PHYSICAL REVIEW A

o R

VOLUME 41, NUMBER 10

15 MAY 1990

Relative rotation rates: Fingerprints for strange attractors
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Chaotic dynamics on a strange attractor of low dimensionality can be characterized by a set of
recently proposed topological invariants. These are the relative rotation rates of the unstable
periodic orbits embedded in the strange attractor. We demonstrate the efficiency of this charac-
terization by extracting the topological invariants from chaotic time-series data for the Duffing os-

cillator.

At the onset of low-dimensional chaotic behavior,
strange attractors are characterized by metric as well as

topological universality.' ~* Although metric universality

holds only at the onset of chaos, there is growing evidence
that some aspects of strange invariant sets can be charac-
terized by universal topological properties.>~7 These to-
pological invariants are derived from the unstable periodic
orbits embedded in strange attractors. Unstable periodic
orbits are densely embedded in, and provide a good char-
acterization of, hyperbolic strange invariant sets.® Even
in nonhyperbolic strange sets, it seems that a knowledge of
the periodic orbits and their organization should severely
constrain the dynamics and recurrence properties of the
strange set. We show in this Rapid Communication that a
relatively small number of periodic orbits is sufficient not
only to characterize a strange attractor but to determine
its global torsion as well.

- Three approaches to characterizing the invariant topo-
logical properties of strange attractors are based on the
unstable periodic orbits within the strange set. Each re-
quires the reconstruction of periodic orbits from a time
series generated by the chaotic dynamics of a strange at-
tractor. They differ by successively extracting more topo-
logical structure from the strange set.

In one approach’~!! the spectrum of periodic orbits
reconstructed from maps is determined. From this infor-
mation and the eigenvalues of these orbits, the invariant
measure, fractal dimension, and Lyapunov exponent can
be estimated.®!%12!3 Although this is important dynami-
cal information it does not lead to a topological classi-
fication of the strange attractor. This can be seen in the
development of the Smale horseshoe as is found, for ex-
ample, in the Henon map.'* The stretching and folding in
the Henon map becomes more severe as the parameters of
the map are increased. The number of orbits of a given
period also changes as the return map approaches hyper-
bolicity. Further, the study of maps is not equivalent to
the study of flows, which more properly model real experi-
mental data. The additional piece of information required
to lift a map to a flow is the global torsion. !

A more refined approach extends the first by attempting
to determine how the periodic orbits of flows are organ-
ized among themselves. This is done by computing the
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knot types and linking numbers for all periodic. orbit
pairs.'®!7 This approach provides some information
about topological organization, but is too coarse for a
complete characterization as it gives up phase information
between orbit pairs, and as a result also loses dynamical
information. .~ “ae LomEs o e e
- A yet more refined approach involves computing the
relative rotation rates'®!” between all pairs of reconstruct-
ed periodic orbits. Given two periodic orbits X, and Xp of
periods p4 and pg, which intersect a Poincaré section at
X/} and {Xx§} (where i and j are ordered as successive
iterations of the map), the relative rotation rate R;;(4,B)
between these orbits is defined as the average number of
rotations of one orbit around the other; per period, start-
ing from the initial conditions {X%} and {X§}. This topo-
logical index preserves dynamical information by preserv-
ing phase information. The sum, over all initial conditions
(i), of R;;(4,B) between two orbits is their linking num-
ber, £ R;;(4,B) =L(A4,B). This integer is the number of
times one periodic orbits winds around the other. The
dynamical index R;;(4,B) provides additional phase in-
formation not contained in the more familiar topological
index L(4,B)."® In addition, the index R;;(4,B) is robust
during the evolution of the strange set. Once the orbits
X4 and Xp exist, their relative rotation rates are fixed as
long as both orbits continue to exist, independent of
changes in their stability and bifurcations which create or
annihilate other orbits. That is, the relative rotation rates
are independent of whether the strange set is hyperbolic.
An intertwining matrix, or table of relative rotation rates,
of the low period orbits can be used to identify, or “finger-
print,” the first return map of the strange attractor. The
relative rotation rates for a flow can be computed from the
return map of the flow. They are unique up to an overall
additive integer, the global torsion, which describes how
often the return map pivots around its axis as the flow
propagates between successive Poincaré sections. The
linking numbers and relative rotation rates for all pairs of
periodic orbits embedded in a strange attractor are
sufficient to identify uniquely the return mapping mecha-
nism (i.c., Smale horseshoe, annulus map, iterated hor-
seshoe) responsible for the creation of the strange attrac-
tor.
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Periodic orbits for a flow are reconstructed from
discretely sampled time-series data x(i) using a straight-
forward procedure.?’ The time-series data are scanned for
close returns (strong recurrence properties),

dlx(i) —xG +n)] <e. 6))

Typically, the number of sample steps n between close re-
turns is an integer multiple of some smallest no, which can
be associated with the fundamental period of a periodical-
ly driven dynamical system. Segments of period
k(=n/ny) are compared, and those which remain close
throughout an entire period are associated with the same
unstable periodic orbit of period k. This unstable orbit is
estimated, or reconstructed, by choosing the orbit with the
best recurrence properties (minimum ¢), by averaging all
nearby segments or by using more sophisticated least-
squares return map estimates on padded segments. Once
a set of reconstructed orbits of low periodicity has been
extracted from the chaotic time series data, the relative
rotation rates of all orbit pairs are computed. Comparison
of this matrix of topological indices with intertwining ma-
trices based on standard return mags (Smale horseshoe,
iterated: horseshoe, annulus' map®') is then usually
sufficient to identify uniquely both the return map and the
global torsion. In turn, the return map can be used to esti-
mate the recurrence properties of longer periodic orbits?
and'as an aid to their reconstruction from the time-series
data. The relative rotation rates of these additional recon-
structed orbits can be computed and compared with those
determined from the return map as an added confirmation
that the topological properties of the strange attractor
have been correctly identified. i

To illustrate this procedure we have carried out the
computations described above for the Duffing oscillator

X)™=x3, ,
 Xy=—dx—x;—x{+f cos(2nx3+9), )

X3=w/2r,

Xg

FIG. 1. Projection of a segment of the strénge attractor for -
the Duffing Eqs. (2) onto the x;-x phase space. The control pa-
rameter values are d =0.2, f=27.0, » =1.330, and ¢ =0.0.

with control parameter values d =0.2, £ =27.0, @ =1.330,
and ¢=0.0. These parameter values lie in the bifurcation
tongue with global torsion 7 =3.'%2* They are far enough
along the axis of the tongue that a strange attractor exists.
We do not know whether the attractor is hyperbolic and
the embedded unstable periodic orbits dense for these pa-
rameter values. However, this is not important for
reasons explained above.

The Duffing Egs. (2) were integrated for 2'3 periods
with 2'3 steps per period. Data were sampled and stored
every 27 steps, so that 26 points were sampled per period.
A short segment of the chaotic orbit from the strange at-
tractor, projected onto the x,-x; phase space, is shown in
Fig. 1.
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FIG. 2. Distances d[x(i) —x(i +n)] plotted as a function of i for fixed n =kno, with no=2¢. The windows in these plots show near
periodicity over at least a full period in the corresponding segment of the time-series data. The bottom of cach window is a good 8P
proximation to the nearby unstable periodic orbit. (a) k =2 and (b) k =3. :
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- FIG. 3. Some of the periodic orbits extracted from the chaotic time-series data of Fig. 1. (a) Symmetric period-one orbit; (), ()
asymmetric pair of period-one orbits; (d), (¢) symmetric period-three orbits; (f), (g) asymmetric period-three orbits. .

Periodic orbits were reconstructed from the sampled
data using a standard Euclidean metric. The distances
d[x(i) —x(i +n)] were plotted as a function of i for fixed
n=kno, with no=2°. Samples of such plots are shown in
Fig. 2 for k=2 and 3. The windows in these plots are
clear signatures of near periodicity over several complete
periods in the corresponding segment of the time-series
data. The segment of length n with the smallest cumula-

tive distance (the bottom of the window) was chosen to
represent the nearby unstable periodic orbit. This choice
was adequate for reconstructing the orbits. Some of the
unstable periodic orbits which were reconstructed by this
procedure are shown in Fig. 3. Since the low period orbits
are well separated in phase space, the relative rotation
rates are insensitive to perturbations such as small noise
levels, the approximate reconstruction adopted here, or

TABLE 1. Relative rotation rates for all pairs of reconstructed periodic orbits. The global torsion 3 has been subtracted from all
relative rotation rates. The orbit (p,n) is the nth orbit of period p extracted from the data. A logical name is assigned to each orbit
using the notational conventions proposed earlier. Symmetric orbits are indicated by index y; asymmetric pairs of orbits are indicated

by the indices a, 8.
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the crude shape of each periodic orbit based on only 2¢
sampled points per period.

The relative rotation rates for all pairs of reconstructed
periodic orbits were computed. These indices are present-
ed in Table I. This table also.indicates the period of each
reconstructed orbit and provides a logical name for all or-
bits up to period 3 in accordance with the conventions
adopted previously.!” Comparison of this table with a
canonical table for the iterated horseshoe return map re-
veals that the local return map is the iterated horseshoe.
This was previously identified as the return map for the
Duffing oscillator.!” This identification requires the glo-
bal torsion to be 3. ’ .

An independent confirmation of this identification was
made by using the reconstructed periodic orbits as initial
conditions to locate the unstable periodic orbits by a
Newton-Raphson procedure. The reconstructed and actu-
al periodic orbits differed by less than 1%. The intertwin-
ing matrix.for the actual periodic orbits was identical to
that for the reconstructed periodic orbits.
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In summary, we have shown that it is possible to con-
struct topological invariants for a strange attractor far
from the onset of chaos. These invariants are functions of
the embedded unstable periodic orbits, which are dense if
the strange attractor is hyperbolic. The topological in-
variants are the relative rotation rates for pairs of periodic
orbits reconstructed from time series data. The topologi-
cal invariants for a relatively small number of periodic
orbits are sufficient to identify the return mapping mecha-
nism responsible for creation of the strange set as well as
the global torsion of the flow. The feasibility demonstra-
tion was carried out for the Duffing oscillator which is a
good model for chaotic single-mode string dynamics. 242
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