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Abstract

Synchronization between two chaotic systems has
received considerable attention in recent years. Most
of this work has been associated with identical,
chaotic in time, behavior brought about by coupling
two or more identical systems in a drive/ response
manner [1]. (Other useful references are, and can
be found in, Refs. [ 2-41.) Unless otherwise speci-
fied synchronization will mean this form of identical
synchronous motion of identical systems.

This Letter examines the following questions re-
garding the appearance of deviations from identical
synchronous motion: (1) How will additive noise in
the driving signal affect synchronization? (2) How
will small differences between the dynamics of the
driving and response systems affect synchroniza-
tion? Similar questions have been addressed by oth-
ers [5,6]. Suggested applications for synchronization
involve communications [7-9], nondestructive test-
ing, failure monitoring, and system identification [3].
The two questions we address are important to these
applications.

Our research uses numerical models constructed

from experimentally measured time series data as the
response system [10]. Time series measurements are
also used as the driving system. The “working phase
space” is the one where the global dynamics is being
modeled [4,11] and is typically a d-dimensional Eu-
clidean space. In the working phase space, let the un-
known dynamics of the driving system and the known
dynamics of the model be represented by

dx

5 =G (1)
and

dx

G =F(x), (2)

respectively. The only thing known, a priori, about G
are time series measurements.

In the working phase space an experimentally mea-
sured driving signal, x + o, is the sum of clean dy-
namics, x, and measurement noise, ot. We indicate
the size of the noise by o while @ is a signal of unit
size. Now assume that a model, Eq. (2), has been con-
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structed from a time series which is not the same as
the driving time series (although they may have the
same source) [10,12]. By dissipatively coupling F to
the driving signal via

dy N
E=F(y)-E-[y—(x+0u)], (3)
it is possible to almost synchronize F to x [5,10,13].

The coupling matrix E has only one nonzero ele-
ment, Egg = €, where xg + o is the 8 component
of the driving signal. If the coupling, €, is too small
then, clearly, synchronization will not occur. It is also
possible that if € is too large then synchronization (or
almost synchronization) will not occur [5,10,13]. All
of our numerical experiments used 8 = d as the driv-
ing term. For the systems we have studied the € — oo
limit still resulted in near synchronization. Thus, for
our numerical experiments noise and errors in model-
ing are the causes of any lack of complete synchro-
nization.

By definition, the model is synchronized to the time
series, x, if x = y and F = G for all time greater
than to, a transient. Synchronization will not occur if
F # G and/or in the presence of noise [10]. How-
ever, if the model is close to the true dynamics and if
the noise level is not too large then it is possible for
the model to nearly synchronize to the true driving dy-
namics. To quantify this notion let z = y—x denote the
deviations between y and the clean driving signal, x.
It has been previously shown that for the systems we
are considering 0 < |z|> < 1 and the average value
of log,,(|z|?) is essentially constant [3,10]. There-
fore, it is appropriate to consider the linearized time
evolution of z as given by
dz N
E:[DF(x)—E]-z+oE-u+AG(x), 4)
where AG = F — G denotes the difference between the
model and the true dynamics of the driving system.

AG is not related to measurement errors and has
two potential sources. The first source occurs because,
for any real situation F is never exactly equal to G.
The second source occurs if the dynamics of the driv-
ing signal, G, is different from the dynamics that pro-
duced the time series used to make the model, G’. To
analytically isolate these causes note that if G and G’
are related by a small change in the parameters of the
driving system, then

AG(x) ~ AG'(x) + ((—f;AG'(x)) - 6p, (5)

where p represents the parameters of the system, the
change in parameters is small (|6p| < 1), and AG' =
F — G'. The first and second terms on the right hand
side of Eq. (5) are associated with modeling errors
and drift in the dynamics of the driving system, re-
spectively.

Since the average of log,(|z|?) is essentially con-
stant we define the synchronization deviation level
(which we sometimes call the deviation level) by

1 ! 1/2
[{I2)r1"/2 = (,Ergo p— / |z(r>12dr) . (6)
to

We assume that the noise, and AG, are ergodic. This
allows us to replace time averages by phase space av-
erages (which will be denoted by angular brackets,
( )). We also assume that the noise is stationary and
completely independent of AG. With these assump-
tions it is possible to rewrite Eq. (6) as [3]

(2712 = (A2 + (0B)?]'/?, (7

where B? and A? are given by

t

B? = €*k(0) (/(IU(t, r) - V3 dr

+2/([U(t,r)-V]-[U(t,r)-B(r)])dr), (8)

to
t

A? = /<|U(t,r) “AG(r) Y dr

to
t

+2/([U(t,r) <AG(r)] - [U(t,r) - H(r)])dr,

to

(9)

and k() is the autocorrelation function of the noise.

The d-dimensional vectors, V, B(r) = B[x(r)],
and H(r) = H[x(r)] are defined in the following
manner. V = [0,...,0,1,0,...,0] where the 1 ap-
pears as the 8 element of V if B is the component of
x used as the drive signal. B(r) and H(r) are defined
by
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r

B(r) =/I;E(S);U(r,r—s)-Vds,

o+
/U(r,r —5)+-AG(r — s)ds,
Ol

H(r) =

where AG(r) = AG[x(r)]. The lower limit of inte-
gration, 0%, implies taking the limit as we approach,
but are never equal to, O from the positive side.

The matrix U(t,¢y) satisfies the initial condition
U(tg, t9) =1 (where 1 is the identity) and is the evo-
lution operator that evolve z(tg), forward in time from
fo to ¢ in the presence of coupling and the absence of
noise and modeling errors. It comes from the solution
to the homogeneous portion of Eq. (4) and is defined
by

t

z(t) =exp (/[DF(r) — E] dr) - zZ(to)

=U(1,10) - z(10),

and DF(r) = DF[x(r)]. Since the time evolution
is stable (the system synchronizes) U(t,ty) shrinks
z(to) to zero exponentially fast as t — oo. The rate of
decrease is controlled, in a nontrivial fashion, by the
coupling, € [2,3,14].

Clearly, B and A are nontrivial functions of €. In
addition, B is a function of the type of noise in the
driving signal (via the autocorrelation function of the
noise) but is not a function of o or the errors in mod-
eling. On the other hand, A is a function of modeling
errors but is not a function of the noise. Indeed, one
can use the numerical value of A to obtain an order
of magnitude estimate for the average errors in the
modeling [ (|AG|?)]1'/? [3]. The scaling law given by
Eqgs. (7)-(9) indicates the effect of noise on the syn-
chronization deviation level. Together, these equations
answer the first question we asked in the introduction.

The second question asked in the introduction in-
volved modeling errors and the effects of drift in the
dynamics of the driving signal. Both of these effects in-
fluence A while neither influences B. Inserting Eq. (5)
and the definition of H(r) into Eq. (9) results in

A%~ A”?

+%(/(lU(M)-[AG'(r)+H'(r)]|2> dr) -6p,

to

(10)

where H' is what one obtains by substituting AG’ for
AG in the definition of H, and A’? is what one obtains
by substituting AG’ and H' for AG and H in Eq. (9).
In the limit of zero noise the deviation level is just
[(|z|*)T]1'/2 = A, and Eq. (10) describes the rise of the
deviation level as the dynamics of the driving drifts.

Numerical experiments addressing changes in the
synchronization deviation level as a function of noise
level, o, and modeling errors, AG, were performed on
data sets obtained from an electronic circuit. Details
about the experimental apparatus that produced the
scalar time series, s(nAt) = s(n),n=1,2,...can be
found in Ref. [3]. The time delay method

x(n)=[s(n),s(n+T),...,s(n+(d—1)T)]

was used to reconstruct the attractors in a working
phase space. The optimal time delays and embed-
ding dimensions were determined using average
mutual information and false near neighbors, respec-
tively [3,15,16]. Global ODE models, in the form
of Eq. (2), of the dynamics on the attractor were
constructed using portions of the embedded time
series [3,10].

Our first set of numerical experiments examined
the behavior of [(|z|?)1]'/? as a function of ¢-. Each
numerical experiment used two types of noise. The
first type is Gaussian noise with zero mean and unit
standard deviation. The second type (inband noise)
is constructed to have zero mean, unit standard devi-
ation, and the same power spectrum as the raw time
series. Two different values of the coupling constant
were tested. One value was chosen slightly above the
minimum necessary for synchronization while the sec-
ond was chosen well above the minimum value. The
numerical tests used 5000 point time averages.

The results of the tests are shown in Fig. 1
where we have plotted normalized deviation levels,
[{|z|*)r]'/?/D. The normalization constant, D, is
the time average of |z|> without coupling. The lines
represent curves of best fit between Eq. (7) and the
results of the numerical experiments.
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Fig. 1. The normalized synchronization levels as a function of
added noise level. The circles and squares correspond to Gaussian
and inband noise for € = 5. The diamonds and triangles correspond
to Gaussian and inband noise for € = 20.

A second set of numerical experiments determined
the behavior of the deviation level as a function of
changes in the dynamics of the driving signal, AG. In
order to perform these tests we recorded six time series
from the circuit each corresponding to a slightly dif-
ferent value of a parameter, ay, ..., as (physically, a
resistance is changed in the circuit) . A model, Eq. (2),
was constructed from a portion of the ap time series
and then subjected to driving from each time series.
The measured deviation levels are shown in Fig. 2,
where the solid lines represent straight lines of best fit
through the data. The solid symbols indicate a linear
rise in the deviation level with respect to changes in
a (|Aa)| =|ao — aj]).

The rise in the deviation level shown in Fig. 3 is
due, predominantly, to changes in the dynamics of the
driving signal [3]. If the amplitude of the noise is
small then Eqgs. (7), (9), and (10) imply that

1/8\?2
togio{ (12177} = logio(4") + 5 (A_) Aal,
(11)

for suitably defined S(€) (see Eq. (10)). This equa-
tion explains the linear rise in the synchronization de-
viation level. The ability to track this rise is the center
of a nondestructive testing application we discuss in
our longer paper [3].
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Fig. 2. The synchronization level as a function of Aa and the
coupling strength, €. The solid circles, squares, diamonds, and
triangles represent € = 1, 2, 3, and 4, respectively. The open circles
represent € = 0.5 which is insufficient for synchronization. Each
change in A« represents a change in the dynamics of the driving
signal of approximately 1%.
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Fig. 3. A versus €. A has been calculated using raw data (dia-
monds) data with Gaussian noise (circles) and data with inband
noise (squares).

Finally, we have investigated the functional depen-
dence of A and B on the coupling strength €. Fig. 3
shows A versus € for three distinct cases. The first
case (diamonds) used the raw data as the driving term
in Eq. (3) and the approximation A2 = (|z|?)r. The
second two cases (circles and squares) used Gaussian
and inband noise, respectively. To obtain A (as well
as B) for a particular value of € we calculated the de-
viation level as a function of noise size (see Fig. 1).
We then fitted these results to Eq. (7) [17]. The fig-
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Fig. 4. B versus e for Gaussian (circles) and inband (squares)
noise.

ure indicates that A is not a function of the type of
noise in the driving.

Fig. 4 shows B versus € for inband and Gaussian
noise. Quantitative details about the behavior of B
depend intimately on the type of noise in the driving
signal. An important special case is delta correlated
noise where k(s) = k(0) 6(s). When the noise is delta
correlated B = 0 and it is possible to obtain a compact
analytic expression for B2 [3]. The figures indicate
that B is essentially independent of € for Gaussian
noise and has a strong dependence on € for inband
noise.

Figs. 3 and 4 show that both B and A appear to
become independent of € when € gets large. This fact
can be predicted since in the € — oo limit corresponds
to Pecora and Carroll synchronization [1,3]. A partial
theoretical analysis of the dependence of B and A on
€ can be found in Ref. [3].
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