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• The pruning method can be applied to certain physical models.
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• Infinite pruning regions are related to singularities without rotation.
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a b s t r a c t

In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and
periodic orbits. Themain tool is the pruningmethod, which is used for finding a hyperbolic map, obtained
uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set
under consideration. Then wewill show applications related to transport phenomena and to the problem
of determining the orbits structure coexisting with a finite number of periodic orbits arising from the
bouncing ball model.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

By minimal topological chaos relative to a homoclinic orbit P
we mean the minimal structure of orbits that a system containing
this homoclinic orbit can have in its isotopy class. It was Poincaré
who realizes that the existence of such orbits implies a higher
complexity [1], and Birkhoff and Smale proved that, under regular
conditions, there are infinitelymany periodic orbits in every neigh-
bourhood of P [2–5].

It is known that a non-autonomous perturbation of an inte-
grable system, satisfyingMelnikov’s conditions, creates homoclinic
orbits with transversal intersection and also at least a chaotic set
having a dense set of periodic orbits. See Fig. 1. Such models have
many applications going from transport phenomena [6], the anal-
ysis of bifurcations in a driver oscillator [7] to the dynamics of bub-
bles in time-periodic straining flows [8]. In all these applications a
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natural question is the following: which is the minimal periodic or-
bits structure that a map, having P as a homoclinic orbit, can have?
The same question can be formulated if P is a finite set of homo-
clinic and periodic orbits since chaotic behaviour can be created
from the finite set of topological shapes induced by P . In [9] and ref-
erences there in, periodic orbits are studied in applications to laser
models, Lorentz and Rössler attractors, the Belousov–Zhabotinskii
reaction, etc. To answer that questionwe need the notion of forcing
introduced by P. Boyland.

Let f be a homeomorphism on the disk and let P be an orbit of f .
The isotopy class of (P, f ) is given by its braid typewhich identifies
all the orbits that are equivalent to P under isotopies [10]. We say
that (P, f ) forces an orbit Q if every homeomorphism g isotopic to
f relative to P , having an orbit with the braid type of P , must also
has an orbit with the braid type of Q . The set of all the orbits whose
braid types are forced by an orbit (P, f )will be denoted byΣP . Thus
ΣP contains a topological representative of each orbit that is forced
by P , and it shows us the minimal description of the set of periodic
orbits that a map can have given only a topological data.

One of the first result about the forcing relation of homoclinic
orbits was stated by Handel in [11]. He provides conditions for
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Fig. 1. Homoclinic orbit appearing after a non-autonomous perturbation of an
integrable system.

ensuring that a finite set of homoclinic orbits imply the existence
of a fixed point. In Hulme’s thesis [12] there exists an extension
of the Bestvina–Handel algorithm [13] which can be used for
computing an efficient graph map or a generalized pseudoanosov
representative within the isotopy class of a homoclinic orbit.

In [14–16] Collins has proposed a method for determining a
graph representative whose orbits represent the dynamics forced
by the homoclinic orbit P and, under certain conditions, construct
a diffeomorphism that minimizes the topological entropy the
isotopy class relative to P . This is done studying a trellis, a part of
the homoclinic tangle of P . A similar motivation was given in [17]
by Mitchell and Delos, where the attention was towards into the
escape segments by iterations of the map.

All these methods can find exact or approximated symbolic
dynamics inΣP but unfortunately the number of symbols is always
increased as the trellis becomes more andmore complicated and a
computational cost is needed. Another disadvantage is that, except
in a few cases, it is not clear how to apply them to the study of an
infinitely many family of homoclinic orbits.

In [18] a pruningmethod is proposed for finding, given a homo-
clinic orbit, an AxiomA diffeomorphismwhose non-wandering set
realizes all the braid types forced by that orbit. This method can be
considered as a differentiable version of the pruning theory devel-
oped by de Carvalho [19] for pruning surfaces homeomorphisms,
and can be extended for finding ΣP rel to a finite set of homo-
clinic and periodic orbits, since ΣP is actually the complement of
the pruning region rel to P . In [20] the technique was used for or-
ganizing certain horseshoe periodic orbits by forcing.

In fact, in this note we will explain how the pruning method
works if P consists of certain infinite families of homoclinic orbits
found in transport phenomena by Rom-Kedar in [21,22]. It will
be showed, up isotopies, the pruning region rel to these orbits.
Furthermore the method will be applied to a finite set of periodic
orbits which include those ones studied by Tufillaro in [23] for the
bouncing ball model, who has proposed a pruning region joining
invariant manifolds. We improve his pruning region showing the
existence of amap that realizes itwhichwas not proved in [23].We
should note that the lines followed in this work can be adapted to
a wide range of sets of periodic and homoclinic orbits arising from
experimental data.

2. A model for minimal chaos

Our working model is the Smale horseshoe [5] which was
one the first examples exhibiting deterministic chaos. This is a
diffeomorphism F acting on a sub-disk of the disk as in Fig. 2.
F is an Axiom A map, that is, F has hyperbolic structure on its
non-wandering set which consists of an attractor point within
the left semi-disk and a Cantor set K contained in the union of
the rectangles V0 ∪ V1. Then it was proved that F restricted to K
is conjugated to the shift σ on the two-symbols compact space
Σ2 = {0, 1}Z. More general properties of Axiom A maps can be
found in [24]. Collapsing segments joining two boundary points it
is obtained the symbol square [25] represented in Fig. 2 as well.

We only devote our study to horseshoe homoclinic orbits of the
form q0 =

∞0.1w10∞, wherew is a finite word of symbols 0’s and
Fig. 2. The Smale horseshoe and its symbol square.

1’s, that is, homoclinic orbits at the intersection of the stable and
unstable manifolds of the fixed point with code 0∞. These orbits
often appear in dynamical applications in a wide range of systems
as this one in Fig. 1.

Nowwe recall the pruning ideas proposed by Cvitanović in [26].
He has observed that certain dynamical systems are better under-
stood if we consider them as incomplete or pruned horseshoes.
This means that certain systems can be obtained from the uncross-
ing of pieces of the invariant manifolds of the Smale horseshoe
or an another well-known Axiom A map. The regions where or-
bits were eliminated are called pruning regions. So the symbolic
dynamics of the system corresponds to the symbolic dynamics of
the horseshoe except the orbits included inside the pruning region.
This powerful idea simplifies the orbit analysis since it is sufficient
to find a good pruning region in order to describe the orbits struc-
ture.

Several authors as [25,27–30] have followed the pruning ap-
proach, and their results were directed to find rules for the remain-
ing symbol dynamics, but no illuminationwas provided about how
invariant manifolds influence the final grammar.

A pruning formalismwas given in [19] by de Carvalho for prun-
ing, in particular, the horseshoe F . It demands the existence of a
pruning domain, that is, a topological simply connected domain
D bounded by two segments θs and θu which belong to the sta-
ble manifold and the unstable manifold of periodic points, respec-
tively. ThenD is called a pruning domain if it satisfies the following
condition:

F n(θs) ∩ Int(D) = ∅ = F−n(θu) ∩ Int(D), ∀n ≥ 1. (1)

Thus the pruning theorem [19] claims that condition (1) is
sufficient for eliminating all orbit within Int(D) in the sense that
an isotopy of F can be implemented in such a way that there are
no recurrent points in Int(D) for the homeomorphism G at the end
of the isotopy. As a consequence the non-trivial dynamics of G are
given by σ on Σ2 \ ∪i∈Z F i(Int(D)). Because this theorem reigns
in the topological level in which there is not notion of invariant
manifolds, this is not applicable to Cvitanović’s pruning approach.

To solve that impasse one of us has proposed, in a joint work
with A. de Carvalho [31], a differentiable version of the pruning
theorem, that is used to prune Axiom A maps since hyperbolic
structure allows us to make G, the end of the pruning isotopy, an
Axiom A map too, although the most important property to point
out is that this pruning isotopy uncrosses invariant manifolds in a
controlled manner which means that uncrossings only happen in
the interior of D and its iterates. See [18] for the details.

Recalling that a bigon I is a simply connected domain bounded
by a segment of a stable manifold and a segment of an unstable
manifold, it was proved in [18] that, given a homoclinic orbit P ,
ΣP can be found eliminating all the bigons of F relative to P by
successive prunings. Fig. 3 shows the elimination of a bigon I under
the effect to the uncrossing of the invariant manifolds within D by
a pruning isotopy.
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Fig. 3. Eliminating a bigon I within a pruning domain D.

More precisely it was proved that if the number of pruning
domains, relative to P and necessary to eliminate all the bigons, is
finite, then the dynamics of the final pruning map ψP associated
to all the pruning domains, called the hyperbolic pruning map
relative to P , characterizesΣP . It is done using a generalization of a
persistence theorem given by Handel in [32]. Thus if {D1, . . . ,Dn}

is the set of pruning domains with that property then

ΣP = Σ2 \ ∪i∈Z σ
i(∪n

k=1 Int(Dk)) (2)

up a finite number of boundary periodic points. SoΣP is a subshift
of finite type joint to a finite number of attractors. The equality
(2) can be understood saying that the orbits forced by P are these
ones which do not intersect the pruning region P = ∪

n
k=1 Int(Dk).

Although the results in [18] are defined for only one homoclinic
orbit, they can be easily adapted to a finite set P = {P1, . . . , Pl} of
periodic or homoclinic orbits, providing in the latter case that ΣP
is transitive. If the P1, . . . , Pl are homoclinic ones to the same fixed
point then it is possible to prove that the hyperbolic pruning map
is always transitive onΣP .

So every homeomorphism f on the disk, containing a infinite
orbit with the braid type of P , must has an invariant set Λ such
that f |Λ is semiconjugated to σ |ΣP , so ΣP describes the minimal
orbit structure relative to P that such f can exhibit. Actually the
semiconjugacy preserves the braid types. Thus the set BT(Λ, f ) is
equal to BT(ΣP , F). Hence a lower bound for topological entropy of
f can be calculated by the asymptotics of 1

n ln(|Pern ∩ ΣP |) where
Pern denotes the set of periodic orbits of period n inΣ2.

Since ΣP is subshift of finite type, there exists a Markov par-
tition for the state space despite the fact that the homoclinic
orbit has the braid type of a homoclinic tangency. Generating
partitions with homoclinic tangencies as boundary were con-
structed by Grassberger and Kantz in [33] although it was not
possible to define the set of primary homoclinic tangencies. A crite-
rion based in the analysis of the curvature was given for doing that
in [34]. Instead using those properties, our method only needs the
topology of the embedding of the orbits on an Axiom A map. Thus
a finite pruning region implies that there exists a Markov partition
for the dynamics up a finite number of boundary periodic points.
The main open problem of our approach is related to the possibil-
ity that the number of pruning domains, needed for eliminating all
the bigons, be infinite, that is, whenever the elimination of a bigon
implies the creation of another and so, ad infinitum. Examples will
be given in [20] and in Section 4where a technique for leading that
limit case will be sketched and a possible explanation for that phe-
nomena will be presented.

Actually using bigons for determining forcing relations is
not new in dynamical systems. In [35] T. Hall has associated
maps without bigons to horseshoe periodic orbits. His non-bogus
transition property can be understood in the pruning point of
view as the non-existence of bigons. By an application of the
Bestvina–Handel’s algorithm, hewas enable of findingΣP if P = Pq
is a quasi-one-dimensional orbit, that is, if the code of Pq is c0q1, for
some q ∈ (0, 1/2] ∩ Q, where cq is a palindromic word of 0’s and
1’s symbols obtained by the following rule: If q = m/n is lowest
terms, the word cq is 10k1120k212

· · · 120km1where k1 = ⌊1/q⌋−1
and ki = ⌊i/q⌋ − ⌊(i − 1)/q⌋ − 2 for 2 6 i 6 m (⌊x⌋ is the greatest
integer which does not exceed x). See also [36]. In this case, only
one pruning domain is needed for determining ΣPq : the domain
Dq bounded by a stable segment θs ⊂ W s((cq0)∞) and an unstable
segment θu ⊂ W u(0∞) which intersect at the heteroclinic points
∞0.(cq0)∞ and ∞01.(cq0)∞. It implies that the periodic orbits
forced by Pq are all orbitswhich are smaller than Pq in the unimodal
order >1. As one can inferred from Sections below, the Hall’s word
cq has became crucial for the forcing on horseshoe braids.

3. Applications to physical phenomena

Now we will show the pruning domains needed for finding
ΣP for certain homoclinic orbits. They were introduced by Easton
in [37] andwere associated to transport phenomena by Rom-Kedar
in [21,22].

The first ones are the orbits called type-{l, 0, 0, 0} which have
the form El =

∞0.10l10∞ for certain positive integer l. It is not
difficult to prove that they satisfy the hypothesis given in [37,21].
These orbits are a particular case of star homoclinic orbits which
have the form Pq

0 =
∞0.cq0∞ where cq is the Hall’s word defined

above. Thus one can see that El corresponds P
q
0 with q =

1
l+1 .

In [18] it was also proved that star homoclinic orbits demand
only one pruning domain Dq for eliminating the bigons. That
domain is bounded by a segment of the stable manifold of σ 2(Pq

0)
and a segment of the unstablemanifold of the fixed point 1∞ which
intersect at the points ∞1.0l−110∞ and ∞10.0l−110∞. See Fig. 4 for
an example with l = 3.

The pruning map G associated to Dq has invariant manifolds
which look like these ones in Fig. 4. A symbolic representation of
ΣEl appears in Fig. 5.

The second ones correspond to the homoclinic tangle called
type-{l,m, k, 0} by Rom-Kedar, who have showed numerical
evidence in [22] to claim that they arise naturally in transport
phenomena. We will suppose that m ≥ l and k ≥ l. The Rom-
Kedar’s conditions [22] imply that the type (l,m, k, 0) homoclinic
tangle is the same than this one defined by the homoclinic orbits
Al,m =

∞0.10l−1110m−110∞ and Bk,l =
∞0.10k−1110l−110∞.

There are two subcases to be considered.
Case I. If m = l then Al,l =

∞0.10l−1110l−110∞ is again a star
homoclinic orbit. We can see that Al,l = Pq

0 with q =
2

2l+3 . Thus
only one pruning domain is needed for destroying the bigons and
since Bk,l is always included in ΣAl,l it follows that Al,l forces the
existence of Bk,l, for any k ≥ l.

Case II. If m > l then two pruning domains are needed: a
domain D1 defined by a stable segment passing through σ 2(Al,m)
and an unstable segment passing through 1∞ which intersect
at the points ∞10.0k−2110l−110∞ and ∞1.0k−2110l−110∞; and
a domain D2 defined by a vertical segment joining the points
∞010k−1110l−1.10m−110∞ and∞010k−1110l−21.10m−110∞ which
belongs to the stable manifold of ∞010l−11.10m−110∞, and an un-
stable segment passing through∞010k−1110l−1.10∞. The reader is
encouraged to prove that these two domains are sufficient to our
purposes. Thus its pruning region is Pl,m,k = Int(D1) ∪ Int(D2).
Fig. 6 shows the domains for the values l = 3, m = 4 and k = 5,
and the orbits forced by the homoclinic tangle type-{3, 4, 5, 0}.

Furthermore one can observe the following:

• If m, k → ∞ then Al,m → 0∞.10l−1110∞ and Bk,l →

0∞110l−110∞ which are clearly equivalent to El fact that was
noted in [21].
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Fig. 4. The pruning domain associated to E3 =
∞0.100010∞ and its pruning diffeomorphism.
Fig. 5. A symbolic representation ofΣP with P = E3 =
∞0.100010∞ .

• The case k = m is particularly important in applications to area-
preserving maps [22]. If l < l′ then, for m ≥ l and m′

≥ l′,
we have Orb(Al′,m′) ∩ Pl,m,m = ∅ and Orb(Bm′,l′) ∩ Pl,m,m =

∅; thus, by (2), the homoclinic tangle type-{l,m,m, 0} forces
the existence of all the orbits of the homoclinic tangle type-
{l′,m′,m′, 0}. By the same reasons one can conclude that, ifm <
m′, the homoclinic tangle type-{l,m,m, 0} forces the existence
of all orbits of the homoclinic tangle type-{l,m′,m′, 0}. It proves
that the topological entropy is monotonically decreasing with
l and m, which is consistent with the numericals showed in
Tables 1 and 2 of [22].

4. Pruning relative to periodic orbits

Maybe the most important property of the pruning method is
that it unifies the analysis of the forcing relation of homoclinic
and periodic orbits. Thus as we have said before if P = {P1, P2,
. . . , Pl} is a finite set of periodic or homoclinic orbits then the
set ΣP of orbits whose braid types are forced by P is obtained
eliminating all the bigons relative to P . This can useful for
experimental approaches when it is only possible to extract a
finite set of orbits from a physical model [23,38–42]. Usually the
main step to compute forcing implications of orbits extracted from
experimental data is to find the basis set which is a finite set of
orbits that are not forcing related and that forces all the periodic
orbits obtained from the numericals [43]. Thus the basis set gives
us all the chaotic information that the system can have providing a
pruning region relative to it. Herewewill calculate pruning regions
associated to certain basis sets.

Now we will study orbits arising from the bouncing ball
system, a model that has been extensively studied in the literature
in physics, see for instance [44,45] and references there in. As
Tufillaro has numerically observed in [23], the horseshoe orbits
P1, P2 and P3 with codes 10110111, 101101011 and 101111010,
respectively, define the basis set of a bouncing ball model up
period 11. He has proposed a pruning region joining these points
by stable and unstable leaves, but such construction does not
have a dynamical meaning in the sense that it is not possible to
realize if that pruning region corresponds to a homeomorphism
of the disk. Here we will define a pruning region formed by
domains satisfying condition (1). Thus we are going to construct a
sequence of pruning domains D1,D2, . . . aiming the elimination of
the bigons by pruning isotopies. In every step k, the orbits already
eliminated will be the orbits contained in ∪

k
j=1 Int(Dj). Since this

process is infinite, the final pruningmapwill be no longer anAxiom
Amap, but its non-wandering set will have all the orbits forced by
the given ones {Pi}3i=1.

By the Hall’s notation, P1 = R3/8 is a rotation of angle 3
8 (2π)

around the fixed point 1∞, P2 has code c2/5011 and P3 has code
Fig. 6. The pruning region relative to A3,4 and B5,3 and the set of orbits forced by the homoclinic tangle type-{3, 4, 5, 0}.
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Fig. 7. The pruning domain D1 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

c3/70. Fig. 7 shows these orbits in green, red and blue colours,
respectively, in the symbol plane. These orbits, except the rotation,
also were considered in [46, Table IV] for analysing chaotic signals
of driven laser.

In fact, {P1, P2, P3} = P3/8,2/5,3/7 is a particular case of the triplet
Pr,q,q′ = {Rr ,Qq, Pq′} where Rr is a rotation of angle 2rπ , Qq has
code cq011 and Pq′ has code cq′0 with r, q, q′

∈ Q ∩ (0, 1/2) and
q < q′. Thuswe are going to construct the pruning region rel Pr,q,q′ .
So our construction works for a countably many family of triplets.

These type of triplets also appear in [47] by Letellier et al. where
P5/11,3/7,4/9 was found in a Rössler attractor (See period 11 orbits
of [47, Table I]); in that case, since P4/9 forces R5/11, it is sufficient to
study only Q3/7 and P4/9. Since cq011 and cq110 are codes of orbits
with the same braid type [48], the triplet P5/11,3/7,4/9 also appears
in the spectrum of orbits obtained from the dynamics of a vibrating
string in [41, Table I]. Noting that the pruning region that will be
constructed does not lead to an one-dimensional dynamics, maybe
our method could explain why certain periodic orbits are missing
in the periodic spectra of the experimental data found in [41].

We only consider the case r < q. Let M and N be the periods
of Qq and Pq′ , respectively. By the definition of cq it follows that
cq′061 cq01161 Rr when projected to the lower unstable leaf of the
horseshoe. Then the first pruning domain D1 is defined by a stable
leaf θ s1 passing through Rr and going from ∞0.(Rr)

∞ to ∞1.(Rr)
∞,

and an unstable segment θu1 joining the same points. See Fig. 7.
Pruning D1 from the Smale horseshoe, one can obtain an Axiom

Amapψ1. By Theorem17 of [49], Rr is both a stable and an unstable
boundary point for ψ1. So the configuration of the invariant
manifolds structure of ψ1 looks like this one in Fig. 8 which is a
blow up of the section [0.7, 0.95]× [0, 1] of the symbol plane. The
map ψ1 has a bigon which can be extended to a pruning domain
D2 bounded by a stable segment θ s2 containing Qq and a segment θu2
included in the unstablemanifold of some point of the orbit of Rr . If
one prune ψ1 using the domain D2, it is obtained an Axiom A map
ψ2 whose invariant manifolds look like Fig. 9. Note that the orbits
eliminated byψ2, that is, the orbits which fall in Int(D1)∪ Int(D2),
are these ones whose codes are bigger than the code of Qq, except
Rr . Then the basic set of ψ2 is

{S : S 61 Qq} ∪ {Rr}.

Since cq >1 cq′ , one can construct a pruning domain D3 bounded
by a segment θ s3 containing (11cq0)∞ and an unstable segment
θu3 containing Pq′ , as in Fig. 9. So θ s3 and θu3 intersect at the points
∞(cq′0).(11cq0)∞ and ∞(cq′0)cq′1.(11cq0)∞. Hence D3 = {x.y :

(11cq0)∞ 61 x61(cq011)∞, (0cq′)∞ 61 y61 1cq′(0cq′)∞}.
Uncrossing the invariant manifolds inside D3 by a pruning,

we obtain an Axiom A map ψ3 whose invariant manifolds are
as in Fig. 10. Note that ψ3 still has a bigon I contained within
a pruning domain D4. By the analysis of the ψ−N

3 (θu3 ) it follows
Fig. 8. Invariant manifolds structure of ψ1 .

Fig. 9. Invariant manifolds structure of ψ2 .

Fig. 10. The regions G and R4(in dotted lines).

that D4 is contained in the region R4 defined by the points A4 =
∞(cq′0)11.cq′1(11cq0)∞B4 =

∞(cq′0)10.cq′1(11cq0)∞, that is,
R4 = {x.y : cq′1(11cq0)∞ 61 x61(cq011)∞, 01(0cq′)∞ 61 y61
11(0cq′)∞}. The stable boundary ofD4 belongs also to the boundary
of a region G which is limited by three stable leaves and three
unstable leaves. By the combinatorics of A4 and B4 we see that the
(N + 2)th iterate of G has as frontier a segment of the unstable
boundary of D4. See Fig. 10.

Applying one more time the pruning method, one can uncross
the invariantmanifolds that are insideD4. Making the construction
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Fig. 11. Pruning map ψ4 associated to D4 .

Fig. 12. The limit map ψ∞ .

of ψ4, the pruning diffeomorphism associated to D4, the bigon
I and the region G are eliminated and they are substituted by
a new bigon I ′ and a new region G′ which maintain the same
properties than I and G. See Fig. 11. So there exists a pruning
domain D5 containing I ′. The domain D5 is asymmetric in relation
to the central horizontal line.

A combinatorial argument proves thatD5 is included in a region
R5 defined by the points A5 =

∞(cq′0)11cq′011.cq′1(11cq0)∞B5 =
∞(cq′0)10cq′110.cq′1(11cq0)∞. The domain D5 has the same
properties thanD4 and hence one can repeat the process for finding
a new pruning domain D6 included within a region R6 defined
by the points A6 =

∞(cq′0)11(cq′011)2.cq′1(11cq0)∞ and B6 =
∞(cq′0)10(cq′110)2.cq′1(11cq0)∞. Note that D4 ⊂ D5 ⊂ D6.

Proceeding inductively in that way, we can find a increasing
sequence of asymmetric pruning domains Dj, with Di ⊂ Dj if 5 ≤

i < j, and regions Rj defined by the points

Aj =
∞(cq′0)11(cq′011)j−4.cq′1(11cq0)∞

and

Bj =
∞(cq′0)10(cq′110)j−4.cq′1(11cq0)∞.

Hence wewill obtain a sequence of pruningmapsψj associated
toDj. After pruning all these domainswe obtain a homeomorphism
ψ∞ which is no longer an Axiom A map, but whose combinatorics
can be described by the pruning region

Pr,q,q′ = ∪
3
i=1 Int(Di) ∪ Int(D∞),

where D∞ is included inside the region R∞ = {x.y : cq′1(11cq0)∞
61 x61(cq011)∞, (011cq′)∞ 61 y61(110cq′)∞}. See Fig. 12.

Thusψ∞ has an invariant set K = Σ2 \∪i∈Z σ
i(Pr,q,q′) given by

K = {Rr} ∪ {S : S 61 Qq and S ∩ (Int(D3) ∪ R∞) = ∅}

which is non-uniformly hyperbolic in all its points except in two
of them with period (N + 2): (cq′110)∞ and (cq′011)∞. Finally,
one has that ΣPr,q,q′ = K up a finite number of boundary periodic
Fig. 13. The set K in the symbol plane.

Fig. 14. A 3-pronged singularity.

points. This set has been represented in the symbol plane in Fig. 13
up to orbits of period 19.

Now we will argue a possible explanation for the necessity of
infinite pruning domains for pruning relative to certain basis sets.
In our example, collapsing thewandering pieces ofW s(K)∪W u(K),
ψ∞ projects to a pseudo-Anosov map φ with a finite number of
singularities, and the orbits of (cq′110)∞ and (cq′011)∞ become a
unique orbit of periodN+2 that is a 3-pronged singularitywithout
rotation. A schematic representation of these points is pictured in
Fig. 14.

This collapsing process, that was introduced by Bonatti and
Jeandenans on AxiomAmaps [24, Chapter 8], is devoted to find the
minimal Nielsen–Thurston’s representative φ within the isotopy
class of ψ∞, the main ingredient for determining the minimal
structure of periodic orbits. As de Carvalho and Hall have observed,
whenever φ has a n-pronged singularity with rotation 0, one needs
asymmetric pruning domains [50, Section 4.6.1]. It seems that
symmetric pruning domain only create pronged singularities with
non-null rotation, and that, given a set of periodic orbits, only a
finite number of symmetric pruning domains can be constructed.
So what we have seen in this paper and in many other examples
for which we have implemented the pruningmethod (see the final
Section of [20]) is that if a n-pronged singularity of φ has rotation 0
then it is needed an infinite number of asymmetric pruning domains.

5. Conclusion

Identifying a finite set of homoclinic or periodic orbits P with
horseshoe orbits we can try to find the set of pruning domains
that are necessary to eliminate the bigons of the horseshoe rel
those orbits. If that set is finite then the orbits forced have a
representative in ΣP . Thus ΣP is the minimal topological chaotic
set coexisting with P .
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It seems to be true that if the minimal representative rel to
a set of orbits has a n-pronged singularity without rotation then
we need a infinite number of asymmetric pruning domains, but
nowadays there is no a proof for that observation. But, even if the
set of pruning domains is infinite, there exist cases, as the examples
in Section 4, where ΣP is characterized by these pruning domains
building a limit map that is a non Axiom A model of the minimal
dynamics. Maybe a reason for that is the fact that the combinatorics
of the asymmetric domains is the same, so at least a symbolic
description of the missing orbits can be calculated. So it will be
interesting to prove if one of the following implications (or their
reverses) is true: rotation 0H⇒ asymmetric pruning domainsH⇒

infinite pruning domains.
There is not restriction on the type of Axiom A maps that one

can prune. As for the horseshoe template, the pruning method can
be useful to the topological organization of periodic orbits coming
from Axiom A maps with more than two symbols as these ones
contained in [47,51]. In these cases a good information about the
full symbolic dynamics of the template and of the positions of the
bigons is necessary.
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