An experimental investigation into the dynamics of a string
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We describe a detailed experimental investigation into the dynamics of a sinusoidally forced string.
We find qualitative agreement with the predictions of the averaged equations of motion for a string
in the high damping regime. At low damping we observe more complex phenomena not present in
the averaged equations. @04 American Association of Physics Teachers.
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[. INTRODUCTION perimental courses that are specifically focused on the study
_ _ _ _ _ nonlinear dynamic&*~*" For a basic background on some of

_ Analysis of the motions of strings has motivated a surpristhe concepts and terms used in nonlinear dynamics and this

Ing amount Of. smence_: From ancient Gregks InVGStlgatlngbaper_such as Hopf bifurcation, Logistic map, or Lorenz

the length rations which produce harmonious sounds, t@ttractor, and so on—see an introductory text such as the

d’Alembert who developed the theory of partial differential hook by Strogatz®

equations in order to model the motions of a strin@ur

reasons for studying the motions of a string are captured well

by the words of P.M. Morsewho wrote in 1936: “The string

is the simplest case of a system with an infinite number ofl. MODELS OF STRINGS

allowed frequencies, and it is best to discuss some of the ) ) )

system as we can find, lest the mathematical complicationé/hen the string vibrates transverse to its resting configura-
completely obscure the physical ideas.” More recent theorettion, its length must also fluctuate. This coupling between the
ical and numerical investigatiofi€ have predicted a wide transverse motions and the longitudinal motions is nonlinear,
variety of nonlinear phenomena in the motion of a sinusoi-€ven for small oscillation amplitudes. The simplest interest-
dally forced stretched string: for example, torus-doubling bi-iNg model of a vibrating string, which takes account of this
furcations, boundary crises, and chaos. In this paper we dé&ffect and allows for motion in only one transverse direction,

scribe an experiment which attempts a more extensiv¥ields a forced damped Duffing equatith. _

motions"*~**and related nonlinear phenomena in the vibra-forced, damped, taut string. Then, following the work of Ba-
tion of strings and verifies, in the most part, these prediciaj and Johnsoft’ these equations are reduced to the funda-
tions. mental mode, but also allow motion in two transverse direc-
We previously reported a simple exploratory experimentions. Using averaging theory this results in four
which established the existence of chaotic motions irSimultaneous ordinary differential equations, which we call
strings? This previous experiment successfully observed théhe averaged equations of motion. These equations are the
torus-doubling transition to chaos, but lacked the control andPasis for the predictions of basic nonlinear behavior and
precision necessary for a thorough investigation of the dychaos which we search for experimentally.
namics of a sinusoidally forced string.
A more comprehensive experimental apparatus was de- . , _ _
signed for this second more detailed study. This wad)- Narasimha's equations of motion
prompted both by a desire to improve the initial string ex-

periment, and by further theoretical work, particularly that of . . 7 8 .
Bajaj and Johnson® which indicated that several other in- °F & String date back at least to Kirchhaff883."" In this
ection these equations are presented as derived by

teresting nonlinear phenomena, such as boundary crises, : 3 . SR
should occur in the string system. ﬁzrrziazsgrghé and the assumptions implicit in them are sum-

This paper describes the results of this second investig Narasimha models the string as a long thin circular cylin-
tion into a string’s dynamics and is organized as follows. In 9 9 y

order to make this paper self-contained, Sec. Il outlines th(ger _Composed of a linear glastlc solid under tendign a”‘?'
derivation of the averaged equations of motion used to modeUbject to an external forcirigx,t) transverse to the resting
the dynamics of a string and provides an extensive overvie@Xis: The exact equations of motion for the transvévsand
of the nonlinear phenomena predicted by these equation®¥ngitudinal () amplitudes of oscillation of such a string
Section Il and the Appendix describes the experimental apare, in units of the length of the strind)( mass per unit
paratus. Section IV presents the results of our experimentdéngth (mg), and velocity of propagation of transverse waves
inve;tigation. _ (VTo/mg)

It is hoped that some of these results could be incorporated
into standard mechanics courses that touch on the linear and (1_ ‘7_'~'
nonlinear motions of a string, as well as theoretical and ex- X

The nonlinear equations of motion governing the behavior

LA .
U=ci——, (1)
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If we expand the transverse amplitude,t) and the
forcing f(x,t) in a Fourier series then the boundary condi-

ov
o
ouy 2 X ) ]
(1— 5)v= clT+f(x,t), (2)  tions force the cosine terms to be zero and we get
- nwx
where r(x)= 3 ra(tsin——, (11
N 1+cIN—caN?+cin® . nmt
o, au\ ® - _ nax
ci(1+N)|1-— f(x,t)= >, fo(t)sin—-. (12
X n=1 I
N 2\ 12 _du 71_1 @ Substituting into the equations of moti¢&q. (10)] we get
X X ‘ an equation for theth mode
Now Narasimha performs a perturbation analysis by ex- 13 |jrw2] 1
panding the apparent strainto it 2Bwof n+ wﬁrn 1+ Is + }: Efn(x,t),
=1
)\_au 1((9v 2+(&u)2 1<6v>2<(0v)2 4&u) (13)
X 210x x]  Biox X x wherew,=nwy ands=(cy/c;)?.
+eee (5) Now if we assume that the external forcing is along yhe

axis, excites only the fundamental motig) =f,(t)-e,, and

If we assume that the oscillation amplitudas #ndv) are . . )
P gndv) restrictsr(x,t) to lie only along they axis

small, then we can approximakeas

2. o lolol]

If we approximate the apparent strainkas du/dx, then the  I-€., letr=ry, then Eq.(13) becomes

transverse and longitudinal motions of the string are un- 1

coupled and the transverse amplitudesobey a linear wave F+2Bwof + wlr[1+£r2]= —f(t), (14)
equation. The approximation in E@6) is then the lowest m

order inclusion of the longitudinal coupling to the transverse L .
motions. 9 ping whereé= 7?/4sl?. This is a forced damped Duffing’s equa-

A simple geometric argument leads to the conclusion thation governing motion confined to one transverse direction.

for small transverse amplitudgs] ~ &, the longitudinal am-
plitude isu~ &2. For forced motions of the string we use the

\ au+1
Tox 2

v

aXx

amplitude of forcinge as a small parametef=efy(x,t). B. Averaged equations of motion
Expanding the longitudinal amplitude and the transverse
amplitudev, in e we get Next we turn our attention to getting modal equations that
take into account possible motions in both transverse direc-
v=€(Vo+ eVt e+, (7)  tions. The equations of motion for the transverse amplitudes
U= (Ut e2u+ gt ..). ®) of the string[Eq. (10)], take into account the coupling be-

tween the longitudinal motions of the string and its trans-

The equation for the transverse motions is found by neglectverse motions. Keeping only the lowest order nonlinear
ing all but the lowest powers af and adding a phenomeno- terms, Miles® and Bajaj and Johnsdfireduce these equa-
logical damping ternB. The damping is assumedpriori to  tions to a set of four ordinary differential equations for the
be linearly related to the velocity, and is designed to modefmplitudes of the motion averaged over the fast oscillations.
the complex loss mechanisms such as air resistance, internBfis section follows their derivation of these averaged equa-
friction, and movements of the endpoints. This yields thetions of motion.

2

d?v,
0 dx

equation of motion We start with the modal expansion of Narasimha’s equa-
) tion of motion[Eq. (13)], and assume that the forcing is in
1 dv h tical pl ly and si idal with f I
. e 1+ C1 (1 dvo —fy(x0).  (9) the vertical plane only and sinusoidal with frequencglose
Vot BwoVo™ o2 2 Jo| dx ot to the fundamental frequenay,. We write it as(using a
) ) ) scaling chosen with the benefit of hindsight
In standard units, the equations of motion for the trans-

verse amplitudes(x,t) are emlw?
fi= coswte, (15
B dxr[ , ¢} Idr2d _1f 10
FH2Bwol — giz| €t 5y olax @ T m X0, A0 herecis an amplitude of excitation and will be considered

“small.” We assume that the forcing frequency excites only
whereg is the damping on the fundamental modg, is the  the fundamental mode, and that the higher order modes are
fundamental frequency of transverse vibratian, is the  excited only through their nonlinear coupling to the funda-
transverse wave speed, the longitudinal wave speedhis  mental mode. Th& mode truncation of the modal equations
the mass per unit length, arf¢ix,t) is the external forcing can now be written, explicitly including a “smallness” pa-
per unit length. rametere, as
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Zi+n?%z, , (—sin ™ —0037-1) )
N | cosry,  —sinmy ) @7
=€ 2n cos;-ley—2az,’]—2/32;§—4n2jzl j_1|Zj|2zn}- Therefore we can transform the equations of mofiBns.
- (22) and(23)] to
( p’ [ x X'
where' represents differentiation with respect to the times- | /| =A'ly| TAly | (28)
calery=at and which, substituting forA, A’, and x’ from Eq. (22), is
_ rmn®? 1 equivalent to
" 2™ 7 p'=—(x+y)sinTy, (29
s\ w q'=(x+y')cosr;. (30)
a:45( ?> 1 (18 Now substituting fory’ in terms ofx andy [Eq. (23)] and
u ) then forx,y in terms ofpp and§ using Eq.(24), we get
s » A A o o
ﬁ=2<?) T(I) —1}, (19 p'(1+2p¢€)=—¢[(pcosri+qgsinT) (28
1
1/ 2\ 13 —4(p?cog T+ g2 sir? 7.+ p-gsinTy))
€
€= Z(;) - (20 +2a(psint,— @ cosry)

The dimensionless parametassand B represent damping 2 cosrig]siny, (31)

and detuning from the natural frequency of the fundamental §'(1+28¢)=+¢[(pcosr,+§sinT,)(28
mode. Bajaj and Johnsbishow that the energy of the un-
forced modegto O(€)) decay exponentially to zero. This
justifies taking a single mode truncation of these modal equa- +2a(psinT,—Q§cosry)
tions which gives us the equations of motion

—4(p?cog 1+ g2 sir? 7+ p-GsinTg))

+2 cosr,€,]cosT;. (32

We now have the equations of motion in a “standard
While it is possible to directly solve this truncated modal form” suitable for the application of averaging techniques
equation numerically, averaging over the fast oscillations of 4/ _~, /4 & -

the string produces a model which is more easily analyzed. P'=2a(P.q.71,€), (33
Bajaj and Johnsdhshow that, in most of the parameter re- §' =€0x(p.§,71,€), (34

gimes of interest here, predictions from the averaged edUhere the functiong, andg, are periodiaperiod 2) in 7, .

tions are in close agreement with direct numerical solutions,l.he associated autonomous averaged system is deiaed
Our experiment described in Sec. Il will hopefully shed for example, Guckenheimer and Holi&sas
some light on the behavior of an averaged quantity, in those '

regions of parameter space where the averaging assumptions 1 (o=

Z'+z=¢[cosTie—2az —2pB7'—4|z|*z]. (21

are violated. p'=é5— . 01(p.G,71,0)d 7+ O(&%), (35)
Before we apply the method of averaging it is convenient
to express the equations of motion as a system of firstorder 1 (27 a2
ordinary differential equations T=57 ), %(P,0,71,0d7; +O(€%). (36)
X' =y, (22)  carrying out this integration we arrive at tageraged equa-
1 tions of motion
Y'= T5agel ~x+ &2 cosmig—2ay—4ix™)]. (23 p1=—ap;— (B~ 15E)qr+ Mp, (37)
Note that as,y are two-dimensional vectors, this is a system P2~ P2~ (B=1.58)d2=Mpy, (38)
of four coupled ordinary differential equations. qi=—ag,+(B—1.5E)p; +Mg,+1, (39
The system of equationgEgs. (22) and (23)] is trans- ,
formed into a form suitable for application of the method of ~ 92= —aG*+(8—1.56)p,—Maqy, (40
averaging by the invertible van der Pol transformation where
f’) _al 24 E=pi+p5+ai+a; (41)
g y)’ and
where M=p10,— P20 (42)
cost, —sinm These equations are identical to those obtained by Mfles,
=| . (25)  who used the method of multiple time scales. The compo-
sinty  COSTy nentsp, and g, are slowly varying averaged amplitudes

called theplanar components of motion because they lie in
(26)  the plane of forcing. The variablgs, andq, are called the
nonplanar components. Both represent motion in the

Al ( cost;  sin 71)

—sinT; cost;
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“modulated” frequency well bellow the “carrier” frequency The stability of the fixed points divides the motions of the

set by the forcing frequency. string into several classes catalogued by their damping val-
The averaging theorem states that #small enough the ues. These are:

following results hold between the original and averaged

systems: If there is a hyperbolic fixed point of the averaged —4.—0). Th h | bl I
system, then the original system possesses a unique hyper-t!On (P2=0,=0). These are the only stable constant solu-
tions to the averaged equations in this regime, and the

bolic periodic orbit of the same stability type, and that peri- ) . ; . ! :
odic solutions of the averaged equations correspond to qua-2MPplitude is a single valued function of the detuning. This

siperiodic solutions of the original system of equations. In IS called theplanar solution branch _
particular if a Hopf or saddle-node bifurcation occurs in the® @<0.991. The motions on the planar solution branch can
averaged system, then the Poiricarap of the original sys- ~ bécome multivalued over some frequency intervals. Typi-
tem also undergoes a Hopf or saddle-node bifurcation. Addi- ¢al response curves in this regime, are confined to the
tionally, if the averaged system has a hyperbolic periodic plane, but in some detun[ng frequencymtervals.denoted by
orbit v, then the Poincarmap has an invariant closed curve AP there are three possible steady state solutions. In this
near y and the original system has a hyperbolic invariant regime, the string exhibits hysteresis as the detuning is
torus. varied. That is constant amplitude response curves exhibit
There are no results at present which make a formal con- different transition jumps depending on whether the fre-
nection between chaotic solutions of the averaged equationsdUency scan is slowing increasing or decreasing—a so-
and the original system. Additionally the above statements called “upward” or “downward” scan. These transitions
only apply for sufficiently smale. However, extensive nu-  9Ccur when the current planar solution branch loses stabil-
merical solutions of Bajaj and Johnson between the original 1Y @nd the motion jumps to another stable branch which
and averaged equations indicate that chaotic motions and '€ typically created via saddle-node bifurcations.
related behavior also exist between both models. The negt @<0.687. Orbits are no longer confined to the plane of
section summarizes the results of these theoretical and nu-€xcitation. These are the so-called “whirling” motions.

merical investigations by Bajaj and John3Bifor the solu- ~ There are at least two non-planar whirling solutions—a

flection symmetry in the g,=qg,=0) plane. These
branches are single valued for damping values larger than
a=0.477. The transition from planar to non-planar motion
is usually quite easy to detect experimentally since the

The averaged equations of motion were investigated by string literally “pops” out from a single plane of motion as
Miles?® and subsequently by Bajaj and Johns8iiles dis- a parameter is changed.
covered torus doubling bifurcation sequences, but none «<<0.477 The nonplanar whirling solutions can also be-
which resulted in a chaotic attractor. Johnson and Bajaj ex- come multivalued, so again the system can exhibit jumps
amined higher damping regimes and discovered chaotic so-between different orbits and show complex hysteresis ef-
lutions connected to a new periodic branch of solutions. This fects as the control parameters are slowly varied.
solution they termed thisolated Branchsince it is not con-
nected to théHopf Branchin the parameter region explored
by Miles. Further exploration uncovered many interesting
phenomena including the formation of a homoclinic orbit, The plane defined byg,=q,=0, i.e., the plane of forcing,
boundary crises, and intermittency. We summarize some dg an invariant manifold of the averaged equations for the
the predicted results in this concluding theory section. For &tring[Egs.(37)—(40)]. Bendixson’s criterion for the nonex-
more complete discussion and illustrations see the papers tence of limit cycles in a two-dimensional flows says that if
Bajaj and Johnson® the expression

The averaged equations of motion for the string are invari- , ,
ant under sign change of the nonplanar components of the ﬁ+ ﬂ

a>0.991. All motions are confined to the plane of excita-

C. Predicted string dynamics

2. Periodic solutions

motion (p,,q,)—(—PpP2,—0). This means that for every ap,  Iq
solution found numerically, there is another mirror-image so-
lution which is found by making this sign change. is not identically zero and does not change sign, then there

We start the discussion of the dynamics generated by thesge no closed orbits. For motions restricted to the plane of
equationg37)—(40) with a summary of the behavior of their forcing, this expression is equal te2« and therefore there
fixed points which are known, from the averaging theof8m, are no planar periodic solutions to the averaged equations.
to correspond to periodic trajectories of the unaveraged equany periodic solutions must arise as solutions of the com-
tions of motion[Egs.(31) and (32)]. plete four-dimensional equations of motion.

1. Fixed points 3. Hopf branch

The fixed points of the averaged equations can be deter- Hopf bifurcations occur in the nonplanar branch fer
mined as functions of the detuning paramegrand the <0.577. These lead to limit-cycléthey occur in pairs due
damping parametet. The plot of the amplitude of the aver- to symmetry which are stable for damping values near to
aged motiork, against detuning for some fixed damping ~ 0.577. These motions are said to lie on the Hopf solution
is called aconstant amplitude response curéhese curves branch. As the damping is lowered below this value, the limit
are simply the familiar resonance curves, plotting amplitudecycles undergo period-doubling bifurcations. Starting with
of oscillation versus frequency. the Hopf bifurcation which creates the Hopf branch, there is
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a sequence of period-doubling bifurcations followed by in-points as the damping is reduced further. This reduces the
verse period-doubling bifurcations back to the point at whichinterval of detuning in which the interesting periodic and
the Hopf branch disappears in an inverse Hopf bifurcationchaotic motions can occur. Bajaj and Johnson conclude that
These periodic solutions of the averaged equations of motiogventually for «=0.25, “practically all initial conditions
correspond to quasiperiodic motions of the string. lead to the lower planar steady-state constant solution.”

The loci in thea—p plane for the onset and disappearance
of quasiperiodicity form the Hopf bifurcation set. In the ex-

perimental section we show data outlining a Hopf bifurcationD' Summary of predictions

set. The early work of Mile$® and the more recent work of
Bajaj and Johnsat? provided a lot of information about in-
4. Isolated branch teresting behavior to look for in the motions of a string. They

. . . L ) predict that:
While numerically investigating the Hopf solution branch,

Johnson and Bajafliscovered another disconnected but co-+ For small enough damping, the nonplanar solutions be-
existing solution branch. They conjectured that it arises be- comes unstable and form, via a Hopf bifurcation, the Hopf
cause of a global saddle-node bifurcation which causes a Pranch—a branch of limit-cycle solutiotiquasiperiodicity
stable and unstable limit-cycle to appear for low enough Of the string's motion This branch exhibits period-
damping. Thisisolated solution branch possesses motions doubling bifurcations but these do not lead to a chaotic
with characteristics that are qualitatively different from the —attractor. . . o
Hopf branch orbits. In particular, the isolated branch orbits® At lower values of damping, there is another coexisting
exhibit “sharp” points in their orbit plots, which allow them  branch of limit-cycle solutions, the isolated branch, which
to be distingished from the Hopf branch orbits. For low IS created via a saddle-node bifurcation. N
enough damping, the isolated solution branch is connected to The isolated branch has a period-doubling transition to
the Hopf branch by an unstable limit-cycle. Because the iso- chaos which results in a'Rsler type chaotic attracté.

lated branch is created by a saddle-node bifurcation, we ex- For lower damping still, a series of isolated branches ap-

pect to see hysteresis in its connection to the Hopf branch in pear (via saddle-node bifurcationsand merge with the
this regime. Hopf branch. This sequence ends in the creation of a ho-

moclinic orbit, whose fixed point has eigenvalues which
satisfy Shilnikov’s inequality. Lorenz type chaotic attrac-
tors are found in the neighborhood of this homoclinic or-
According to the model equations, the isolated branch un- bit.
dergoes a sequence of period-doubling bifurcations which Finally as the damping is reduced yet again, the chaotic
eventually results in the appearance of a chaotic attractor. As attractors are progressively destroyed by boundary crises,
the damping is reduced below the point where the isolated eventually eliminating all interesting behavior completely.
branch merges with the Hopf branch, a series of isolated
branches are created via saddle-node bifurcations and subsk?e rest of this paper describes experiments which were de-
quently merge with the main solution branch. This sequencéigned to explore these predictions.
of orbit creation followed by merger, followed by another
creation, terminates in the formation of a homoclinic Ol’bit.|||' EXPERIMENTAL APPARATUS
The orbit originates from a saddle-type fixed point whose
eigenvalues satisfy Shilnikov’s criterion. Bajaj and Johnson Our string experiment is constructed from a thin wire
conjecture that the Shilnikov mechani@his responsible for ~which is subject to an external periodic forcing. The wire is
the stretching and folding which causes the chaos. Thdriven by passing a sinusoidal current through it while rest-
Shilnikov mechanism involves a homoclinic orbit from a ing in a permanent magnetic field. The force per unit length
fixed point which has one real, and a complex conjugate paialong the wire is a product of the the magnetic field strength
of eigenvalueg! If the magnitude of the real eigenvalue is and the current in the wire. The forcing method is used be-
larger than the real part of the complex pair, then Shilnikovcause most theoretical studies assume a constant excitation
showed that return maps defined near the homoclinic orbiper unit length when modeling the string. A disadvantage of
contain horsesho&—stretching and folding maps which this forcing technique is that the string must be made of a
produce chaotic behavior. nonmagnetic material, otherwise the motion will be confined
For orbits near to the homoclinic orbit, there is a branch ofto a plane. A magnetic material can be used when purely
solutions which encircle both nonplanar fixed poitagain, planar oscillations are desired. Also, because of heating in
there are two because of the symmetry under sign changbe wire, the system is prone to slow temperature drifts,
(p2,92) < (—p2,—0y)). According to simulations, this which effectively cause a very slow parameter variation
branch undergoes a series of bifurcations which leads to thelrift) in the wire’s length.
formation of Lorenz type chaotic attractai®ughly, chaotic Several types of wires were tested. This experimentation
attractors which encircle two fixed poinf& showed that a thoriated tungsten wire, 0.15 mm in diameter,
worked well. Tungsten is nonmagnetic so the nonplanar mo-
tions are not damped. Further, under the conditions of our
experiment, the wire was well within its linear elastic re-
For damping values below 0.495, the chaotic solutions casponse regime. The nonlinear behavior observed here is thus
suddenly be destroyed by a boundary cridi§he chaotic  not an effect of the material nonlinearity, but arises from the
attractor comes into contact with the stable manifold of afundamental geometry of the string deformation.
fixed point and the chaos is extinguished. The points at The wire is mounted between two clamps, held apart by a
which this crisis occurs move closer to the Hopf bifurcationsteel frame which also forms the yoke of the forcing magnet.

5. Chaotic solutions

6. Crises
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Amplitude response f=0.18 V

2 - T o
Ll (a)
L6 *
14+ .
Insulator # 1 Magnet Detectors % 12+ “’ 4
2 o
Fig. 1. Schematic of the string mounting system. %’ 1
g‘ 0.8+ b +
06} 0 *
Mounted along the yoke are five pairs of rare earth ceramic .
(RES 190 magnets(Philips catalog No. 4313 059 66p1 o4r . . 7
which provide a field of 0.2 T along the forcing length of the 02} . S
wire. The clamps are electrically insulated from one another o e . . c
by two pieces of polyvinyl chloride, one of which holds the 400 450 00 5% 60 650 700 750 800
amplitude detector. Figure 1 shows a schematic and of the Frequency (Hz)
mounting fixture. .
The amplitude detector consists of an infrared photo diode 160 : Ampliude response curve =325 .
(OP 165D coupled to a match infrared phototransistoP (b)
505D) mounted in a lowQ plastic block. Partial occlusion of 1400 v ]
the beam by the string causes the amount of light at the .| . |

phototransistor to vary with the position of the stritig.

In addition to the rig for holding the wire, we also devel-
oped a digital electronic system for signal synthesis, process-
ing, and visualization which is described in the Appendix
and in great detail in Refs. 10 and 25. The system allows for
the real-time control and real-time signal analysis of the

Amplitude (mV)
g

string’s vibrations. The string controller provides control 400} . ]
over the forcing of the string as well as triggering outputs for + "
data collection. Its basic functions are to take an input square 2%} .7 T,

wave and provide the following outputs:

. . 400 4;0 500 5;0 6(‘)0 630 760 750 800
« a forcing sine wave;

« the sampling trigger at regular intervals 32 times per forc-
ing period; and Fig. 2. Constant amplitude response curves from the string experiagnt:

« a pulse once per forcing period for controlling the intensitybefore the onset of nonplanar motion &l after nonplanar motion. Some
of an oscilloscope beattior analog Poincéreection$.12 hysteresis is evident between the “upscafs’) and “downscans’(0).

Excitation frequency (Hz)

We sample the motion of the string an integer number of
times per forcing period. This sampling technique allows us
to average the amplitude of the string over one forcing pe-
riod.
The current electronics could easily be replaced with a Ri(t)=i\/(pi2+qi2 :i \/Ei. (43
peripheral component interconnd&Cl) plug-in board such V2 V2
as National Instruments PCI-6036E for signal synthesis, con-
trol, and data collection. Such a board can be programmeg, (t) andR,(t) represent slowly varying amplitudes of the
usingMATLAB'S Data Acquisition Toolbox. For instance, we planar and nonplanar components of the motion, respec-
recently built such a low-cost system to do stimulus—tively. When the motions are periodic, these amplitudes are
response testing and model creation for nonlinear electronigonstant.
circuits?** Fixing the forcing amplitude to give the desired damping
(a), and then measuring the rms amplitude of the string’s
response for a range of forcing frequencies, gives a constant
IV. EXPERIMENTAL RESULTS amplitude responséCAR) curve. The interesting range of
rcing frequencies, for large damping, is typically less than
5 Hz on either side of the resonandg)( Figure 2 shows a
series of experimental CAR curves which are in qualitative
agreement with the predictions of the averaged models.
Similar experimental results are presented by Haretaai !
The damping at which the rms amplitude becomes multival-
After the constant solutions, the next simplest solutions otied (onset of hysteresisprovides the first quantitative test
a sinusoidally forced pretensioned string are periodic, withbetween the experiment and the averaged equations model.
period equal to the forcing signal. These periodic solutionsThe model predicts that this should happen for values of
are characterized by their rms amplituggt), which is re-  <0.991. In the experiment this is only observed to occur at

lated to the slowly varying averaged amplitudes,@;), by  values ofa<<0.65.

The results of the string experiment are presented in ordef
of increasing complexity: starting with simple periodic mo-
tions and ending with chaotic oscillations.

A. Periodic motion
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As the forcing amplitude is increased, the amplitude of the 2 ; - ; ‘ ; —
nonplanar components starts to increase and the string begin
to whirl around its resting state. The onset of nonplanar mo-
tion is predicted to occur at values ak<0.687, and is ob- 18+
served experimentally at values @k 0.45. Notice that the
ratio of the two valuegexperiment to theowyis approxi-
mately the same~0.65) in both instances. This might sug-
gest that the difference may be due to errors in measuring2
fixed parameters of the experimental system, such as theg st
forcing length of the string or the magnetic field strength. 2
Alternatively, it could be that the model fails to account ac- © 14
curately for some basic phenomenon like damping, or that
quantitative discrepancies could also arise due to some of the %[ |
assumptions made in deriving the averaged model equations \\,

Because the model is symmetric about the vertical axis,
two nonplanar(whirling) motions coexist corresponding to e S0 o0 Teo o0 S0 1000
different directions of whirling(clockwise or counterclock- time (forcing periods) ‘
wise). These two solutions can not be distinguished by their
CAR curves, but can be distinguished by plotting the nonJ:ig. 3 A time series of the p]ana_lr rms ampltitude for an experimental
planar average amplitudes, versusq,. The solutions ap- S0lUtion after the onset of quasiperiodicity.
pear as fixed points in either the upper right, or lower left
guadrant of theg—q plane, according to the direction of the
whirling. In the experiment one of these directions is pre-

ferred, thus apparently breaking the symmetry present in th .
averaged equations. Whirling motions of either direction'?We' Pranch of the plot corresponds to creation of the the

could be induced by deliberate perturbation, but left to its'f|0pf branch anq the upper branch corresponds ot its destrqc—
own devices the system would almost invariably jump tolioN- For damping values lower than those shown on this
nonplanar motion in one particular direction. This asymmepIOt’ the onset 9f quasiperiodicity occura at approximately
try could be introduced by a nonuniformity in the silicone e Same detuning, but the Hopf branch is destroyed by an

: : ; : . apparent crisis. The detuning at which this crisis is very sen-
rno?r:gl%lgfnpplfﬂg%itr?ge tvii/g?,vi?é'damplng, or by asymmetnesgitive to small perturbations, the Hopf branch appears to be

losing stability both as the damping is lowered and as the

detuning is increased.

B. Quasiperiodic motion In contrast, the upper branch of the Hopf bifurcation set

As the amplitude of forcing is increased, the string Canpredlcted from the aver_aged equations m_odel e_xtends over a
' greater range of damping values. The bifurcation sets from

jump, via a Hopf bifurcation, from periodic orbits described g, "o heriment and the averaged model have many features
in the previous section to more complex motions with a pe-

riodically modulated amplitude. These quasiperiodic motion In common despite the apparent instability of the Hopf

are the first step in the torus doubling route to chaos presoranch In the experiment, which leads to its early destruc-

. gy > . tion. The critical point found experimentally for the onset of
g';t&gigyng?ﬁé a}?ffii”‘;orgnsamnd described experimentally quasiperiodicity ise=0.388= 3.4, whereas analysis of the

The nonplanar periodic motions are roughly elliptical in averaged equations yields= 0'5.77ﬁ:3' ane again, t_h_e
cross section, and quasiperiodicity arises when this ellipsEtio Of experimental to theoretical damping for this critical
starts to precess. Figure 3 shows an experimental recordirRPint is approximately 0.65.
of the variations in the rms amplitude of a quasiperiodic
signal from the string experiment. The period of the ampli-
tude modulation in this example is approximately 250 forc-
ing periods. Thus, the modulation frequency is slow com- 3.8
pared to the forcing frequency. The use of averaging theory 4
in deriving the “averaged equations of motion” would thus x
appear to be appropriate in this regime. Additionally, the 3.6
long period of this modulation may be one reason why pre- 4 x
vious experimenters have found amplitude modulated cha-P
otic motion difficult to observe. Most experiments have been
performed on strings with a frequency of free vibration more
than 1 order of magnitude lower than in this experiméot
example O'Reilly and Holmésused 88 Hx Therefore, the
modulation period is several seconds, during which time the 1 x =
system is susceptible to low frequency noise, which is very 3.0 R —
difficult to eliminate. 0.34 0.35 0.36 0.37 0.38 0.30

The Hopf bifurcation set is recorded by scanning the forc-
ing frequency(changingp) for a series of different forcing a

amplitudes(changinge) and noting the onset and disappear-Fig. 4. The experimental Hopf bifurcation set after being transformed to the
ance of quasiperiodicity. Figure 4 shows the experimentale,pg) plane.

1.7r

16

o

itude (arb.)

1.2¢

opf bifurcation set recorded from the damped string. The

x Hopf Bifurcation Points

v 13
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Fig. 5. A simple experimental recording of a bifurcation sequence showing
a period doubling bifurcation sequence followed by an inverse period dou-
bling bifurcation in the Hopf branch. The forcing frequency is the bifurca-
tion parameter I(,s=0.108 A, f=1300 Hz, «=0.408).

C. Hopf branch: period doubling

For damping values just below the onset of quasiperiodic
motion, the rms amplitude of the string show a period- &
doubling bifurcation. A typical experimental sequence
of motions observed on the Hopf branch when scanning
the forcing frequency is shown in Fig. 5. This contains a
succession of plots of the nonplanar average amplitudes
(p, versusq,) which show the bifurcation sequenperiod
one—period two—period four—period two—period one

Periods larger than period four were not observed in the
string experiment. This may be due to parameter drift which
could obscure the observation of delicate motions on small p,
parameter intervals, or it may reflect the actual dynamics. ) ] ) )
These period doubling bifurcations of the averaged Moo T AILAcn sederes ioune e mergnd o Hopfrron ane
correspond tQ torus dO.UbI.mg blfu_rca“ons_ of the amplitude o he period-one solution on the Hopf brandb) Period-two motion.(c)
the string. This behavior is consistent with that of the Hopfperiod-four motion; these are stable over a small parameter range and can be
solution branch of the averaged equations of motion. In thisard to observe because of parameter dift.Back to period two with no
parameter regime, soon after the onset of quasiperiodicitghaotic window. The period two shows “characteristics” of the isolated

there seems to be excellent qualitative agreement betwedranch solution before it merges with the period one isolated branch(erbt.
experiment and the averaged model. Period-one isolated branch orbit) Period-two isolated branch orbitg)
Chaotic isolated branch orbith) Back to period-two isolated branch orbit.
(i) Period-one isolated branch orbit at end of the bifurcation sequence which

D. Isolated branch and chaos goes through chaogj) Isolated branch is destroyed by a crisis.

()

As the forcing amplitude increases beyond the values at
which the Hopf branch appears, the string’s motion can jump
to a qualitatively different type of quasiperiodic solution. in Fig. 6(b) which also shows for comparison a solution from
This jump exhibits hysteresis, i.e., the new motions persist ithe Hopf branclFig. 6a)]. The distinguishing characteristic
the forcing amplitude is reduced immediately after the jumpis a peak(sharply pointed section of the trajectpryhere the
occurs. Thus, the new motion can coexist with the Hopforbit is attracted towards the upper planar fixed point which
branch solutions. An example of these new motions is showis unstable(leading to the nonplanar solutionsAll these
observations are consistent with the conjecture that these
new orbits correspond to the isolated branch solutions of the
(a) e (b) averaged _equations. _ _ _ _
\ On the isolated branch, an increase in the forcing ampli-
Pz / Pz tude results in a period doubling cascddéthe rms signal
S ' which can lead to the formation of a chaotic attractor. This is
“\\\S ~ demonstrated in the bifurcation sequence shown in Fig. 7
: which starts on the Hopf branch, jumps to the isolated
@ % branch, and then period doubles to form a chaotic attractor.
Fig. 6. Two qualitatively different quasiperiodiperiod-one nonplanar rms ThI_S is followed by an inverse sequence of blfurcgtlons,
amplitude experimental plots. Both take with a forcing amplitudel gfs which Iea(_JIs back_to the H_Opf branch. _Th_ese observations are
=0.110 and at the same forcing frequen@:Hopf branch andb) isolated ~ ONCE€ again consistent with the predictions made from the
branch. averaged model. An interesting feature of these bifurcation
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sequences is the presence of period-two solutions which
share characteristics of both the Hopf branch and the isolated
branch. Such solutions are not described in the simulations
of Bajaj and Johnson® However, until an exhaustive search
has been carried out, we don't know whether or not these
results are consistent with the averaged model.

Some of the plots in Fig. 7 provide an example of a com-
plex sequence of bifurcations first termed “bubbles” by &
Knobloch and Weis&® They are also seen by Bajaj and
Johnson in their simulations of the averaged equations. This
is significant because these bubble sequences are associate
with homoclinic orbits whose fixed point has eigenvalues
which satisfy Shilnikov’s inequality, i.e., the real eigenvalue
is larger than the real part of the complex eigenvafies.
Shilnikov showed that in this circumstance there are horse-
shoes present in return maps defined near the homoclinic 38 A o5 : Y
orbit. This provides anecdotal evidence that the Shilnikov
mechanism is causing chaos in this parameter regime.

Figure 8a) shows a chaotic time series from the string 10%
experiment in thg,—q, plane. The power spectrum of this (b)
time series[see Fig. 8)] shows the continuous structure 10
consistent with either chaotic motion or colored noise.

N

1. First return map

Averaging over the fast oscillations reduces the dimension
of the trajectory by one. Similarly, if a Poincasection can
be defined on this reduced trajectory then the trajectory is
further reduced to the orbit of a map,, ;=f(x,) and the
dimension is reduced by one again. This mipcalled the
first return map is conveniently displayed by plotting,, | |
againstx,, 1 -

If we take x,, to be thenth point[measured at the inter- 2 , , , .
section of the chaotic trajectory and the line indicated in Fig. 0 10 2 e requency. % & 7
8(a)] then we get the first return map shown in Fi¢c)8The
simplicity of this map is striking and illustrates the low di- «10* First Retum Map
mensionality of chaos in a string. It is a unimodal map very 2 ' ! '
similar to the Logistic maf (the canonical example of a 195 (c)
simple deterministic chaotic systeérand indicates that the .
stretching and folding of a horseshoe is causing the sensitive 1
dependence to initial conditions in these chaotic time series. | |~ *
Despite the complexity of the partial differential equation -
model first proposed by Kirchhoffformally an infinite-
dimensional dynamical systemour study provides direct | %
evidence that for some parameter regions the chaotic mo- ’ f_
tions of a string can be modeled by a simple unimodal map 17} b
(a one-dimensional dynamical systenThis conclusion is A
supported by dimension calculations using a box-counting .
algorithn?® which indicates that the dimension of the origi- 15} ®
nal attractor is about 2.3, as well as be%t/%a more sophisticated - ol
“topological” analysis of these data sefts.

Power spectral density

Tn1
=
X

1’515.55 1:6 1 .;55 1:7 1.:/5 1j8 ‘LIBS 1.l9 1 ,'95 2

:L.n x10
2. Banded chaos Fig. 8. Experimental chaotic time seriess=0.11, f;=1.38 kHz.(a) Each

Not all the chaotic time series in this parameter regimepoint represents the,, q, variables sampled once per forcing period. The
show a continuous unimodal first return map. In most in-return time for this time se_ries is approximately 250 _fon:cing periChn)sThe
stances, if the attractor appears soon after a period-two limpeWer spectrum(c) The first return map at the Poincasection. Thex;
- . . values are the intersection of the chaotic trajectory at the line shova).in

cycle, then the period-two solution seems to dominate the
chaos and the strange attractor looks like a band about the
period-two orbit[see Fig. 8a)]. The unstable period-one so-
lutions are not in the closure of the invariant set formed by
the chaotic attractor. This appearance of a banded chaotic During the transition to chaotic behavior, the doubled
attractor, which is dominated by the period two oribt is simi-torus usually breakes into a chaotic band in the immediate
lar to that seen in the numerical solutions of the averagedeighborhood of the torus. We call tHimnded chaasThe
equations of Miles for spherical penduldth. chaotic bands then become wider until they finally join and

1165 Am. J. Phys., Vol. 72, No. 9, September 2004 Timothy C. Molteno and Nicholas B. Tufillaro 1165



Rt ~1)

oy S T
*,..M RLY

Tn+1
R(t—T)

1 L " L 4 1 " N

6000

50001

4000}

3000+

2000

1000}

Time Delay embedding RMS

3000 4000 5000

14000

12000

10000}

2000 0

8000 10000 12000 14000

R()

Fig. 9. Chaotic orbit showing “banded” chao&®) Chaotic time series soon
after the period-two limit cycle(b) First return map showing the absence of

L,

a period-one orbit resulting in a “banded” structure.

occupy the neighborhood of the period one otbitdoubled

Fig. 10. Boundary crisisa) nonplanar rms amplitudén arbitrary unit$
plot just before a boundary crisis afio) after boundary crisis, the “ghost”
of the strange attractor ia) is clearly visible.

high rate. This figure is one of the more complex types of
behavior which are observed at low damping. This intermit-

torus. This sequence of motions is seen in both simulationgent behavior does not seem to be predicted by the equations
of the model equations and the experiment.

for the averaged model.

E. Crisis

As the forcing amplitude is increased beyond the point of
onset of chaos in the isolated branch, the chaotic atttractor
can suddenly be destroyed by a boundary cfis# This is
perhaps not surprising as Grebagfial?® show that these
crises are common in systems which are close to unimodal
maps. Figure 10 shows a time delay embedded experimenta$
time series of the planar rms amplitude before and after the
crisis point.

RMS am

F. Intermittency

Transitions to intermittent chaos are seen in the string ex-
periment. The intermittency transition to chaos begins with a
periodic state, then burst to an intermittent state as a param-
eter is increased above a critical value. These bursts appea
at seemingly random times, but become frequent as a control

x104

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

parameter is increas_ed- Figure 11 ShOW$ an eXperimentalg. 11. Intermittency of the nonplanar rms amplitudg,=28 mA, «
time series during which bursts are occurring at a relatively=0.1. Time is in units of forcing periods.
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4000

the averaged equations of motion in the high damping re-
gime. These equations are derived by truncating to the fun-
8 damental mode and averaging out the fast forcing time scale,
but allow for motion in both transverse directions with im-
plicit coupling via longitudinal motion. Quantitative agree-
ment was not present since we found a systematic shift in the
parameters required to observe bifurcations predicted by the
averaged equation model. In addition we found a rich set of
complex motions occurring at low damping and large detun-
ings which do not appear to occur in the averaged model.

It is possible that the model could be improved by includ-
ing a more realistic description of the damping. Air resis-
tance and internal friction are not, contrary to the assump-
tions of the model, proportional to the velocity of the string
-10000, E— : o5 : 15 s over the entire decay envelope. Altering the damping model
G i may yield a more comprehensive agreement with these ex-

perimental results. We should note, however, that Bajaj and
Fig. 12. Lorenz like chaotic attractor in the non-planar component of motionJOhnSOﬁ also compared parameter values for various bifur-
for a=0.1. This data have been embedded from a single nonplanar tim€ations in the the averaged equation model with the unaver-
series using the differential-integral embedding. aged string model and also found that bifurcation parameter
values where shifted between these different models.
We have tried to make these data sets widely available via
G. Very low damping ftp download, and some of the data described in this paper

- , , have been investigated by other researchers exploring such
Bajaj and Johnson conclude, from their observations of thgqics a5 nonlinear noise reduction, chaotic synchronization,

behavior of the averaged equations of motion, that for dampt'opolo ical analysis of chaotic time series, and so
ing values smaller thaa = 0.25 all the interesting motions of on.21'2§32‘4°There is still much to be learned from the sound

te string system are destroyed by boundary crises:*... *  of one string vibrating.
as the damping is lowered, the frequency over which the
Dl ol 1t e st 20 T =0 MpRENDX: STRING CONTROLLER AND
a="%.co e crifical Trequenci . CCUIS bARAMETER CONVERSIONS

essentially coincide wittB] and 85 and practically all ini-
tial conditions lead to the lower planar steady-state constant To collect data for the string experiment we need to
solution.” In the above quot@; and g3 are the Hopf sample the motion an integer number of times per forcing
bifurcation (creation and merggrpoints. Our experiment Period. An appropriate sampling trigger can be generated
finds more exciting dynamics in this parameter region. FoWith a phase locked loogPLL), locking a high frequency
damping values near=0.05, many complex nonplanar mo- Sduare wave to a square wave of the same frequency as the
tions are found. forcing sine wave. Unfortunately, such PLL's can be very

In the low-damping regime, persistent chaotic motions arélifficult to design without phase drift. _
observed over a wide range of forcing amplitudes and detun- Therefore we used a different approach. Instead of obtain-
ings. We observe both Lorenz and st like chaos(see  'Nd the sampling trigger from the forcing signal, the forcing
Fig. 12. Some typical parameters for which these motionsSignal is derived from a high frequency-(L00 kHz) square

are found are\t=1s, f,=1.3375 kHz,f = 1.45 kHz with wave from which the sampling trigger is also derived. This
has many advantages but poses several technical problems:

ims=34.7 mA. Lorenz like chaos at=0.090, and Namely, producing a sine wave from a square wave keeping
ms=31.5 mA. Rasler like chaos atr=0.095. the amplitude of the sine wave independent of the frequency
of the square wave. This is important since a common ex-
To plot these results we use the “differential-integral” em- perimental procedure is to scan the forcing frequency while
bedding described by Gilmore and LefréiSpecifically, if  observing the resulting behavior. The solution lay in a filter
x1(i) is the sampled data, then this embedding is defined bynodule based on a National Semiconductor LMF60 CIN-50
yi(i)=x(i)+exp(1r)x(i—1), y,(i)=x(i), and ys(i) sixth-order, switch-capacitor, Butterworth low-pass filter
=x(i)—x(i —1), wherer is chosen to cover several oscilla- chip. This chip gives 36 dB per octave suppression above a
tions, but not |ong enough to show a Systematic dm&ry_ critical frequencyfc which is determined by an external
ing mean valugin the embedded data. clock input divided by 50. If this external clock has fre-
If the forcing is increased the motion gets far more com-gquency times the desired sine-wave output frequency then
plicated with multiple, coexisting attractors—many of themthe cutoff frequency is 1.28 times the input square wave
chaotic. The motions of the string in this low-damping re-frequency. The filter then attenuates tht& harmonic com-
gime appear to mirror those of the string with a higher dampponent of the input square wave by a factor of 18", and
ing, modulated by a third, much lower, frequency. the deviation from sinusoidal of the output of the filter can be
calculated by evaluating the filter function for the Fourier
components of the input and summing these together. The
filtered out function becomes #/{cost)—10%°cos(3vt)

We have examined the dynamics of a forced taut stringt...). This gives a noise levéfrom filter imperfection$ of
and found good qualitative agreement with predictions fromess than 10%%.

2000

-2000
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-4000 |

-8000

V. CONCLUSION
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Table I. Parameters of the string experiment. These are used to determipetijcal parameters Correspond to the experimenta| parameters
the formulas for conversion between experimental and numerical paramy,  the range |,mse[20 MA,600 mA and fe [fo fo
rms ' l

eers +80 Hz.

Symbol Quantity Value The phenomenological damping inserted into the equa-
| length 007 m tion; of motion implit_es an exponenti_al decay to_war'ds the
e forcing length 0.045 m resting state of the string. In the experiment damping is more
m mass per unit length 3.3910°% kg m L complex, and it does not depend linearly on the velocity over
p density 2.3 10° kg m™3 the entire decay envelope. However, as we are using a linear
Y Young’s modulus 197 77810° Nm~2 damping model, we take a linear fit of the logarithm of the
B Magnetic field strength 020.05T decaying amplitude as the damping term used in the equa-
At 90%-10% decay time 01s tions of motion. This linear fit to a nonlinear function could
fo free vibration frequency 1.385 kHz be the cause of some discrepancies between the model and
lims forcing current 20-600 mA

experiment.
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Steam Engine Half Model. Up to the middle of the 20th century, introductory textbooks had cutaway drawings of steam engines, and apparatus manufac-
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