responded with half-models showing the working parts. This model of a locomotive engine can be found in the 1925 Chicago Apparatus
catalogue for $6.00. This is a fairly big device, 38 cm long and 18 cm high. Shifting the reversing gear back and forth moves the slider in the steamp
the cylinder so that the steam will be admitted first to the front or the back of the piston. The model is in the Greenslade Collection.~Photograph and notes
by Thomas B. Greenslade, Jr., Kenyon College!
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