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ABSTRACT. Recent progress toward classifying low-dimensional chaos measured from
time series data is described. This classification theory assigns a template to the time
series once the time series is embedded in three dimensions. The template describes the
primary folding and stretching mechanisms of phase space responsible for the chaotic
motion. Topological invariants of the unstable periodic orbits in the closure of the strange
set are calculated from the (reconstructed) template. These topological invariants must
be consistent with any model put forth to describe the time series data, and are useful
in invalidating (or gaining confidence in) any model intended to describe the dynamical
system generating the time series.

Statistical measures and topological methods are the two major types
of analysis used when studying chaos in smooth dynamical systems. These
two approaches, the statistical and topological, often give us different in:
formation about the same dynamical system [Fr]. The ergodic (statistical)
theory of dissipative dynamical systems focuses its attention on an invariant
measure y({2) defined on the invariant limit set Q (i.e., a strange attractor
or repeller) [Ec]. Information about an invariant measure can have many
useful applications. In time series analysis, for instance, u(Q) is an essential
ingredient in building nonlinear predictive models directly from time series
[Ge].

Topological methods of smooth dynamical systems theory are also of
great value in time series analysis. In particilar, in the context of low-
dimensional chaos, topological techniques allow us to develop a classification
theory for chaotic invariant limit sets. In addition, topological properties of-
ten put strong constraints on the dynamics (for instance, the existence or
non-existence of certain orbits [Ha]). A topological analysis is also an essen-
tial ingredient for developing rapidly convergent calculations of the metric
properties of the attractor [Cv].
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Therefore, when analyzing a time series from a chaotic dynamical system
we advocate a two step procedure. First, analyze the topological organiza-
tion of the invariant set, and second dress this topological form with its
metric structure. We believe, at least in context of low-dimensional chaos,
that as much information as possible should be gleaned from the topology
the chaotic limit set as a first step toward modeling the dynamics. This
topological information plays at least two important roles in applications to
time series analysis. First, topological invariants can be used to identify (or
invalidate) models put forth to explain the data, and second, the topologi-
cal classification of chaotic sets serves as a promising first step in developing
predictive models of nonlinear time series data. _

Recently, this topological approach to time series analysis has been wor-
ked out in great detail in the context of chaotic invariant sets of “low-
dimensional” flows. In this article, by “low-dimensional” we mean flows in
R™ with invariant sets of dimension less than or equal to 3, i.e., systems with
one unstable direction (one positive Lyapunov exponent). By restricting
our attention to this class of systems, it is possible to develop a rather
complete physical theory for. the topological classification of such systems
and to develop practical algorithms for applying this classification scheme
to time series data from experiments. In this article we will review work
on this classification theory. For recent efforts on applying this classification
theory to modeling the dynamics we refer the reader to a review article by
Mindlin and Gilmore [Mil] which also contains many practical details about
topological time series analysis. For an elementary introduction to the knot
theory and dynamical systems background appropriate for this article see
Reference [Tul]. ‘

The major device in this analysis is the template (or knot-holder) of the
hyperbolic chaotic limit set [Ho]. Roughly, a template is an expanding map
on a branched surface. A low-dimensional chaotic limit set with one unsta-
ble direction has a rich set of recurrence properties which are determined by
the unstable saddle periodic orbits embedded within the strange set. These
unstable periodic orbits provide a sort of skeleton on which the strange at-
tractor rests. For flows in three dimensions, these periodic orbits are closed
curves, or knots. The knotting and linking of these periodic orbits is a bi-
furcation invariant, and hence these simple topological invariants can be
used to identify or “fingerprint” a strange attractor [Mi2, Tu2]. Templates
are central to this analysis because periodic orbits from a three-dimensional
flow of a hyperbolic dynamical system can be placed on a template in such
a way as to preserve their original topological structure. Thus templates
provide a visualizable model for the topological organization of the chaotic
limit sets. Templates can also be describe algebraically by finite matrices
and this in turn gives us a quantitative classification theory describing the
primary folding and stretching structure of the strange set [Tul].
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The strategy behind the template theory is as follows. For a nonlinear
dynamical system there are generally two regimes that are well understood,
the regime where a finite number of periodic orbits exists and the hyperbolic
regime of fully developed chaos. The essential idea is to reconstruct the form
of the fully developed chaotic limit set from a non-fully developed (possibly
non-hyperbolic) region in parameter space. Once the hyperbolic limit set
is identified, then the topological information gleaned from the hyperbolic
limit set can be used to make predictions about the chaotic limit set in other
(possibly non-hyperbolic) parameter regimes, since topological invariants
such as knot types, linking numbers, and relative rotation rates [Sol, So2]
are robust under parameter changes.

The identification of a template from a chaotic time series of low di-
mension proceeds in five steps [Mi3, Mil]: search for close returns, three-

dimensional embedding of the time series, calculation of topological invari-

ants, template identification, and template verification.

In the first step, the search for close returns. [Au, Tu2], the time series
is examined for subsegments of the data which almost return to themselves
after n-cycles. These subsegments of the time series are taken ‘as surrogates
for the unstable (saddle) period-n orbits which exist in the closure of the
strange set. This search for close returns (unstable periodic orbits) can be
done either before or after the time series is embedded in a three-dimensional
space [Mi3].

The next step is to embed the time series in a three-dimensional space.

Developing an embedding procedure which “optimizes” the topological in-
formation in the time series is the key to success with:the topological analysis
of time series data. In principal there are several candidates for an embed-
ding procedure. Both the method of delays [Pa], and an embedding based on
a singular value decomposition analysis are reasonable choices and are de-
scribed by D. Broomhead in these proceedings. As a practical matter great
care must be taken to see that the embedding procedure eliminates any
(parametric) dxrift in the data (for instance, this may by accomplished by
judicious filtering), and that the embedding procedure also seeks to maxi-
-mize the geometric spatial separation of the embedded time series trajectory.
With these two criteria in mind, Mindlin and Gilmore [Mi3] have developed a
“differential phase space embedding” which works remarkably well for their
analysis of data from the Belousov-Zhabotinskii reaction. On a case by case
basis, finding an embedding which “optimizes” the extraction of topological
information inherent within the (experimental) time series does not pose a
major obstacle to the analysis. Rather it suggests that a lot of good work
is yet to be done in developing a new branch of engineering which might be
dubbed “topological signal processing.”

In the embedded space, topological invariants (linking numbers, relative
rotation rates, and braid words) of the surrogate periodic orbits found in
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the first step can be calculated. Just a few of these suffice to determine a
template [Mi2, Mi3, Me]. In fact, one can also identify the template by ex-
amining the stretching and folding of points on the strange attractor as it
evolves through one full cycle [Mc, Le], and also by examining the “line-
diagram” of a few geometric braids calculated from the embedded periodic
orbits[Ha]. Thus, the form of the template is usually very much over de-
termined by the available experimental data. The fact the the template is
determined from a (small) finite amount of information should come as no
surprise. Each template is nothing but a geometric picture for the suspen-
sion of a full shift hyperbolic symbol system which we formally associate to
the (possibly non-hyperbolic) chaotic time series. This full shift system has
the same basic folding and stretching structure of the original flow, and it
might even be found in the original (experimental) system in a parameter
regime where a chaotic repeller exists.

Once identified, the template can be used to calculate an additional (infi-
nite) set of topological invariants including (self) rotation rates, (self) linking
numbers, knot types, polynomial invariants, and so on. If the template iden-
tification is correct, these invariants must all agree with those found in the
time series data. If these invariants do not agree we can reject the proposed
template. If they all agree, we get added confidence that the template is
correctly identified. These topological invariants must also agree with any
set of differential equations or other dynamical model proposed for the data.
Thus, this gives us a way of falsifying (or gaining confidence in) any proposed
model. :

Each template itself is equivalent to a “framed braid” [Me]. A framed
braid is just a geometric braid with an integer associate to each strand
called the framing. The linking of this framed braid is described by a framed
braid linking matrix, and it 1€ this (finite) matrix which we take as our
quantitative (integer) characterization for the topology of the strange set.
For more details with an abundance of pictures see Chapter 5 of Reference
(Tul]. —

The template characterization and classification has recently been applied
to a wide variety of time series data from experimental systems including
the Belousov-Zhabotinskii chemical clock [Mi3], a laser with a saturable
absorber [Pap], an NMR-laser [Tu3], and a CO, laser with modulated losses
[Le]. ‘

The template classification theory is just the beginning of topological time
series analysis. There are many directions now to take this work. Perhaps
the most promising is exploiting the connection between certain braid types
(periodic orbits) and -complex behavior in the flow supporting this braid
type. Since Thurston’s work in the 70’s on braid types and dynamics on
the punctured disk, it has been know that the existence of certain types of
braids (i.e., the so called pseudo-Anosov ones) are sufficient to imply that a
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dynamical system has positive topological entropy, that is, that the system is
chaotic [Th]. Mindlin and Gilmore found such a braid type (periodic orbit) in
their analysis of the Belousov-Zhabotinskii reaction [Mi3]. It is the period-7
pretzel knot of the horseshoe with symbolic name 0110101. The existence of
this single “non-well ordered orbit” orbit [Ga] allows Mindlin and Gilmore
to conclude that the system is chaotic (at least in the topological sense
meaning the existence of an infinite number of periodic orbits forming a
complex chain recurrent set) without calculating any Lyapunov exponents
or fractal dimensions.

Indeed, as emphasized by D. Broomhead in these proceedings, some of
the most exciting work in nonlinear dynamics is the current close interplay
between mathematics and experimental physics. In essence one can seek, in
doing an experiment, to show that certain mathematical hypothesis hold
in the given experimental configuration. If these mathematical hypothesis
can be experimentally verified, then one can learn much more about the
system then -either statistical inference or physical experimentation alone
would provide.
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