

OMEL HyperPro Processing Instructions

Jasmine Nahorniak November 18, 2016 ProSoft Version 8.1.5

OMEL HyperPro Processing Instructions

Jasmine Nahorniak November 18, 2016 ProSoft Version 8.1.5

Before we start, I'd just like to make it clear that this is *not difficult*. However, it does require attention to detail and an hour or two to process a cruise's worth of data. Yes, the instructions are long. This is to help you avoid the many, many pitfalls along the way. After the first time through, processing will be a breeze.

The important thing is that we want all OMEL HyperPro data to be processed in exactly the same way.

HyperPro photos and diagrams are from www.satlantic.com.

Bon voyage!

Contents

Step 0: Preparing for Processing	4
System Requirements	4
Operating System	4
Software	4
Files	4
Directory Structure	5
ProSoft Setup	7
New Calibration and Context Files	7
Importing Context Files	7
Step 1: Raw Data Files	
Step 2: Log File	11
Step 3: ProSoft	
Selecting Context Files	
Loading the Context Files	14
Profile Instrument Distances	14
Raw File Parsing	15
Pressure Tare Type	16
Modifying the Raw File	16
Processing the Data	17
Checking the Pressure Tare Type	24
Step 4: Matlab	25
Matlab Path Setup	25
Matlab Processing Summary	26
Matlab Processing Steps	26
Matlab Output	27
Step 5: Dark Values	27
Step 6: Finishing Up	28
Appendix A: Creating Context Files	29
Calibration Files	29
Instrument Context	
Parameters Context	51

Appendix B: ProSoft Settings	61
Appendix C: Troubleshooting	62
Appendix D: Prosoft Version Differences	65
Appendix E: Other Resources	66
Appendix F: Cheat Sheet	67
Appendix G: Important Dates	69
Appendix H: Output Data	70
Appendix I: Parameters	73

Step 0: Preparing for Processing

System Requirements

Operating System

Microsoft Windows 2000/2003/XP/Vista/7 (ProSoft does not run on Mac or Linux)

Software

You will need the following software installed on your PC:

- ProSoft 8.1.5_2
 - this version is not yet available from the Satlantic website ask Jasmine for a copy
- Matlab (I use R2014b)
- Excel (for editing the processing log)

Files

You will need the following files on your PC:

- HyperPro calibration files
- HyperPro Matlab processing scripts

Directory Structure

You will need to create a folder on your PC to contain the necessary files for HyperPro processing. Let's call it "hyperpro". Create the following subfolders under your "hyperpro" folder:

cal	to contain the Hyperpro calibration and context files
matlab	to contain the Matlab processing scripts
logs	to contain the processing logs
data	to contain the Hyperpro data (raw and processed)

cal

Copy the HyperPro calibration files to the cal folder. You will need four folders and their contents: context_files, cal_files, Instruments, and Processing Parameters. These four folders should be placed inside your "cal" folder. These folders contain the calibration and context files for all OMEL Hyperpros (107, 120, 127). The cal_files folder contains the calibration files from Satlantic. The latter two folders (Instruments and Processing Parameters) are from ProSoft's hidden AppData files and provide an easy way to add someone else's existing context files to your system. See the Prosoft Setup section below for more details.

matlab

Place the HyperPro Matlab routines (from Jasmine) in the "matlab" folder.

logs

The log file is an excel spreadsheet. You should have one log per project (e.g. HOT, MILOCO, etc). If the data to be processed are a continuation of an existing data set (e.g. MILOCO, HOT, etc), use the existing log file for that project. It is important to keep a log to keep track of the processing settings you use so your results are reproducible.

data

Under the "data" folder, you will then need to create a new folder to contain the data for your cruise. This folder should have a name that describes the cruise such as "HOT-236". This folder will be referred to as the **cruise folder**. Place your raw data files in the cruise folder.

You should now have this directory structure on your PC:

hyperpro cal context_files 107 120 127 cal_files 107 120 127 Instruments **Processing Parameters** matlab logs data HOT-236

ProSoft Setup

New Calibration and Context Files

Always check for new calibration and context files as they will change after calibrations.

NOTE: If the HyperPro was just calibrated and there are new calibration files (in the cal_files folder) but no corresponding new context files (in the context_files folder), follow the "Creating Context Files" instructions in Appendix A.

Importing Context Files

We will set up ProSoft with "context files". These files contain critical information such as which calibration files to use, instrument-specific characteristics like sensor-to-sensor distances, and processing options.

For consistency in processing at OSU, **always use the provided context files**. For more information, see Appendix A.

Se that co

Several different context files may be available for the same sensor. It is important to use context files that match the collection date of your data. For example, if the data were collected in 2010, use the context files from 2010, not 2011. In addition, context files created under one version of ProSoft may not work under another version. For this reason, the ProSoft version is included in the context filename (8.1.1). If possible, use the context file that matches your ProSoft version (provided that the dates also match). If this is not possible, you may have to re-create the context files for your ProSoft version. See Appendix A.

There are two possible ways to add the context files to ProSoft. The first method is via the ProSoft interface, which can be laborious as it involves entering the filename to be saved each time. The second method involves adding files to a hidden folder. Both methods are described here.

Method 1: Importing the context files using the ProSoft interface

- 1. Launch ProSoft on your PC.
- 2. First, you will import all Instrument Context files for all sensors (107, 120, and 127).
 - Each sensor has two or more instrument context files. One is designed specifically for use with underway (on deck) HyperPro data only. This underway instrument context file has "UW" (for underway) in the filename. There may also be a file for HyperPro data collected in Buoy mode – this file will have "BUOY" in the filename. The other file is for use with profile, yo-yo, and dark data. See Table 2 below for example filenames.
 - In the "Current Instrument" section of the ProSoft window, click on the "Import" button.
 - Navigate to the "cal/context_files" subfolder of your hyperpro folder.
 - Continue to navigate down two more levels of subfolders.
 - Select the appropriate *.cfs file for import. Click on "Save".

- Repeat the last 3 steps until all Instrument Context files have been loaded for all sensors.
- 3. Next, you will import all Parameter Context files for all sensors (107, 120, and 127).
 - In this case, there are at least three files per sensor. The "UNDERWAY" file is for underway (on deck) data. The "SURFACE" file is for use with yo-yo or cast data to derive surface parameters. The "PROFILE" file is needed for dark data, and to derive profile data from cast or yo-yo data. The "BUOY" file is for data collected in buoy mode.
 - In the "Current Parameters" section, click on the "Import" button.
 - Navigate to the "cal/context_files" subfolder of your hyperpro folder.
 - Navigate into one of the sensor subfolders.
 - Select the appropriate *.mat file for import and click on "Open".
 - Click on "Save As" you will then need to enter the filename. Use the same filename that you just imported (it's displayed in the window title bar).
 - Repeat the last 3 steps until all Parameter Context files have been loaded for all sensors.
- 4. Exit ProSoft.

Method 2: Importing the context files by adding them to a hidden ProSoft folder

- 1. Navigate to the folder *above* the "AppData" or "Application Data" folder as listed in the table below (i.e. c:\Users*username*\ or c:\Documents and Settings*username*\)
- The "AppData" or "Application Data" subfolders are usually hidden. To see the hidden folder, select "Organize Folder and search options View Show hidden files, folders, and drives". You will now be able to navigate to the "Processing Parameters" and "Instruments" folders as listed in the table below.
- 3. Copy the *.mat files from your hyperpro/cal/Processing Parameters folder to this hidden Processing Parameters folder.
- 4. Copy all of the subfolders in your hyperpro/cal/Instruments folder to this hidden Instruments folder.

ProSoft stores all imported/created context files on your PC in the locations below. Note that the "AppData" and "Application Data" folders may be hidden system folders.

Windows 7
c:\Users\username\AppData\Roaming\ProSoft V.V.V\Processing Parameters
c:\Users\username\AppData\Roaming\ProSoft V.V.V\Instruments
Windows XP
c:\Documents and Settings\username\Application Data\ProSoft V.V.V\Processing Parameters
c:\Documents and Settings\username\Application Data\ProSoft V.V.V\Instruments

Example Set of Context Filenames		
Instrument Context		
underway	HP120-2011-8.1.1-UW.cfs	
buoy	HP120-2011-8.1.1-BY.cfs	
surface		
profile	HP120-2011-8.1.1-PR.cfs	
dark		
Parameter Context		
underway	UNDERWAY_8.1.1.mat	
buoy	BUOY_8.1.1.mat	
surface	SURFACE_8.1.1.mat	
profile		
dark	PROFILE_8.1.1.mat	

Table 2: An example set of context filenames for sensor 120. Each sensor has five or more context files; two or more instrument context files and three or more parameter context files. The filename segments include the sensor ID (120), the year of calibration (2011), the output data type (UW/UNDERWAY, BY/BUOY, PR/PROFILE, SURFACE), and the ProSoft version number (8.1.1).

Step 1: Raw Data Files

Place the raw data files in your cruise folder.

All raw filenames end in the extension "**.raw**". There are four different possible types of files: profile, yo-yo, dark, and underway (on deck). Some of the processing scripts expect filenames to be in a particular form. Please rename raw files as necessary to follow the conventions below. For example, an underway file named h236_uw1.raw should be renamed to h236_UW_01.raw. Otherwise the processing scripts will not recognize the file as an underway file.

Raw data type	Example Filename	Filename convention comments	
SINGLE CAST	h236_aloha1.raw	Do not use "dark" or "_UW_" in the filename	
YO-YO	h236_aloha_yoyo1.raw	Contains "yoyo" in the filename	
DARK	h236_dark.raw	Contains "dark" in the filename	
UNDERWAY	h236_UW_01.raw	Ends with "_UW_??.raw"	
BUOY	H236_buoy.raw	Contains "buoy" in the filename	

Step 2: Log File

The log makes it easy to keep track of what has been processed, information about the data, and any errors. The tables below list important things to keep track of and where to find them. Most of the needed metadata can be output for an entire cruise folder at once using the Matlab function **hyperpro_getmetadata.m.** To use this function, follow these steps:

- 1. Launch Matlab
- 2. Navigate to the Hyperpro matlab folder
- 3. Run "hyperpro_getmetadata".
- 4. Select the cruise folder of interest.
- 5. A CSV text file called "metadata.txt" will be output to the cruise folder.
- 6. Launch Excel.
- 7. Using File-Open, load the existing log file (or create a new one).
- 8. Select the cell where the new block of metadata should be inserted.
- 9. Under the "Data" tab in the "Get External Data" section, select "From Text". Select the metadata.txt file. Choose comma delimited. Set the format for all columns to "text" otherwise Excel accidentally changes some text (like cloud fractions) to dates when imported.

Raw Filename	hyperpro_getmetadata.m
Cruise ID	hyperpro_getmetadata.m
Operators	hyperpro_getmetadata.m
Latitude	hyperpro_getmetadata.m
Longitude	hyperpro_getmetadata.m
Cloud Percent	hyperpro_getmetadata.m
Wave Height	hyperpro_getmetadata.m
Wind Speed	hyperpro_getmetadata.m
Comment	hyperpro_getmetadata.m
Station ID	hyperpro_getmetadata.m
Timestamp	hyperpro_getmetadata.m
Pressure Tare	hyperpro_getmetadata.m
Sensor ID	hyperpro_getmetadata.m
Calibration File Date	enter manually
Calibration File Type	"stray light corrected" or "not stray light corrected"
Pressure Tare Type	hyperpro_checkpressuretare.m (run during processing below)
Prosoft Version	enter manually
Instrument Context	enter manually
Parameter Context	enter manually
Processed Successfully (yes or no)	ProSoft output window (look for "successfully completed")
Errors	ProSoft output window

Step 3: ProSoft

Selecting Context Files

The context files used during processing should correspond to the correct (a) sensor ID, (b) date of collection, (c) input file type (underway, cast, yoyo, or dark), (d) output data type to generate (underway, surface, profile, or dark), (e) ProSoft version, and (f) calibration type (stray light or not). All of this information should already be available in the log file from the previous step.

No Stray Light Correction			
Input File Type	Output Data Type Instrument Context Parameter C		Parameter Context
DARK	DARK	HP120-2011-8.1.1-NSL-PR	PROFILE-8.1.1-NSL
CAST or YOYO	PROFILE	HP120-2011-8.1.1-NSL-PR	PROFILE-8.1.1-NSL
CAST or YOYO	SURFACE	HP120-2011-8.1.1-NSL-PR	SURFACE-8.1.1-NSL
UNDERWAY	UNDERWAY	HP120-2011-8.1.1-NSL-	UNDERWAY-8.1.1-NSL
		UW	
BUOY	BUOY	HP120-2011-8.1.1-NSL-BY	BUOY-8.1.1-NSL

The tables below contain example sets of context files for each output data type.

Stray Light Correction			
Input File Type	Output Data Type	Instrument Context	Parameter Context
DARK	DARK	HP120-2011-8.1.1-SLC-PR	PROFILE-8.1.1-SLC
CAST or YOYO	PROFILE	HP120-2011-8.1.1-SLC-PR	PROFILE-8.1.1-SLC
CAST or YOYO	SURFACE	HP120-2011-8.1.1-SLC-PR	SURFACE-8.1.1-SLC
UNDERWAY	UNDERWAY	HP120-2011-8.1.1-SLC-UW	UNDERWAY-8.1.1-SLC
BUOY	BUOY	HP120-2011-8.1.1-SLC-BY	BUOY-8.1.1-SLC

Remember to always use the context files appropriate for the date of the raw data you are processing. If the data were collected in 2010, use the context files from 2010, not 2011. Otherwise the wrong calibration factors will be applied to the data.

Loading the Context Files

- 1. Launch ProSoft
- 2. Decide which raw data file you would like to process. You will need to know the sensor ID, which output data type you desire (underway, profile, surface, or dark), and date of collection.
- 3. In the "Current Instrument" section, select the appropriate file from the drop-down list by clicking on the small down arrow. For more information see "Selecting Context Files" above.
- 4. In the "Current Parameters" section, select the appropriate file from the drop-down list by clicking on the small down arrow. For more information see "Selecting Context Files" above.

Profile Instrument Distances

Profiles (cast or yo-yo)

The offset of the Ed sensor head from various sensors on the profiler (Lu, pressure, and ECO PUC) is needed as input to the instrument context file for profiles. The diagram below was taken from the ProSoft User Manual and shows approximate offset distances. These distances may change over time; they should be measured at least once per cruise.

In newer HyperPro raw files (after September 2013), the measurements needed to derive the offset values can be found in the COMMENTS section of the metadata. For example:

"PRESS 0.726 m, ED 0.118 m, LU 0.145 m, PUC 0.152 m".

See the HOT HyperPro Protocols document for more information. To calculate the offsets from these measurements, use the following equations:

sensors	equation
ED distance to pressure (m)	ED + PRESS – 0.062
LU distance to Ed head (m)	ED + LU
ECO PUC distance to Ed head (m)	ED + PUC

For reference, approximate values for the three OMEL sensors in profile mode are listed below. These values should be used if there is no offset information in the header (such as before September 2013).

sensor	107	120	127
ED distance to pressure (m)	0.776/0*	0.782/0*	0.781/0*
LU distance to Ed head (m)	0.320	0.318	0.315
ECO PUC distance to Ed head (m)	0.270	0.270	0.270

Before processing each raw file, the above values must be checked in the Instrument Context file for profiles. To edit the values, simply click on the "Edit" button. These values are found in 5 places in the context file (HPE, HPL, PED, PLD, SATBB2F).

*The "Distance to Pressure" values in the instrument context file for Ed (HPE and PED) must be appropriate for the pressure tare type.

- a. If the pressure tare type is "In Water", the "Distance to Pressure" should be set to 0.
- b. If the pressure tare type is "On Deck", the "Distance to Pressure" should be the distance from the pressure line to the top of the Ed sensor.

Underway

No distances are needed for the processing of our underway (on-deck) data. During underway measurements at HOT, the HyperPro is kept on the deck of the ship. The only sensor in use is Es.

Buoy

Buoy mode is when the HyperPro is deployed with a flotation collar, hence the HyperPro sits only at the surface and does not profile. This mode is not used at HOT. If this mode is used, the instrument distance that is needed is the **distance from the face of the Lu sensor to the surface of the water** (typically around 0.2 m). In buoy mode, the Lu sensor should be facing down, and the Ed sensor should be facing up. The data from the Ed sensor will not be used. Instead, the Es data measured on the boat is used for surface calculations.

Raw File Parsing

The following options should be verified before processing each data file. The options can be found in the ProSoft main menu under "File" - "Options".

Processing Mode		
SURFACE	"Enable Raw File Parsing"	NOT checked
PROFILE	"Enable Raw File Parsing"	NOT checked
DARK	"Enable Raw File Parsing"	NOT checked
UNDERWAY	"Enable Raw File Parsing"	checked
	"Raw File Parsing Size (Mb)"	20
BUOY	"Enable Raw File Parsing"	checked
	"Raw File Parsing Size (Mb)"	20

If "Enable Raw File Parsing" is checked, ProSoft will split any large (> 20 Mb) raw files into several smaller files (20 Mb max) before processing. Single cast, yo-yo, and dark files are small so this isn't necessary in their case. However, often the underway files can be large (80 Mb or so), as can the buoy files (depending on the deployment length). If you try to process a file greater than 30 Mb in ProSoft without selecting "Enable Raw File Parsing" it will freak out.

Pressure Tare Type

An incorrect pressure tare type ("On Deck" or "In Water") in the instrument context file will lead to incorrect depth values for the profile, and incorrect extrapolated nLws. This setting is important for single casts and yo-yo casts only (it is irrelevant for dark, underway, and buoy data).

The current protocol (as of September 2013) is to measure the pressure tare "On Deck". In the past, the pressure tare was frequently (but not necessarily always) measured "In Water". Unfortunately, there is no record of which method was used – this must be determined by looking at the depth values in a profile or yo-yo cast as explained in the "Checking the Pressure Tare Type" section below.

Modifying the Raw File

If it is absolutely necessary to modify the metadata in the raw file, DO NOT make the edits using Notepad or Word. Doing so will corrupt the file (which contains binary data) and give erroneous results (odd profiles). Instead, either make the edits using Notepad++ (on PC) or on linux/unix using vi. Always keep a copy of the original raw file.

The only example of a time when it was necessary to modify the metadata was when the pressure tare needed to be changed. Two examples when this occurred follow.

- (1) Two pressure tares (on deck and in water) were taken before the profile. The in water pressure tar, since it was collected last, was the one written to the raw data file. To process the data with the on deck pressure tare, I had to modify the pressure tare value in the metadata of the raw file.
- (2) Only in water pressure tares were measured, but they were highly variable. I replaced them with the mean on deck pressure tare (9.83), a value derived from HOT 210 269.

Processing the Data

Process only one file at a time. This makes it easier to read errors in the output window.

There are four different processing modes:

- 1. DARK returns the ECO PUC dark values
- 2. SURFACE calculates surface parameters such as nLw
- 3. **PROFILE** calculates data profiles such as Lu(z)
- 4. **UNDERWAY** calculates underway Es
- 5. **BUOY** calculate surface parameters such as nLw

YOYO CASTS can be processed using two different modes: **SURFACE** and **PROFILE**. Surface processing must be done first. *If SINGLE CAST data are available, there is no need to do PROFILE processing on YOYO data.*

SINGLE CASTS can be processed using two different modes: SURFACE and PROFILE. If YOYO data are available, there is no need to do SURFACE processing on SINGLE CAST data. Please note that surface values derived from single casts using SURFACE mode are MUCH LESS ACCURATE than those derived from yoyo casts.

The table below lists which processing modes are appropriate for your situation.

For a given station, if you have	Then perform the following processing
SINGLE CASTS ONLY (no yoyo files)	PROFILE then SURFACE on the single casts
YOYO CASTS ONLY (no single cast files)	SURFACE then PROFILE on the yoyo casts
SINGLE CASTS and YOYO CASTS	PROFILE on the single casts
	SURFACE on the yoyo casts
UNDERWAY	UNDERWAY
DARK	DARK
BUOY	BUOY

DARK MODE (ECO PUC)

Calculates dark counts for the ECO PUC Input data: DARK

- 1. Ensure that "Enable Raw File Parsing" is NOT checked (see above).
- 2. Check that the correct instrument context file has been selected ("PR").
- 3. Load the "PROFILE" version of the parameter context file.
- 4. In the "Single Level Processing" section, select "Level $1 \rightarrow 1a$ "
- 5. Select the cruise folder containing the raw data.
- 6. Select the raw dark file to be processed.
- 7. Click on the "Add>>" button and then the "OK" button.
- **8.** If successful, it should finish with "master_level1_level1a: Level 1a processing complete". If there are errors, see Appendix C (page 61).
- 9. Record any processing errors in the log.
- **10.** The output will be a *.L1a.hdf file.
- **11.** Launch Matlab and run:

hyperpro_moveoutput(cruisefolder,'Darks')

where *cruisefolder* is the path and filename of your cruise folder containing the raw data. This will move the *.L1a.hdf file into the "Darks" folder.

SURFACE MODE

Calculates surface data extrapolated from depth (nLw, etc.) Input data: YOYO or SINGLE CAST (results are less reliable) NOTE: If YOYO data are available, there is no need to use SURFACE mode on SINGLE CAST data.

These processing steps are run *twice* – once for the entire profile (the resulting data may be used to derive profile parameters using the profile mode below), and then again for just the surface (to derive accurate surface values).

General

- 1. Ensure that "Enable Raw File Parsing" is NOT checked (see above).
- 2. Check that the correct instrument context file has been selected ("PR").
- **3.** Within the instrument context file, verify that the sensor distance offsets match those calculated from the metadata of the raw file (see "Inserting the sensor distance offsets" above). Also check that the correct pressure tare type is selected.

Run 1: Full profile (300 m)

- 1. If this is a reprocessing, don't forget to delete any output HDF files first. Otherwise the new data get appended to the earlier files. Ack!
- Load the "SURFACEFULL" version of the parameter context file. This version has the "Maximum Depth" set to 300 m (this number should be well over the actual profile depth).
- 3. In the "Multi-Level Processing" section, select "Level $1 \rightarrow 4$ "
- **4.** Select the cruise folder containing the raw data.
- 5. Select the file(s) to be processed. These can either be single casts or yo-yo casts. Better nLws will be derived from yo-yo casts if they are available.
- 6. Click on the "Add>>" button and then the "OK" button.
- **7.** If the "Select Casts" box was checked in the "SURFACE" parameter file, a window will open with a list of the casts. Select the cast(s) for processing.
- 8. If successful, the processing should finish with "MasterLevel4: Level 4 processing complete". If there are errors, see Appendix C (page 61).
- **9.** Save the figures by clicking the "Save All" button at the bottom of the ProSoft window. The PNG figures will be save in the "figures" folder.
- **10.** Review the figures.
- 11. If one of the profiles in a yoyo set looks bad, it can be selected for removal. If the selection box for removing a cast isn't displayed during processing, edit the "SURFACE" parameter file ... first select the "Select Casts" checkbox and then reprocess. Don't forget to delete the output files first (hdf and ascii). It is possible to guess which cast should be removed based on the Es time series and the output file sizes.

- **12.** If this is the first or last file of the cruise to be processed, ensure that the correct pressure tare type was used by running hyperpro_checkpressuretare.m (see instructions below).
- **13.** Record any processing errors in the log.
- **14.** Repeat for all files for that cruise.
- **15.** After running the full profile for each file in the cruise, launch Matlab and run the script:
 - hyperpro_moveoutput(cruisefolder,'SurfaceFull')

where *cruisefolder* is the path and filename to the cruise folder containing the raw data. This will move all of the output files into a folder called SurfaceFull. We have to keep the SurfaceFull and SurfaceUpper output separate, otherwise they overwrite each other.

16. For **YOYO** data, you may then process each full profile using the profile mode instructions below.

Run 2: Upper profile (5 m)

- Load the "SURFACE" version of the parameter context file. This version has the "Maximum Depth" set to 5 m.
- 2. Reprocess the data following steps 3 8 above.
- **3.** If the resulting extrapolation is not representative of the profile (for example, if min values of 10⁻⁷ are present), delete the output, adjust the Maximum Depth (e.g. from 5 to 3) and reprocess.
- 4. AVG_ES is calculated based on the "Normalization" setting in the "SURFACE" parameter file (CAST BEGIN/ MIDDLE/END). The green linear dots in the Es figure represent a linear trend for the Es data. The green dots at the beginning/middle/end will be used to calculate AVG_ES. If those green values aren't representative of the general Es values, choose another "Normalization" setting and reprocess.
- 5. Record any processing errors in the log.
- 6. Repeat for all files for that cruise.
- 7. After running the full profile for each file in the cruise, run the Matlab script:

hyperpro_moveoutput(cruisefolder,'SurfaceUpper').

where *cruisefolder* is the path and filename to the cruise folder containing the raw data. This will move all of the output files into a folder called SurfaceUpper. We have to keep the SurfaceFull and SurfaceUpper output separate, otherwise they overwrite each other.

PROFILE MODE

Calculates profiles (Ed(z), Lu(z), etc.)

Input data: SINGLE CAST or YOYO (after processing the full profiles in SURFACE MODE first to pull out the separate casts)

If **SINGLE CAST** data are available, there is no need to use **PROFILE** mode on **YOYO** data.

- Remove any existing output HDF files first. For YOYO processing, this means deleting any L3a.hdf and L4.hdf files from the SurfaceFull folder. For SINGLE CAST processing, this means remove all HDF output from any earlier runs.
- 2. Ensure that "Enable Raw File Parsing" is NOT checked (see above).
- **3.** Only select "Use SLC Calibration Files" for files with an associated stray light calibration.
- Check that the correct instrument context file has been selected ("PR").
- Within the instrument context file (HPE, HPL, PED, PLD, SATBB2F), verify that the sensor distance offsets match those calculated from the metadata of the raw file (see

"Profile Instrument Distances" above). Also check that the correct pressure tare type is selected.

- 6. Load the "PROFILE" parameter context file.
- 7. In the "Multi-Level Processing" section: For SINGLE CAST data: "Level $1 \rightarrow 4$ " For YOYO data: "Level $2s \rightarrow 3a$ ".
- Select the folder containing the input data.
 For SINGLE CAST data: this is the cruisefolder.
 For YOYO data: this is the SurfaceFull folder.
- **9.** Select the single cast (*.raw) or yoyo cast (*P*_L2s.hdf) to be processed. All files can be processed at once.
- **10.** Click on the "Add>>" button and then the "OK" button.
- **11.** For **YOYO** data: repeat steps 7 10 for "Level $3a \rightarrow 4$ ".
- **12.** Select only the parameters shown in the screenshot above, then click "Okay". Do not select any of the other surface parameters with this mode; they are inaccurate. We will calculate them with the SURFACE mode.
- **13.** For **SINGLE CAST** data, a figure window will pop up (see below). Adjust the scrollbars or enter depth values to select the section of the profile to process (shown by the horizontal red lines). Note the

chosen depths in the log so the processing can be reproduced. Then click "Confirm".

- **14.** If successful, the processing should finish with "MasterLevel4: Level 4 processing complete". If there are errors, see Appendix C (page 61).
- **15.** Record any processing errors in the log.
- **16.** If this is the first or last profile to be processed for the cruise, check the data to ensure that the correct pressure tare type was used (see instructions below).
- **17.** Repeat for all profiles.
- **18.** For **SINGLE CAST** processing, launch Matlab and run the Matlab script:

hyperpro_moveoutput(cruisefolder,'Profiles')

where *cruisefolder* is the path and filename to the cruise folder containing the raw data. This will move all of the output Profiles data into a folder named Profiles.

For **YOYO** data, leave the output files where they are (in the SurfaceFull folder).

BUOY MODE

For Buoy mode, you MUST use ProSoft version **8.1.5** (or later). Earlier versions did not handle the data correctly above 700 nm.

Calculates above-water data (Lw, RSR, PAR, etc.) Input data: **BUOY**

- 1. Make sure you are using ProSoft 8.1.5 (or later).
- **2.** Ensure that "Enable Raw File Parsing" is checked and that the size is 20 Mb (see above).
- **3.** Check that the correct instrument context file has been selected ("BY").
- **4.** Load the "BUOY" version of the parameter context file.
- 5. In the "Multi-Level Processing" section, select "Level $1 \rightarrow 4$ "
- 6. Select the cruise folder containing the raw data.
- Select the raw buoy files for processing (*buoy*). All of the buoy files can be processed at once, if desired.
- Click on the "Add>>" button and then the "OK" button.

-57 Level 4 Options I Diffuse Attenuation Coefficient (k) Propogate Optical Variables to Surface Water Leaving Radiance (Lw, Lwn) Surface Remote Sensing Reflectance Surface Reflectance Chlorophyll Surface Estimate (SeaBAM 0C2) Chlorophyll Surface Estimate (Gordon 88) Chlorophyll Profile Estimate (Morel 2001) Water Properties Remote Sensing Reflectance Profile **Reflectance Profile** Photosynthetically Available Radiation (PAR) Vertical Energy Fluxes Okay Scattering Select All Options Cancel

 Select only the parameters shown in the screenshot to the right, then click "Okay". Do not select any of the other parameters with this mode.

- 10. If the raw files are large, ProSoft will split them into several smaller files (20 Mb max) and process them separately one after the other. The split raw files will remain in the same folder as your original file. Their filenames will be the same as the original raw filename, but with an added "_1" or "_2" etc.
- **11.** If successful, each split file processing should end with "MasterLevel4: Level 4 processing complete". If there are errors, see Appendix B: ProSoft (page 61).
- **12.** NOTE: The Buoy mode will NOT create L4 SeaBASS output files, only L3a. This is true even if all of the output parameters are selected. However, all L4 data are available in the ASCII files folder.
- **13.** Record any processing errors in the log.
- 14. Repeat for all buoy files.
- **15.** Launch Matlab and run the Matlab script:

hyperpro_moveoutput(cruisefolder,'Buoy')

where *cruisefolder* is the path and filename to the cruise folder containing the raw data. This will move all of the buoy output files into the folder "Buoy".

UNDERWAY MODE

Calculates above-water data (PAR, etc.) Input data: UNDERWAY

- 1. Ensure that "Enable Raw File Parsing" is checked and that the size is 20 Mb (see above).
- 2. Check that the correct instrument context file has been selected ("UW").
- 3. Load the "UNDERWAY" version of the parameter context file.
- 4. In the "Multi-Level Processing" section, select "Level $1 \rightarrow 4$ "
- 5. Select the cruise folder containing the raw data.
- 6. Select the raw underway files for processing (_UW_). All of the underway files can be processed at once, if desired. It takes about an hour to process a 100 kB underway file.
- **7.** Click on the "Add>>" button and then the "OK" button.
- **8.** Select ONLY "Photosynthetically Available Radiation" (two others will automatically be checked keep these too). Then click on "Okay".
- 9. ProSoft will split the original raw file into several smaller files (20 Mb max) and process them separately one after the other. The split raw files will remain in the same folder as your original file. Their filenames will be the same as the original raw filename, but with an added "_1" or "_2" etc.
- **10.** If successful, each split file processing should end with "MasterLevel4: Level 4 processing complete". If there are errors, see Appendix B: ProSoft (page 61).
- **11.** Record any processing errors in the log.
- **12.** Repeat for all underway files.
- **13.** Launch Matlab and run the Matlab script:

hyperpro_moveoutput(cruisefolder,'Underway')

where *cruisefolder* is the path and filename to the cruise folder containing the raw data. This will move all of the Underway output files into the folder "Underway".

Checking the Pressure Tare Type

Follow the instructions below to verify that the correct pressure tare type was used during the processing.

- 1) Launch Matlab
- 2) Run hyperpro_checkpressuretare. It will ask for the directory containing the L1B HDF files (this is the Profiles folder). It will iterate over all L1B files in the folder.
- 3) The code will output (a) the measured pressure tare value, (b) the measured profile pressure values at the start of the cast, (c) the probable pressure tare type that was used in the processing, and (d) the probable *actual* pressure tare type that should have been used.

Assuming that the profile was started right at the surface (not 5 m depth, for example):

- a. If the profile pressure values and the measured pressure tare are similar, then the pressure tare type should be "In Water".
- b. If the profile pressure values are larger than the measured pressure tare, the pressure tare type should be "On Deck".

Usually operators use the same pressure tare type throughout the cruise (but not always!).

Sometimes a cast is started some distance below the surface (e.g. 5 m), in which case the above assumptions don't work. Study the pressure values at the top of each of the associated casts to help determine the pressure tare type (in case one of the casts was started deeper than usual).

Another method to determine the pressure tare type is by examining the pressure tare values themselves. A typical in water pressure tare at Station ALOHA is approximately 10.7. A typical on deck pressure tare is 9.8. In both cases, the variability is +/- 0.1.

The same pressure tare value is usually used for a set of multiple casts.

In addition, sometimes the pressure tare measurement is incorrectly made below (rather than at) the water surface. This results in inaccurate (and sometimes positive) depth values.

- 4) Make sure the "distance to surface" values in the instrument context file for Ed (HPE and PED) are appropriate for the pressure tare type.
 - a. If the pressure tare type is "In Water", the distance to surface should be set to 0.
 - b. If the pressure tare type is "On Deck", the distance to surface should be the actual distance from the pressure line to the top of the Ed sensor.
- 5) If the "probable actual pressure tare type" differs from the pressure tare type used to process the data, reprocess it with the correct pressure tare type and distance-to-surface settings.

Step 4: Matlab

Matlab Path Setup

All of the following steps should be performed from your PC. This step only needs to be performed once.

- 1. Launch matlab
- 2. Within matlab, cd to the hyperpro matlab folder (the folder that contains all of the hyperpro matlab processing routines).

3. In the Matlab menu bar, click the "Set Path" button in the "Environment" section of the "Home" tab. For earlier versions of Matlab that don't have such a button, navigate to the hyperpro Matlab folder using the Matlab folder list window, then right-click on the folder and select "Add to Path. Select "Add with Subfolders", and "Apply". These folders will be added permanently to the Matlab path.

Matlab Processing Summary

This processing must occur *after* the ProSoft processing from the previous section. The matlab processing will accomplish the following tasks:

- o calculate mean dark counts (to keep track of instrument performance)
- calculate KPAR
- o concatenates ascii underway files
- o pulls out a subset of desired data
- o creates figures

Matlab Processing Steps

All of the following steps should be performed from your PC.

- 4. Launch matlab
- 5. Within matlab, cd to the hyperpro matlab folder (the folder that contains all of the hyperpro matlab processing routines).
- 6. At the matlab prompt, type:

hyperpro_main

and follow the instructions. Record the dark value mean and std in the log. You will be asked to select a set of files for the single cast (profile) plots. Select a set of 2 or 3 files based on the date (which also implies the same location) so that the replicate casts will be plotted on the same figure. You will be prompted to repeat this process as often as needed. When done, you will next be asked to select a set of files for the surface plots (from the yoyo casts). In this case, select all yoyo casts from the same location regardless of date. This will result in a plot from a single location (e.g. Station ALOHA) that displays the change in the Rrs spectrum from day to day. Again, you will be prompted to repeat this process for different locations as often as needed.

7. Exit matlab

The program hyperpro_main.m calls the functions listed in the table below.

hyperpro_dark (for dark data only)	Calculates the mean dark values for the red,
(see Step 3 below)	blue, and green channels
hyperpro_KPAR	Calculates KPAR and adds a KPAR column to the
	files in the "Ascii Files" folder
hyperpro_subset	Pulls out a small subset of the most popular
	parameters (output goes in the "subset" folder)

hyperpro_UW_cat (for underway data only)	Concatenates the split ascii underway files back
	together into a single file.
hyperpro_plot_profile_ascii (optional)	Plots the profile data (79 figures)
hyperpro_plot_surface_ascii (optional)	Plots the surface data
hyperpro_plot_underway_ascii (optional)	Plots the underway data
hyperpro_plot_subset (optional)	Plots the subset data as a quality check.
hyperpro_plot_profile_final	Plots the profiles
hyperpro_plot_surface_final	Plots the surface spectra

Matlab Output

The final output (to be sent to Lance, etc.) is located in the "subset" and "figures" folders.

Step 5: Dark Values

There are two types of dark values. The first type is the "calibration dark values". These are the dark values for the various sensors (Lu, Ed, Es, etc.) measured at Satlantic during a calibration, and are hard-coded in the calibration files. They are the values used during ProSoft processing. The second type of dark values is the "measured dark values". These are the ECO PUC dark values measured during a deployment and saved in a *dark*.raw file. These values are *not* used during processing. Rather, they are used to monitor the ECO PUC status over time. Dark values for the other sensors (Lu, Ed, and Es) are not measured.

The mean and standard deviations calculated from running the matlab routine "hyperpro_dark" should be recorded in the log and compared with earlier values. Any large deviations from the normal values may indicate an instrument problem. The mean and standard deviations are output in the Matlab command window, and are also listed in the title of each output figure.

If the measured dark values slowly drift over time, it may be necessary to replace the hard-coded calibration dark values with the new measured dark values. The file to edit is the **SATBB2F*.tdf** file in the cal/cal_files/* subfolder. If the dark values are changed, make a note of the old and new values in the log. Reprocessing of all raw data from that cruise is then necessary.

Note that the measured dark values are meaningless if the dark measurement was not performed correctly. The entire face of the ECO PUC sensor *must* be covered in black electrical tape. Do not simply cover the sensor with the sensor cap. The cap is reflective and does not exclude all light - it will yield inaccurate dark values.

Step 6: Finishing Up

Window and a second

Notify the OMEL data manager about the new hyperpro files. Then do the hula.

Appendix A: Creating Context Files

Details are important. It is very straightforward to create context files, but you must be very careful to do it correctly.

bad context file **→** bad data

Calibration Files

Because the HyperPro is made up of multiple sensors, there are multiple calibration files. The context files are a way to group all of the appropriate calibration files and other processing options together into a single package.

To create a context file for a sensor, you will need a copy of all relevant calibration files on your PC. Calibration files are stored on garcia in instruments/HyperPro/cal_files.

Keep the calibration files in a separate folder for each sensor. Otherwise the calibration files may overwrite each other (most of the calibration filenames are the same). If you're ever not sure which sensor a calibration file belongs to, simply open the calibration file with a text editor and search for "MPR". The sensor ID follows the letters "MPR" (e.g. MPR0120).

Example sets of calibration files are shown in the table below.

Without stray light correction	With stray light correction
HED329c.cal	HED329c.slc
HPE328c.cal	HPE328c.slc
HPE328c_Eu.cal *	HPE328c_Eu.slc
HPL278c.cal	HPL278c.slc
Hse329c.cal	Hse329c.slc
MPR120a.cal	MPR120a.cal
PED328c.cal	PED328c.slc
PED328c_Eu.cal *	PED328c_Eu.slc
PLD278a.cal	PLD278c.slc
SATBB2F0554.tdf	SATBB2F0554.tdf
HSE0329_13Aug15.sip	HSE0329_13Sep03_SLC.sip
MPR0120_13Jul31.sip	MPR0120_13Sep03_SLC.sip
MPR0120 13Jul31 Eu.sip *	MPR0120 13Sep03 SLC EU.sip

* may not be present in older calibration file sets

If both calibration file types are available for the same date (i.e. with and without stray light), the stray light correction files should be used.

Instrument Context

Before beginning, navigate to:

File – Options – "Use SLC Calibration Files"

If you have stray light correction calibration files (*.slc or *_SLC.sip) and wish to use them, check this box (otherwise they won't show up as options later).

To begin creating an instrument context file, launch ProSoft and select the "New" button from the Current Instrument section. Select the *.sip files for your sensor and click on the "Add >>" button; this will load all of the needed calibration files. If you have stray light correction (*_SLC.sip) files, use those instead of the non-SLC files. Click the "OK" button when done.

J File Selection	the other states and the states of the state	
File Selection File Selection HED329c.cal HPE328c.cal HPE328c.cal HPL278c.cal HSe329c.cal HSe329c.cal MPR120a.CAL PED328c.cal PED328c.cal PED328c.cal PED328c.cal SATBB2F0554.tdf HSE0329_13Aug15.sip HSE0329_13Sug15.sip MPR0120_13Jul31.sip MPR0120_13Jul31.sip MPB0120_13Jul31.sip MPB0120_13Jul31.sip MPB0120_13Jul31.sip	Select Calibration Files For Instrument HSE0329_13Sep03_SLC.sip MPR0120_13Sep03_SLC_sip MPR0120_13Sep03_SLC_EU.sip	OK Cancel
MPR0120_13Sep03_SLC_EU.sip	-	,

On the next window that opens, select all of the files listed in the "Available Calibration" list, then click on the ">>" (Load calibration file) button under the list. This will populate the "Loaded calibration files" list. See screenshot below.

Creating New Configuration File	
Available Calibration Loaded Calibration Files HEB329b.cal 1 HPE328b_Eu.cal 1 HPE328b_Eu.cal 1 HPE328b_Eu.cal 1 PED328b_Eu.cal 1 PED328b_Eu.cal 1 PL0278b cal 2	Calibration File Parameters Sensors Sensor Parameters Sensors Sensor Parameters Distance to Surface (m) Channels (nm) Distance to Pressure (m) Immersion Coefficient Immersion Coefficient Immersion Coefficient Frame Type Immersion Coefficient Frame Type Immersion Coefficient
Load calibration file	Water Medium Pressure Tare sea water On Deck
Add Cal Files Restore Defaults	Cancel Save Save As

Next follow the screenshots shown on the pages below by clicking on the different loaded calibration files and modifying settings as needed. After import, ProSoft will store this new instrument context file and the associated calibration files on your PC in the following location:

Windows 7	c:\Users\username\AppData\Roaming\ProSoft 8.1.1\Instruments	
Windows XP	c:\Documents and Settings\username\Application Data\ProSoft 8.1.1\Instruments	

When finished, copy the contents of the above folder to garcia in instruments/HyperPro/context_files.

Part 1

Filename examples: (1) HP120-2011-8.1.1-NSL-PR, (2) HP120-2013-8.1.1-SLC-PR

Editing Configuration File for Instrument Context HOT_Hy	perPro_InstrContxt_120_7.7.15.cfs
Available Calibration Loaded Calibration Files HED329 cal HPE328a.cal HPL278a.cal HPE328a.cal Hse329a.cal HPE328a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf SATBB2F0554.tdf SATBB2F0554.tdf	Calibration File Parameters for HED329.cal Sensors Sensor Parameters for ES Sensors Distance to Surface (m) 0.000 000 0.000 000 0.000 000 Sather Tag Distance to Pressure (m) SATHED0329 0.000 Instrument Type 382.08 Reference 1353.64 Air Measurement Mode Surface 1355.65 ShutterDark 388.69
	Deployment Parameters Water Medium Pressure Tare sea water Image: Constraint of the sea water
Add Cal Files	Cancel Save Save As

Part 2

Default values to use if the actual measurements are unknown:

sensor	107	120	127
ED distance to pressure (m)	0.776/0*	0.782/0*	0.781/0*
LU distance to Ed head (m)	0.320	0.318	0.315
ECO PUC distance to Ed head (m)	0.270	0.270	0.270

Editing Configuration File for	r Instrument Context HOT_Hy	perPro_InstrContxt_120_7.7.15.cfs
Editing Configuration File for	Loaded Calibration Files HED329.cal HPE328a.cal HPE328a.cal Hse329a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf	Calibration File Parameters for HPL278a.cal Sensors Sensor Parameters for LU U Distance to Surface (m) 0.315 305.75 use sensor-specific value 0.000 0.000 319.04 322.36 325.69 325.69 329.01 332.34 335.67 SATHPL0278 338.99 Instrument Type 342.32 Profiler 348.98 355.64 355.64 Water 0.00
>>	*	Water 362.30 Measurement Mode 366.63 FreeFall 372.30 Frame Type 376.63 ShutterLight 382.30 Deployment Parameters 9 Water Medium Pressure Tare Sea water On Deck
	Add Cal Files	Cancel Save Save As

Part 3

Editing Configuration File for the second	or Instrument Context HOT_Hyp	perPro_InstrContxt_120_7.7.15.cfs
Available Calibration HED329.cal HPE328a.cal HPL278a.cal Hse329a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf	Loaded Calibration Files HED329.cal HPE328a.cal HPL278a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf	Calibration File Parameters for Hse329a.cal Sensors Sensor Parameters for ES Distance to Surface (m) Channels (nm) 0.000 000 Distance to Pressure (m) 0154.7 0.000 000 SATHSE0329 Distance to Pressure (m) Instrument Type 0.000 Reference Air Measurement Mode 305.20.4 Surface ShutterLight
	Add Cal Files	Deployment Parameters Water Medium Pressure Tare sea water Image: Cancel Save Save As

Part 4
Editing Configuration File fo	r Instrument Context HOT_Hy	perPro_InstrContxt_120_7.7.15.cfs
Available Calibration	Loaded Calibration Files	Calibration File Parameters for MPR120a.CAL
HED329 cal HPE328a.cal HPL278a.cal Hse329a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf	HED329.cal HPE328a.cal HPL278a.cal Hse329a.cal PED328a.cal PLD278a.cal SATBB2F0554.tdf	Sensors Sensor Parameters for ANC ANC Distance to Surface (m) Channels (nm) 0.000 Distance to Pressure (m) None Distance to Pressure (m) 0.000 None Frame Tag SATMPR0120 Distance to Pressure (m) None Instrument Type Profiler Immersion Coefficient Immersion Coefficient Immersion Coefficient Water Immersion Coefficient Immersion Coefficient Immersion Coefficient Immersion Coefficient Frame Type Anc Immersion Coefficient Immersion Coefficient Immersion Coefficient
>>	<<	
		Deployment Parameters
		Water Medium Pressure Tare sea water On Deck
	Add Cal Files	Cancel Save Save As

Instrument Context: PROFILE, SURFACE, and DARK CAST

Editing Configuration File for the second	or Instrument Context HOT_Hyp	perPro_InstrContxt_120_7.7.15.cfs
Available Calibration HED329.cal HPE328a.cal HPL278a.cal Hse329a.cal MPR120a.CAL PED328a.cal PLD278a.cal SATBB2F0554.tdf	Loaded Calibration Files	Calibration File Parameters for PLD278a.cal
		Deployment Parameters Water Medium Pressure Tare sea water On Deck
L	Add Cal Files	Cancel Save Save As

Instrument Context: PROFILE, SURFACE, and DARK CAST

Instrument Context: PROFILE, SURFACE, and DARK CAST

Part 1

Filename examples: (1) HP120-2011-8.1.1-NSL-BY, (2) HP120-2013-8.1.1-SLC-BY

🛃 Editing Configuration File for Inst	rument Context HP127-2014-8.1.3-S	LC-BY	
Available Calibration Files Loaded Calib PL285d slc PL285d slc MPR127a.CAL SATBB2F633.ddf HED344d.slc Hse344d.slc Hse344d.slc Hse344d.slc	Calibration File Parameters	for HPL285d.slc Sensor Parameters for LU Distance to Surface (m) 0.220 Distance to Pressure (m) 0.000	Channels (nm)
	Water Medium sea water 💌	Pressure Tare On Deck	
Add Cal Files Restore Def	aults Cancel	Save Save As	

🛃 Editing Configuration File for Instrument Con	text HP127-2014-8.1.3-SLC-BY
Available Calibration Files Loaded Calibration Files HPL265d slc HPL285d slc MPR127a CAL HPL27a CAL SATBB2F633.tdf HED344d slc Hse344d.slc Hse344d.slc	Calibration File Parameters for PLD285d.slc Sensors Sensor Parameters for LU U Image: Comparison of the comparison of the comparison coefficient Frame Type Image: Comparison of the comparison of the comparison coefficient Water Image: Comparison of the
	Water Medium Pressure Tare sea water
Add Cal Files Restore Defaults	Cancel Save As

J Editing Configuration File for Instrument Cor	text HP127-2014-8.1.3-SLC-BY
Available Calibration Files Loaded Calibration Files	Calibration File Parameters for MPR127a.CAL
HPL285d.slc HPL285d.slc ALD285d.slc ALD285	Sensors Sensor Parameters for ANC
MPR127a.CAL MPR127a.CAL SATB82F633.tdf HED344d.slc HED344d.slc Hse344d.slc Hse344d.slc	ANC Distance to Surface (m) Channels (nm) 0.000 None
	Distance to Pressure (m)
	Frame Tag
	SATMPR0127
	Instrument Type
	Reference
	Immersion Coefficient
	Water
	Surface
>> <<	Anc
	Water Medium Pressure Lare sea water Image: Constraint of the sea water
Add Cal Files Restore Defaults	Cancel Save Save As

Editing Configuration	File for Instrument Conte	ext HP127-2014-8.1.3-SLC-BY	
Available Calibration Files	Loaded Calibration Files	Calibration File Parameters for SATBB2F633.tdf	
HPL285d.slc	HPL285d.slc	Sensors Sensor Parameters for ECO	
MPR127a.CAL SATBB2F633.tdf HED344d.slc Hse344d.slc	MPH127a.CAL SATBB2F633.tdf HED344d.slc Hse344d.slc	ECO SERIES IOP Distance to Surface (m) 0.180	Channels (nm)
		Distance to Pressure (m)	
		Frame Tag	
		SATBB2F633	
		Instrument Type	
		ECO Series IOP	
		Immersion Coefficient	
		Not Required	
		Measurement Mode	
	-	Surface	
		Frame Type	
>>	<<	Not Required	
		Water Medium Pressure Tare	
		sea water 💌 On Deck 💌	
Add Cal Files	Restore Defaults	Cancel Save Save As	

🛃 Editing Configuration File for Instrum	nt Context HP127-2014-8.1.3-SLC-BY
Available Calibration Files Loaded Calibratio	Files Calibration File Parameters for HED344d.slc
HPL285d.slo PL2285d.slo MPR127a.CAL SATBB2F633.tdf HED344d.slo Hse344d.slo Hse344d.slo	Sensor No. 1 damage of a medicine in the original and the originaly and the originaly and the original and the
	Water Medium Pressure Tare sea water ▼ On Deck ▼
Add Cal Files Restore Defaults	Cancel Save Save As

🛃 Editing Configuration File	e for Instrument Conte	ext HP127-2014-8.1.3-SLC-BY		
Available Calibration Files Lo	oaded Calibration Files	Calibration File Parameters for Hse344	d.slc	
HPL285d.slc PLD285d.slc MPR127a.CAL SATBB2F633.tdf HED344d.slc	HPL285d.slc A PLD285d.slc MPR127a.CAL SATBB2F633.tdf HED344d.slc	Sensors	Sensor Parameters for ES Distance to Surface (m)	Channels (nm)
Hse344d.slc	Hse344d.slc T	Frame Tag SATHSE0344 Instrument Type Reference Immersion Coefficient Air Measurement Mode Surface Frame Type ShutterLight	Distance to Pressure (m)	305.01 ▲ 308.45 ■ 311.78 ■ 315.12 ■ 318.46 321.79 328.47 335.15 338.49 341.83 341.83 345.17 348.52 355.20 356.54 366.59 366.54 371.33 375.28 378.63 381.98 ▼
		Water Medium sea water	Pressure Tare	
Add Cal Files	lestore Defaults	Cancel Save	Save As	

Part 1

Filename examples: (1) HP120-2011-8.1.1-NSL-UW, (2) HP120-2013-8.1.1-SLC-UW

Editing Configuration File for Instrument Context HOT_Hyp	erPRO_UW2_InstrContxt_7.7.15
Available Calibration Loaded Calibration Files HED329 cal HPL278a.cal Hse329a.cal HPL278a.cal HSP120a.CAL HPL278a.cal PLD278a.cal MPR120a.CAL PLD278a.cal HPL278a.cal Set Set	Calibration File Parameters for HED329.cal Sensors Sensor Parameters for ES Sensor Construction 0.000 0.000 0000 0.000
	Deployment Parameters Water Medium Pressure Tare sea water Image: Constraint of the sea water
Add Cal Files	Cancel Save Save As

— — X J Editing Configuration File for Instrument Context HP120-2013-8.0-noSLC-UW Available Calibration Files Loaded Calibration Files Calibration File Parameters for HPL278c.cal HED329c.cal Sensors Sensor Parameters for LU HPL278c.cal Hse329c.cal Hse329c.cal MPR120a.CAL PLD278c.cal MPR120a.CAL PLD278c.cal Distance to Surface (m) Channels (nm) 0.000 . 309.07 Ξ Distance to Pressure (m) 0.000 Frame Tag SATHPL0278 Instrument Type Reference • Immersion Coefficient Air • Measurement Mode Surface • Frame Type -ShutterLight • << >> Water Medium Pressure Tare On Deck sea water • • Add Cal Files Cancel Save Save As...

🛃 Editing Configuration File for Instr	ument Context HOT_Hyper	PRO_UW2_InstrContxt_7.7.15		
Editing Configuration File for Instr Available Calibration HED329 cal HPL278a.cal HPL20a.CAL PLD278a.cal PLD278a.cal PL	ded Calibration Files D329.cal L278a.cal S120a.CAL D278a.cal	PRO_UW2_InstrContxt_7.7.15 Calibration File Parameters for Hse3: Sensors Sensors Select a sensor to configur Frame Tag SATHSE0329 Instrument Type Reference Immersion Coefficient Air Measurement Mode Surface Frame Type ShutterLight Sutter Light	29a.cal Sensor Parameters for ES Distance to Surface (m) O.000 Distance to Pressure (m) O.000 e Pressure Tare Pressure Tare	Channels (nm) 305 52 308 84 312 15 315 47 318 79 322 11 325 43 328 76 332 08 335 40 338 73 342 05 345 38 348 71 352 04 355 36 355 36 355 36 355 36 358 69 362 02 365 35 368 69 372 02 375 35 378 69 382 02 •
A	Add Cal Files	Cancel Save	Save As	

Editing Configuration File fo	r Instrument Context HOT_Hy	perPRO_UW2_InstrContxt_7.7.15
Editing Configuration File for Available Calibration HED329.cal HPL278a.cal Hse329a.cal MPR120a.CAL PLD278a.cal	Loaded Calibration Files HED329.cal HPL278a.cal Hse329a.cal MPR120a.CAL PLD278a.cal	Calibration File Parameters for MPR120a.CAL Sensors Sensor Parameters for ANC Distance to Surface (m) Channels (nm) 0.000 None
~		Frame Tag SATMPR0120 Instrument Type Reference Immersion Coefficient Air Measurement Mode Surface Frame Type
>>	~~	Anc Deployment Parameters Water Medium Pressure Tare
	Add Cal Files	sea water Image: On Deck Cancel Save Save Save As

— — X Editing Configuration File for Instrument Context HP120-2013-8.0-noSLC-UW Available Calibration Files Loaded Calibration Files Calibration File Parameters for PLD278c.cal HED329c.cal . Sensors HPL278c.cal Sensor Parameters for LU HPL278c.cal Hse329c.cal Hse329c.cal MPR120a.CAL PLD278c.cal Distance to Surface (m) Channels (nm) MPR120a.CAL 0.000 . 309.07 Ξ 312.40 312.72 319.04 322.69 325.69 329.01 332.34 335.67 338.99 342.32 345.65 348.98 355.64 355.64 355.64 355.64 355.63 368.97 372.30 375.63 375.63 375.63 375.63 Distance to Pressure (m) 0.000 Frame Tag SATPLD0278 Instrument Type Reference • Immersion Coefficient Air • Measurement Mode Surface • Frame Type -ShutterDark • << >> Water Medium Pressure Tare On Deck sea water • • Add Cal Files Cancel Save Save As...

Parameters Context

To begin creating a parameters context file, launch ProSoft and select the "New" button from the Current Parameters section.

Next copy the settings from the screenshots below.

The setting "Profile Editing – Auto Edit" will set itself back to "ON" every time you open a parameters context file. (I think it's a bug.) Make sure to set it back to "OFF" before you save the file!

ProSoft will store the new parameters context file on your PC in the following location:

Windows 7	c:\Users\username\AppData\Roaming\ProSoft 8.1\Processing Parameters
Windows XP	c:\Documents and Settings\username\Application Data\ProSoft 8.1.1\Processing
	Parameters

Parameters Context: PROFILE without stray light correction

Example filename: PROFILE_8.1.1_NSL

Parameters Context: PROFILE with stray light correction

Example filename: PROFILE_8.1.1_SLC

Parameters Context: BUOY with stray light correction

Example filename: BUOY_8.1.3_SLC

Parameters Context: SURFACE without stray light correction

Example filename: SURFACE_8.1.3_NSL

Parameters Context: SURFACE with stray light correction

Example filename: SURFACE_8.1.3_SLC

Parameters Context: SURFACEFULL without stray light correction

Example filename: SURFACEFULL_8.1.3_NSL

Parameters Context: SURFACEFULL with stray light correction

Example filename: SURFACEFULL_8.1.3_SLC

Parameters Context: UNDERWAY without stray light correction

Example filename: UNDERWAY_8.1.1_NSL

Parameters Context: UNDERWAY with stray light correction

Example filename: UNDERWAY_8.1.1_SLC

Appendix B: ProSoft Settings

Profile Editing

If Profile Editing "Auto Edit" is ON, the entire upper profile is removed down to the depth where tilt > 5 degrees (or some other specified angle), even if the tilt is good in the rest of the upper profile. This can lead to the removal of a significant portion (e.g. 10 meters) of the upper profile. This is an issue because Lw is calculated by extrapolating the measured Lu's from the top of the edited profile to the sea surface. Extrapolating over a large distance can result in significant differences between the measured Lu near the surface and the calculated Lw. It is recommended that profile editing "auto edit" is always turned OFF.

Appendix C: Troubleshooting

ProSoft

Occasionally during processing, a data file will stubbornly refuse to be processed. A list of errors that I have come across and their workarounds follows below.

A memory allocation request failed.

Cause: The file is too big (approx > 40 MB). **Solution:** Select "File - Options - Enable Raw File Parsing". Set the parsing size to 20 Mb.

Undefined function or variable 'profiler_index'.

Cause: This error happens for underway (on deck) deployments because there is no profiler working.

Solution: Make sure to use an underway instrument context file and an underway parameter context file. Select only "photosynthetically available radiation" and the two default parameters that go with it (K and surface optical values) for processing.

No radiance sensors detected, no wavelength matchups

Cause: This error happens for underway (on deck) deployments because there is no profiler working.

Solution: This is normal and can be ignored. Processing will continue.

Invalid instrument for level 4 ...

Cause: This happens for some split files from underway (on deck) deployments. **Solution**: Make sure that the option "Enable Raw File Parsing" under the File-Options menu is not checked, otherwise the split files may be split again, which causes this error.

Matrix dimensions must agree.

Cause: Not using the correct context file or selecting the wrong parameters to process for underway data.

Solution: Make sure to use an underway instrument context file and an underway parameter context file. Select only "photosynthetically available radiation" and the two defaults that go with it (K and surface optical values) for processing.

Index exceeds matrix dimensions.

Cause: Corrupt file.

Solution: If the file was transferred via ftp, re-download it. Make sure to download the file as binary instead of ascii.

Missing data at the start of the output files.

Cause: Deglitching turned on. **Solution**: Turn off deglitching in the parameter context file.

There should be at least two data points.

Cause: Bad file???? Solution: Skip it. Find something better to do.

Invalid instrument for level 3a ...

Cause: Bad file???? Solution: Skip it. Find something better to do.

No instruments specified in cal file were found.

Cause: Using wrong instrument cal file.

Solution: Check the hyperpro ID number in the header of one of the data files (e.g. MPR0120) and make sure it matches the context file you're using.

Invalid fid

Cause: Can happen when trying to create new instrument context files on an incompatible version of Windows. This issue has been encountered with Prosoft 8.0 on Windows 7. **Solution**: Use a different computer (with a different version of Windows) to make the context files, then copy the context files to your PC.

FATAL ERROR, CHECK PRESSURE VALUES CONSTANT PRESSURE

Cause: The cast went too deep, saturating the pressure values causing repeated values. When processing in multicast mode, the maximum depth for the cast should be at about 180 m. **Solution:** If it is necessary to use multicast mode, the raw file must be edited to remove the repeated (saturated) values. I do not currently have code to do this. Otherwise, process the file using single cast mode instead of multicast mode. Ensure that future casts are not sent deeper than 180 m.

cannot create file No SDS Global Attributes are found ... No valid information about Instrument Type

Cause: A bad output file is in place and cannot be overwritten. **Solution:** Delete the bad output files (L1a.hdf, L1b.hdf, etc), restart ProSoft, and reprocess.

Warning ... interpolated wavelengths exceeded HDF4 maximum fields limit

Cause: The number of output wavelengths exceeds the maximum value of 256. For example, 350 – 900 nm at 2 nm resolution yields 275 wavelengths.

Solution: Set the range of wavelengths to 350 – 800 nm, and keep the interpolation at 2 nm resolution.

Exact stray light correction matrix for ... not found – using generic SLC matrix.

This is normal. Only four Hyperpros in the world have been fully characterized for stray light (an expensive process). The remaining Hyperpros, like ours, use a generic stray light correction instead.

Profiles show sudden shifts in value, like as if the gain hasn't been applied

The file may be corrupt. Was the file manually edited? If so, make sure to make any edits using vi on unix/linux. Attempting to edit the file using Notepad on Windows will cause a corrupt file. The file may still process, but will create erroneous results.

Number of rows of data must match order of field.

Cause: Unknown. Solution: Unknown.

Hardware (Sensor)

Es data are either missing or have noisy small values.

Cause: Es sensor may have been covered or not connected properly.
Hardware Solution: Check that the sensor face is uncovered, mounted in the correct location (out of shadow), and connected. If the issue persists, check the cable.
Software Workaround: Surface irradiance data are required to calculate surface values such as RSR. In the absence of Es data, RSR (and other surface properties) can be estimated using extrapolated Ed in place of Es. Note, however, that the results will not be as accurate. To accomplish this calculation, create a new instrument context file

Appendix D: Prosoft Version Differences

	stray light correction	уо-уо	nLw	Accurate buoy processing above 700 nm
7.7.16	no	no	yes (but not good)	no
8.0	no	yes	yes	no
8.1.1	yes	yes	yes	no
8.1.3	yes	yes	yes	no
8.1.5	yes	yes	yes	yes

Appendix E: Other Resources

Two key documents are available on garcia in: instruments/HyperPro/docs

HOTHyperProDeploymentProtocols.pdf

ProSoft User Manual SAT-DN-00228_Rev8_0B.pdf Hyperpro_protocols_5_31_12.doc Operating instructions for HOT HyperPro deployments (OSU) ProSoft user manual (Satlantic) HyperPro guide by Mike Ondrusek

Appendix F: Cheat Sheet

1. Raw Data

a. Move Hyperpro data to appropriate folder structure

2. Log File

- a. Matlab: hyperpro_getmetadata
- b. Edit log sheet with the output from the above command

3. Sensor offsets

a. Derive the sensor offsets (for data collected after Sep 2013)

sensors	equation	107	120	127
ED distance to pressure (m)	ED + PRESS – 0.062	0.776	0.782	0.773
LU distance to Ed head (m)	ED + LU	0.320	0.318	0.305
ECO PUC distance to Ed head (m)	ED + PUC	0.270	0.270	0.269

4. ProSoft 8.1.5

- a. Delete existing output hdf files
- **b.** Edit raw cast files to contain mean pressure tare (9.83) instead of in water tare if necessary (don't need to do this for dark, buoy, or underway data).
- c. Check SLC setting
- d. Check pressure tare setting
- e. Check Ed "Distance to Pressure" value (should be 0 if in water pressure tare)
- f. Use hyperpro_moveoutput between each step:
 - e.g. hyperpro_moveoutput(cruisefolder,'Darks')

For a given station, if you have	Then perform the following processing
DARKS	DARKS
SINGLE CASTS ONLY (no yoyo files)	SURFACE-UPPER on the single casts
	SINGLE PROFILES on the single casts
YOYO CASTS ONLY (no single cast files)	SURFACE-FULL on the yoyo casts
	SURFACE-UPPER on the yoyo casts
	YOYO PROFILES on the SURFACE-FULL L2s data
SINGLE CASTS and YOYO CASTS	SURFACE-UPPER on the yoyo casts
	SINGLE PROFILES on the single casts
BUOY DEPLOYMENTS	BUOY
UNDERWAY DEPLOYMENTS	UNDERWAY

	DARKS	SURFACE-FULL	SURFACE-UPPER	YOYO PROFILES	SINGLE PROFILES	BUOY	UNDERWAY
Raw File Parsing	No	No	No	No	No	Yes	Yes
Inst Context	PR	PR	PR	PR	PR	BY	UW
Parameter Context	PROFILE	SURFACEFULL	SURFACE	PROFILE	PROFILE	BUOY	UNDERWAY
Maximum Depth		300	5				
Normalization		BEGIN	BEG/MID/END			BEG/MID/END	
Starting Folder	Raw	Raw	Raw	SurfaceFull	Raw	Raw	Raw
Files to Delete				L3a, L4			
Processing Steps	Level 1 -> 1a	Level 1 -> 4	Level 1 -> 4	Level 2s -> L3a Level 3a -> 4	Level 1 -> 4	Level 1 -> 4	Level 1 -> 4
Parameters				Water Properties	Water Properties PAR	Lw/Lwn Surface RSR	PAR
				Scattering	Scattering	PAR	
Output Folder	Darks	SurfaceFull	SurfaceUpper	do not move	Profiles	Buoy	Underway

5. Matlab

- **a.** hyperpro_checkpressuretare
- **b.** hyperpro_main

Appendix G: Important Dates

March 2009

• first HyperPro casts collected at HOT

September 2013

- first stray light correction calibration file for S/N 120
- began **yo-yo** deployments
- began recording sensor offsets in metadata "comments" section
- new protocol: **pressure tare on deck** (previously was usually, but not always, in water)

December 2014

• first stray light correction calibration file for S/N 127

June 2016

 received ProSoft 8.1.5 from Satlantic after pointing out bug – this version correctly calculates products from 700-800 nm - this affects buoy processing only

Appendix H: Output Data

PROFILE MODE			
File Type	Parameters	Wavelengths	Depth
			Intervals
ASCII FILES			
Ed_L2s.dat	Ed(z) (Wt, cond, tilt, pvel)	all	0.1 m
Lu_L2s.dat	Lu(z) (Wt, cond, tilt, pvel)	all	0.1 m
Es_L2s.dat	Es(t)	all	
Ed_L3a.dat	Ed(z) (Wt, cond, tilt, pvel)	2 nm intervals	1 m
Lu_L3a.dat	Lu(z) (Wt, cond, tilt, pvel)	2 nm intervals	1 m
Es_L3a.dat	Es(t)	2 nm intervals	
L4.dat	K_LU(z)	2 nm intervals	1 m
	K_Ed(z)	2 nm intervals	1 m
	Ed(0+)	2 nm intervals	
	Ed(0-)	2 nm intervals	
	Es(0-)	2 nm intervals	
	Es(0+)	2 nm intervals	
	Lu(0-)	2 nm intervals	
	Tw, Cond, Cond_Ratio, Salinity, Density, Sigma-T		1 m
	FLUOR(z) ()		1 m
	PAR(z), PAR(%)(z) (LightLevel)		1 m
	PAR(0+)(t)		
	B(470), Bw(470), Bp(470), bbp(470), bb(470)		1 m
	B(700), Bw(700), Bp(700), bbp(700), bb(700)		1 m
L4_KPAR.dat	KPAR(z)		1 m
SRF_L4.dat	AVG_ES (same as Es(0+))	2 nm intervals	
	K_LU (average)	2 nm intervals	
	K_SE_LU (average)	2 nm intervals	
	K_ED (average)	2 nm intervals	
	K_SE_ED (average)	2 nm intervals	
	LU(0-) (same as L4.dat)	2 nm intervals	
	ED(0-) (same as L4.dat)	2 nm intervals	
	ED(0+) (same as L4.dat)	2 nm intervals	
SUBSET FILES			
profile_subset.txt	Tw(z), Cond(z), Salinity(z), Density(z)		1 m
	FLUOR(z)		1 m
	PAR(z)		1 m
	PAR(0+)(t)		
	LightLevel(z)		1 m
	KPAR		1 m
	Ed(z)	subset	1 m
	Lu(z)	subset	1 m
	Es(t)	subset	
prosurf_subset.txt	Es(0+) (average)	subset	

BUOY MODE				
File Type	Parameters	Wavelengths	Time Intervals	
ASCII FILES				
Ls_L2s.dat	Ls(0-) (Wt, cond, tilt, pvel)	all	2 s	
Es_L2s.dat	Es(t)	all	2 s	
Ls_L3a.dat	Ls(0-) (Wt, cond, tilt, pvel)	2 nm intervals	2 s	
Es_L3a.dat	Es(t)	2 nm intervals	2 s	
L4.dat	Es(0+)	2 nm intervals		
	K_LS	2 nm intervals		
	LS(0-)	2 nm intervals		
	ES(0-)	2 nm intervals		
	Lw	2 nm intervals		
	RSR	2 nm intervals		
	FO_ES	2 nm intervals		
	Lwn	2 nm intervals		
	PAR(0+,t)		2 s	
SRF_L4.dat	AVG_ES (same as Es(0+) in L4.dat)	2 nm intervals		
	K_LS (same as L4.dat)	2 nm intervals		
	LS(0-) (same as L4.dat)	2 nm intervals		
	LW (same as L4.dat)	2 nm intervals		
	LWN (same as L4.dat)	2 nm intervals		
	FO	2 nm intervals		
SUBSET FILES				
surface_subset.txt	Es(0+)	subset		
	Lwn	subset		
	RSR	subset		
	PAR(0+,t)		2 s	
SURFACE MODE				
--------------------	------------------------------	----------------	-----------------	--
File Type	Parameters	Wavelengths	Depth Intervals	
ASCII FILES				
Ed_L2s.dat	Ed(z) (Wt, cond, tilt, pvel)	all	0.1 m	
Lu_L2s.dat	Lu(z) (Wt, cond, tilt, pvel)	all	0.1 m	
Es_L2s.dat	Es(t)	all		
MC_L4.dat	AVG_ES (i.e. Es(0+))	2 nm intervals		
	K_LU (average)	2 nm intervals		
	K_SE_LU (average)	2 nm intervals		
	K_ED (average)	2 nm intervals		
	K_SE_ED (average)	2 nm intervals		
	LU(0-)	2 nm intervals		
	ED(0-)	2 nm intervals		
	Lw	2 nm intervals		
	LwSE(+)	2 nm intervals		
	LwSE(-)	2 nm intervals		
	ED(0+)	2 nm intervals		
	FO	2 nm intervals		
	Lwn	2 nm intervals		
	FLUOR(z)		all	
	BETA_BLUE(z)		all	
	BETA_RED(z)		all	
SUBSET FILES				
surface_subset.txt	AVG_ES (i.e. Es(0+))	subset	surface	
	Lwn	subset	surface	

UNDERWAY MODE			
File Type	Parameters	Wavelengths	Time Intervals
ASCII FILES			
Es_L2s.dat	Es(t)	all	2 s
Es_L3a.dat	Es(t)	2 nm intervals	2 s
L4.dat	Es(0-) average	2 nm intervals	average
	Es(0+) average	2 nm intervals	average
	PAR(0+)(t)	N/A	2 s
SUBSET FILES			
underway_subset.txt	PAR(0+)(t)	N/A	2 s

DARK MODE (ECO PUC)				
File Type	Parameters	Time Intervals		
L1a.hdf	BETA_BLUE (dark counts)	2 s		
	BETA_RED (dark counts)	2 s		
	FLUOR (dark counts)	2 s		

Appendix I: Parameters

Wt, Tw	water temperature	
cond	conductivity	
cond_ratio		
salinity	salinity	
density	density	
Sigma-T	Sigma-T	
tilt	degrees of profiler from vertical	
pvel	velocity	
Ed	downwelling irradiance (in water)	
Lu	upwelling radiance (in water)	
Es	reference sensor downwelling irradiance	
	(above water)	
K_LU(z)	diffuse attenuation coefficient for Lu	derived from Lu
K_Ed(z)	diffuse attenuation coefficient for Ed	derived from Ed
Ed(0+)	Ed just above the surface	derived from Ed
Ed(0-)	Ed just below the surface	derived from Ed
Es(0-)	Es just below the surface (representative)	derived from Es
Es(0+)	Es just above the surface (representative)	derived from Es
Lu(0-)	Lu just below the surface	derived from Lu
Lw, Lu(0+)	Lu just above the surface	derived from Lu
Lwn	normalized water leaving radiance	derived from Lw and FO/Es
FLUOR	fluorescence at 695 nm	
BETA_BLUE	470 nm	
BETA_RED	700 nm	
PAR(z)	PAR	derived from Ed
PAR(%)(z), LightLevel	percentage of PAR relative to the surface	derived from Ed and PAR(0+)
PAR(0+)	PAR just above the surface	derived from Es
KPAR(z)	Instantaneous diffuse attenuation	derived from PAR(z) and
	coefficient for PAR	PAR(0+)
Β(λ)	total volume scattering	measured
Bw(λ)	water volume scattering	derived from salinity
Bp(λ)	particle volume scattering	derived from B and Bw
bbp(λ)	particle backscattering coefficient	derived from Bp
bb(λ)	total backscattering coefficient	derived from bbp