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(7) ABSTRACT

A method and apparatus that utilize time-domain measure-
ments of a nonlinear device produce or extract a behavioral
model from embeddings of these measurements. The
method of producing a behavioral model comprises applying
an input signal to the nonlinear device, sampling the input
signal to produce input data, measuring a response of the
device to produce output data, creating an embedded data
set, fitting a function to the embedded data set, and verifying
the fitted function. The apparatus comprises a signal gen-
erator that produces an input signal that is applied to the
nonlinear device, the device producing an output signal in
response. The apparatus further comprises a data acquisition
system that samples and digitizes the input and output
signals and a signal processing computer that produces an
embedded data set from the digitized signals, fits a function
to the embedded data set, and verifies the fitted function.
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METHOD AND APPARATUS FOR
EXTRACTION OF NONLINEAR BLACK-BOX
BEHAVIORAL MODELS FROM
EMBEDDINGS OF THE TIME-DOMAIN
MEASUREMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the determination of
behavioral models for nonlinear devices, circuits, sub-
systems or systems. In particular the present invention is a
method for determining behavioral models for nonlinear
devices, circuits, subsystems, and systems from embeddings
of time-domain measurements.

2. Description of the Related Art

Linear, time invariant (LTI) devices, circuits, subsystems,
and systems are completely characterized by their transfer
functions. To understand the performance of an LTI device,
one need only determine the transfer function of the LTT
device. Once the transfer function is known, the operation of
the device in a system is known completely for all input
conditions. The same is true for LTI circuits, subsystems and
systems.

A transfer function is a complex frequency-domain func-
tion that describes the output of an LTI device in terms of its
inputs and, therefore forms a complete description of the L'TT
device. The term “complex function” when used herein
refers to a function that includes a complex number having
a real and an imaginary part. An equivalent form of the
transfer function of an LTI device in the time-domain is
called an impulse response of the LTI device. A one-to-one
relationship exists between the transfer function in the
frequency-domain and impulse response in the time-domain.
In addition, the transfer function and the impulse response
are not functions of and do not depend on the input signal
that is applied to the LTI device.

The determination of the transfer function, especially if it
involves measured data from the LTI device, is known as
model development or model parameter extraction. Once a
model of an LTI device is developed, or equivalently the
transfer function is known, for a given device, the actual
device may be replaced by a virtual device based on the
model in any simulation of a system using the device. Often
the development of the model involves extraction or deter-
mination of model parameters from a set of test data that
represents the device of interest.

Transfer functions of LTI devices, circuits, subsystems, or
systems can be extracted from measurements made with a
vector spectrum or vector network analyzer. A swept or
stepped frequency input signal is generated and the vector
spectrum analyzer or network analyzer records the output of
the LTI device. Then, a transfer function can be computed by
comparing the input and output signals. Furthermore, mod-
els suitable for simulation of a given LTI device or circuit
can extracted from transfer functions using, among other
things, linear system identification techniques.

Time-domain measurements provide an alternate method
of characterizing LTI devices or circuits. Pulse inputs that
approximate an impulse are applied to a device and the
outputs are measured and recorded. In one such well known,
time-domain method, the poles and zeros of the Laplace
transform of the governing differential equation of the
device are estimated from the recorded output data. Once a
suitable governing differential equation is determined, the
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device transfer function is calculated. In an alternative
method, the measured data associated with the impulse
response is transformed using a Fast Fourier Transform
(FFT) to the frequency-domain where a linear system iden-
tification method is then used to extract the transfer function.

The characterization or modeling of nonlinear devices or
circuits is much more difficult than that for LTI devices.
Reference to a “nonlinear device” when used herein will be
understood to include devices, circuits, subsystems or sys-
tems with a nonlinear input-output relationship. Unlike the
linear case, the nonlinear device or circuit is not readily
represented by a transfer function or impulse response, at
least not one that is independent of the input signal or
stimulus. However, there is still a need to model nonlinear
devices so that their performance in systems can be evalu-
ated efficiently. This is especially true when it is impractical
or too expensive to use the actual device such as when the
device is still being designed.

It is desirable to have a method for characterizing and
developing a model of nonlinear devices to avoid the need
to have the actual device available whenever its performance
in a system must be investigated. Furthermore it is advan-
tageous to have such a modeling method utilize a finite set
of measurements, either actual measurements or measure-
ments of a simulation of the device. The model so generated
must accurately predict the performance of the device over
all expected operational conditions within a given level of
accuracy and with an acceptable amount of computational
cost.

The term “behavioral model” herein refers to a set of
parameters that define the input-output behavior of a device
or circuit. Generally, a behavioral model must be of a form
suitable for rapid simulation. “Simulated measurements”
refers to values of voltage, current or other physical vari-
ables obtained from device, circuit or system simulation
software. The objective of building a behavioral model from
actual or simulated measurements is to reduce simulation
time by replacing a complex circuit description in the
simulation with a simpler, easier to simulate, behavioral
model.

In many cases, nonlinear devices are electronic in nature
(e.g. transistors, diodes). In these cases the measurements
used to produce a model of the device are typically measured
voltages and currents in and out of the ports of the device or
equivalently incident or reflected power waves present at the
ports at various frequencies. The models extracted from the
measurements generally need to reflect the dynamic rela-
tionships between the voltages and currents at the ports. The
model can be used, for example, to compute the currents into
the ports from recent values of the voltages across the ports.
Often this is the essential computation that must be provided
to electronic circuit simulators by a software module that
represents a device.

Mechanical and hydraulic devices can also exhibit non-
linear behavior and, therefore, be modeled as nonlinear
devices for which construction of a suitable behavioral
model would be beneficial. For example, a vehicular system
comprising driver inputs and vehicle response may be
represented in terms of a nonlinear behavioral model. In the
case of vehicular systems, the input measurements might be
of variables such as steering wheel position, brake pressure,
throttle position, gear selection and the response measure-
ments might be of variables such as the vehicle speed, lateral
and longitudinal acceleration, and yaw rate. The behavioral
model extracted from the measurements needs to reflect the
dynamic relationship between the driver inputs that are
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applied and the subsequent response of the vehicle. In other
words, the model defines a “virtual car” that can be “driven”
using previously recorded or real-time measured driver
inputs.

Avariety of methods have been developed to characterize
and develop models of nonlinear devices. However, these
methods generally have severe limitations associated with
them. For instance, many of the techniques are limited to use
with so called “weakly nonlinear devices”, those devices
whose performance is nearly linear. Therefore, these tech-
niques are not suitable for many nonlinear devices.

One such approach to characterization of weakly nonlin-
ear devices is to simply assume that the device is linear, at
least in the operational range of interest. Under this
assumption, a variant of the time-domain impulse response
method described hereinabove can be used. For devices that
are, in fact, weakly nonlinear devices, this approach yields
reasonably good results. However, the accuracy of such a
model will degrade rapidly as the amount or degree of
nonlinearity in the device increases.

Another class of methods for characterizing nonlinear
devices is represented by the Volterra input-output maps
method (VIOMAPs) also known as the Volterra Series
Method. VIOMAPs are models of nonlinear devices or
circuits that can be extracted from frequency domain mea-
surements such as those produced by using a vector spec-
trum analyzer. Here again, the usefulness of such models is
limited by the assumption of weak nonlinearity. In addition,
VIOMAPs and related methods can only model the steady
state behavioral or response of the device. A steady-state
response is the response of a device, linear or nonlinear, to
a repeating input signal. An example of a steady-state
response is the response to a sine wave input after sufficient
time has passed to allow the transients associated with the
application of the sine wave to decay. VIOMAPs and the
related methods are powerful methods that have found many
useful applications. However, VIOMAPs, as noted above,
cannot handle strong nonlinearities or transient inputs.
VIOMAPs are restricted to modeling the steady state behav-
ior of devices that exhibit weak nonlinearities.

Another, somewhat different, method of characterizing
nonlinear devices is to use an equivalent circuit representa-
tion of the device of interest. The approach in this method is
to assume an equivalent circuit topology with a certain
circuit parameter left free or unspecified that is expected to
adequately represent the device or circuit. For example,
equivalent circuits are known that adequately represent
certain classes of transistors (e.g. MOSFETs or BJTs). Given
the assumed equivalent circuit, a set of measurements is
performed on the device from which the correct values of the
free parameters can be computed or deduced for a particular
device.

As with the other methods, this approach for nonlinear
device characterization has a number of serious disadvan-
tages. Chief among the disadvantages is the need for a priori
knowledge of an equivalent circuit that adequately repre-
sents the device of interest. This often means that significant
knowledge of the device is required before modeling can
begin. If incorrect assumptions are made regarding the
structure of the equivalent circuit, the method may not yield
satisfactory results. Put another way, the approximation that
is being made by choosing a particular equivalent circuit
over another has an impact on accuracy that is hard to
determine. In addition, this method is only useful when the
device being modeled is of a type similar to electronic
circuitry (e.g. a hydraulic device or spring-mass-dashpot
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system) that a representative equivalent circuit can be cre-
ated. Finally, the equivalent circuit can require a significant
amount of computer time to simulate, thereby often making
this method unacceptably costly for use in the simulation of
large systems.

Therefore, it would be desirable to have a method for the
construction of a behavioral model of a nonlinear device that
is not limited to assuming the device is weakly nonlinear and
that does not require excessively large amounts of compu-
tational effort to produce simulated results. In addition, it
would be desirable if this method were not limited to
steady-state response characterizations and this method did
not require any a priori knowledge of the device being
modeled. Finally, it would be advantageous if this method
would allow the model to be constructed from either actual
measurements or simulated measurements of the device.
Such a nonlinear characterization and model construction
method would overcome a long-standing problem in the area
of nonlinear device modeling technology.

SUMMARY OF THE INVENTION

The present invention is a method and apparatus for
producing behavioral models of nonlinear devices that over-
comes the disadvantages of the aforementioned methods. In
particular, the method and apparatus of the present invention
utilize time-domain measurements of a nonlinear device to
produce or extract a behavioral model from embeddings of
these measurements. The resulting behavioral model of the
nonlinear device is a black-box model that accommodates
devices with one or more input ports and one or more output
ports. The black-box model produced by the subject inven-
tion is a functional form as opposed to a structural form.

In accordance with the present invention, the method of
producing a behavioral model of a nonlinear device from
embeddings of time-domain measurements comprises the
steps of applying an input signal to the nonlinear device, or
equivalently to a virtual device, sampling the input signal to
produce input data, measuring a response to the input signal
at the output of the device to produce output data corre-
sponding to the input data, creating an embedded data set
using a first subset of the input data and a first subset of the
output data, fitting a function to the embedded data set, and
verifying the fitted function using a second subset of the
input data and a second subset of the output data, wherein
the verified fitted function is the behavioral model of the
nonlinear device. In another embodiment, the fitted function
can be used to compute a continuous-time model from the
discrete behavioral model developed in the aforementioned
steps.

The apparatus of the present invention comprises a signal
generator that produces an input or excitation signal that is
applied to the input of the nonlinear device to thereby
produce an output signal. The apparatus of the present
invention further comprises a data acquisition system. The
data acquisition system samples or digitizes the input signal
applied to the device and output signal produced by the
device to produce input data and output data. The output data
represents a measured response of the device. The apparatus
of the present invention further comprises a signal process-
ing computer or signal processor. The input data and the
output data produced by the data acquisition system are
processed by the signal processing computer. The signal
processing computer utilizes a first subset of the input data
and a first subset of the output data to create an embedded
data set. The signal processing computer then fits a function
to the embedded data set. As used herein, the terms “fits a
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function” refers to the development of a function that maps
the embedded data to a domain of the output data. The signal
processing computer verifies that the fitted function accu-
rately models the device using a second subset of the input
data and a second subset of the output data. The verified
fitted function is the behavioral model of the nonlinear
device. In another embodiment, the signal processor of the
apparatus of the present invention further computes a
continuous-time model from the discrete behavioral model
produced by the fitted function.

Unlike the aforementioned conventional methods, the
method and apparatus of the present invention are not
restricted to modeling weakly nonlinear devices but can
handle hard or strong nonlinearities. The method and appa-
ratus of the present invention accommodate steady-state as
well as dynamic nonlinearities, require no a priori assump-
tions regarding the device model structure and can handle
devices with multiple, dependent inputs. The method and
apparatus work in the discrete domain with sampled mea-
surements of input and output variables but are readily
extended to a continuous representation of the device behav-
ioral model. As such, the behavioral models produced by the
method and apparatus of the present invention are general in
nature and are readily implementable representations of
nonlinear devices including those exhibiting strong nonlin-
earities.

The method and apparatus of the present invention are
general, which means that they may be applied to any device
having well defined inputs and outputs that can be related by
areasonable number of nonlinear, ordinary differential equa-
tions. Moreover, the nonlinear device may operate through
electronic, mechanical, hydraulic, acrodynamic, or chemical
physical processes or any combination thereof. In addition,
the method and apparatus of the present invention properly
handle so-called “hard” or strong nonlinearities. The term
“hard” nonlinearities means linearities that are much more
severe than a small deviation from linearity in the vicinity of
a mostly linear operating point.

The method and apparatus of the present invention also
handle devices that exhibit dynamic or non-static nonlin-
earities and therefore, are not restricted to steady-state
situations. The behavioral model produced by the present
invention can represent devices with one or more inputs and
one or more outputs and the inputs and outputs can be
mutually dependent. Finally, no a priori assumptions need be
made about the structure of the ordinary differential equa-
tions that govern the device, though there are practical limits
to the size of model, in terms of number of effective state
variable, that can be modeled. Equivalently, no a priori
assumption need be made concerning the topology of an
electronic circuit equivalent in operation to the device.

In another aspect of the invention, a method of construct-
ing an input or excitation signal is provided. The excitation
signal that is constructed is applied to a nonlinear device for
behavioral model extraction from embedded time-series
measurements according to the invention.

Moreover, the behavioral model created from the method
and apparatus of the present invention can be used to
simulate the output of the device, given input signals in the
frequency-domain and the excitation signals utilized can be
generated at reasonable cost at any frequency up to and
beyond microwave frequencies.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of the present inven-
tion may be more readily understood with reference to the
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following detailed description taken in conjunction with the
accompanying drawing, where like reference numerals des-
ignate like structural elements, and in which:

FIG. 1 illustrates a block diagram of the method of
producing a behavioral model of the present invention.

FIG. 2 illustrates a block diagram of the apparatus of the
present invention.

FIG. 3 illustrates a block diagram of the method of
constructing an excitation signal in accordance with the
invention.

FIG. 4 illustrates a plot of a portion of the input data for
a bipolar junction transistor example.

FIG. 5 illustrates a plot of a portion of the output data for
the bipolar junction transistor example.

FIG. 6 illustrates a dialog box used to specify the input
signal used in the bipolar junction transistor example.

FIG. 7 illustrates a plot of the number of false nearest
neighbors as a function of the number of lags for the bipolar
junction transistor example.

FIG. 8 illustrates a dialog box used to define the embed-
ding type for the bipolar junction transistor example.

FIG. 9 illustrates a portion of the embedded data produced
by embedding, which is divided into four separate parts for
the bipolar junction transistor example.

FIG. 10 illustrates a dialog box used to specify parameters
associated with the step of polynomial fitting used in the
bipolar junction transistor example.

FIG. 11 illustrates a plot of the comparison of the mea-
sured output and predicted response produced for the bipolar
junction transistor example.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The method and apparatus of the present invention utilize
time-domain measurements of a nonlinear device to produce
or extract a black box behavioral model of the device from
embeddings of these measurements. The method and appa-
ratus of the present invention are applicable to the modeling
of devices where information about the device is provided
by either actual measurements or simulated measurements.

The use of embeddings to extract models from time
domain measurements of nonlinear devices is called non-
linear time series analysis (NLTSA). The term “black box”
as used herein refers to a model that requires little or no
detailed information about the device such as the topology
of an equivalent circuit, or knowledge of the underlying
physics of the device, be known before the model is con-
structed. The term “embedding” as used herein refers to a
function or mapping from a set U to a new set W, where

U—-W|U eR™; W eR” n=m .

Ablock diagram of the method of the present invention is
illustrated in FIG. 1. In accordance with the invention, the
method 100 of producing a behavioral model of a nonlinear
device from embeddings of time-domain measurements is
an iterative process and comprises the step of applying 101
an input signal 204 to the nonlinear device. The input signal
204 can be any time-domain signal or combination of
signals. In general, the selection or construction of the input
signal 204 may be iterative and dependent on the charac-
teristics of the nonlinear device, such as operational fre-
quency range and peak voltage levels. The construction of
the input signal 204, also referred to herein as an excitation
signal, is further described below.
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The method 100 further comprises the step of sampling
102 the input signal 204 to produce input data 210. The input
signal 204 is sampled at discrete time intervals during the
step of applying 101. The time intervals can be fixed or
variable and generally depend on the input signal 204
characteristics. Sampling 102 may be either actual sampling
of the input signal 204 as it is applied to the device or virtual
sampling wherein the samples are created directly from a
mathematical description of the input signal 204. In the
preferred embodiment, the time intervals are fixed according
to standard engineering practice and the input data 210 is
stored as an array of values in a computer memory.

The method 100 further comprises the step of measuring
103 an output signal or a response signal 206 to the input
signal 204 at an output port of the device to produce output
data 212 corresponding to the input data 210. The response
is measured at discrete time intervals and the output data 212
represents a time-series of the response signal. In the pre-
ferred embodiment, the response signal 206 is measured at
the same discrete time intervals and times as is used for
sampling 102 the input signal 204 and the output data 212
is stored as a separate array or set of values in a computer
memory.

In the preferred embodiment, the step of measuring 103 is
followed by a step of filtering 1034 the output data 212. The
step of filtering 103a is used to reduce the noise content of
the output data 212. Noise is a corruption of the data that
may be introduced during the step of measuring 103 and is
well known to one skilled in the art. The step of filtering
1032 may be accomplished using either linear or nonlinear
filtering techniques. Preferably, the data 212 is filtered using
one of several nonlinear filtering techniques known in the art
and described further below. Nonlinear filtering techniques
have the advantage of preserving the nonlinear response
characteristics of the device present in the output data 212.
Moreover, where the input data 210 is sampled directly from
the input signal 204, the input data 210 may also be filtered
using well known techniques.

The method 100 further comprises the step of creating
104 an embedded data set 213 using a first subset of the input
data and a first subset of the output data. The step of creating
104 an embedded data set 213 comprises the steps of
determining an embedding type and dimension and then
embedding the first subsets in an embedding space defined
in the step of determining. Applicable embedding types of
the present invention include but are not limited to so called
“lagged” embeddings, embeddings using singular value
decomposition (SVD) of the data, wavelet embeddings and
combinations thereof. The embedding types differ by the
specific linearly independent functions that are used, as is
described further hereinbelow. However, in general terms,
the embedding type can be represented by a set of functions
E as given by

ey FE—1), ..., ¥—11),de-71), ..., 41t —-mr),
_ (3t —1), ... , Y =10), Ut -7), ... , 4t —m7)),
e, (3t —7), ... , Y =10), Ut -7), ... , Ut —m7))
where n=1+m, where elements of the set, ¢,, are functions of

the input and output data sets and where 1, m, and T are
dependent on the specific embedding type and related to the
embedding dimension. An example of a function from an
embedding E is a first order approximation of a derivative of

the output variable 7(0 given by
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G =), o T =[O, B =), oo Bl —mD)) = w

Another example of an applicable embedding function e,, is

the Haar wavelet of length 4 operating on ?(t) given by

e (3 —1), ..., Y =10), U@ =7), ..., Ut —m7r)) =

V=40 +y(1=30) =yt -21) =yt - 1)

The subscripts in these examples are arbitrary. A so-called
“pure” lag embedding would be given by

e\t —1), ., Y= 10), U =7), ... , U(T—mT)) =Y -1),
o er (3t = 1), ..., Y= 17), U =7), ... , Ut —m7r)) = - 27),
Eiog = 1.

et —1), ..., Y= 17), U =7), ... , Ut —m7)) =0t — mr)

where k=l+m. Therefore, it would be evident to one skilled
in the art that a set of functions of the input and output data
can be chosen.

Determining the embedding dimension, in part, involves
choosing the number of linearly independent functions to be
used. The combination of the embedding dimension and the
embedding type or functions defines the embedding space.
Along with determining an embedding type, determining the
embedding dimension is often accomplished in practice in
an iterative process. In the step of embedding, the first subset
of the input data and the first subset of the output data are
“embedded” in the embedding space defined and dimen-
sioned in determining an embedding type. The step of
embedding transforms the first subset of the input data and
the first subset of the output data into a first embedded data
set. In general, the amount of data contained in the first
embedded data set is larger than that in the original first
subsets.

In the preferred embodiment, the first subset of input data
and the first subset of output data contain less data than the
total data produced for each. The remaining portions of the
input data 210 and the output data 212 not included in the
first subsets are used in a verification step 106 described
below and are referred to a second subset of input data and
a second subset of output data respectively. In another
embodiment, the first subsets comprise all of the available
data and therefore, additional data are generated for the
second subsets after the step of creating 104 the embedded
data set 213 for use in the verification step 106. The step of
creating 104 the embedded data set 213, in particular the
step of determining the embedding type and the embedding
dimension, is described further hereinbelow.

The method 100 further comprises the step of fitting 105
a function G(*) from embedded data set 213 to the corre-
sponding output data 212. In general, the function G(*) is a
function of the embedded data set 213 created in the step of
embedding.
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et —1), ... Fa =10, 4 —-1), ... A —mD),) (A
So=¢ ey (3t —1), ... , Y= 10), Ut -7), ... , 4t —m7)),
e, (3t —7), ... , Y =10), Ut -7), ... , Ut —m7))

.
where y (1) is the first subset of the output data at time t,

T(t) is the first subset of the input data at time t, 1 is the
number of lagged data samples taken from the first output
data subset, m is the number of lagged data samples taken
from the first input data subset and T is a multiple of a time
between samples At (T=kAt) also called a “lag”. The sample
interval or sample time At corresponds to the above-
described discrete time interval used in the sampling step
102 and the measuring step 103. In the specific case of a lag
embedding, the function G(*) is of the form

VO=G(Y (=), . . .,y (=R, T, . .., 0 (=m7) ®)

A corresponding form of G(-) for other embedding types
would be readily apparent to one skilled in the art.

The step of fitting 105 comprises the steps of determining
the function G(+), and selecting the structural parameters (T,
1 and m in the lagged embedding case) and/or other param-
eters of function G(-). For example, other parameters may
include polynomial coefficients in the case of a polynomial
form of the function G(-). The step of fitting 105 is often
called model estimation or training and is well known to
those skilled in the art. Likewise, when other embeddings
are used, one skilled in the art would readily recognize an
alternative form of equation (A) that would be applicable in
addition to the structural parameters involved.

There are a number of techniques for performing the step
of fitting 105 that are generally applicable to a wide variety
of embedding types. The techniques include, but are not
limited to: (i) least-squares fitting with multivariate
polynomials, (ii) fitting using other appropriate basis
functions, such as radial basis functions, (iii) fitting using a
neural network as a universal function approximator, (iv)
fitting with local linear models, and (v) fitting with cluster-
weighted models. In addition, there are many other tech-
niques for fitting a function to data that may be used with the
present invention. There may be advantages of using one of
these methods over the others in specific practical situations.
Such advantages and the correct choice of the function
fitting method given a particular embedding should be
obvious to one skilled in the art and are all within the scope
of the present invention.

In the preferred embodiment, the least-squares fitting with
multivariate polynomials technique is used with a lagged
embedding. While least-squares (L-S) fitting with multivari-
ate polynomials is generally applicable and generally the
preferred technique, two cases are known to benefit from the
use of alternate techniques. The first case is where clipping
or sharp limiting of the output data 212 is observed for one
or more of the output ports of the device. The second case
is when it is found that a polynomial of degree 5 or less does
not give an accurate enough fit for the application. The L-S
fitting technique is relatively fast compared to some of the
other techniques and, therefore, is preferred in most cases.
The L-S fitting with multivariate polynomials technique is
described further hereinbelow.

The method 100 further comprises the step of verifying
106 the fitted function G(-) using the second subset of the
input data and the output data. The step of verifying 106

10

15

20

25

30

35

40

45

50

55

60

65

10

comprises the step of using the second subset of input data
to produce a second embedded data set. The step of verifying
106 further comprises the step of using the first embedded
data set and the second embedded data set in the fitted
function G(-) to produce a first predicted data and a second
predicted data, respectively. The step of verifying 106 fur-
ther comprises the step of comparing the second predicted
data from the function G(*) to the second subset of output
data. The objective of the step of comparing is to determine
if the predicted data is sufficiently similar to the second
subset of the output data from the device. Whether the
predicted data and the second subset of the output data are
sufficiently similar will depend on the particular application
and should be apparent to one skilled in the art. If the second
predicted data and the second subset of the output data are
sufficiently similar then the fitted function G(-) accurately
mimics or is said to accurately model or predict the perfor-
mance of the device. The verified fitted function G() then
becomes the behavioral model of the nonlinear device in a
discrete time representation.

In general, the definition of “sufficiently similar” will
depend on the specific application of the present invention.
However, two tests are typically performed to help verify
106 the fit of the function G(-). The first test assesses the
absolute error between the second predicted data produced
by the fitted function G(-) and measured data that makes up
the second subset of output data. The second test assesses
whether the function G(*) fits well to both the first and
second embedded data sets with respect to the corresponding
first and second subsets of the output data.

A first test that can be used to verify 106 the function G(-)
is based on the root-mean-squared (RMS) error of the
predicted data relative to the input signal power. As a rule of
thumb, the RMS error of the predicted data usually should
be 1-10% of the signal power of the input data 210. In this
test, the RMS error of the first predicted data is compared to
the power of the first subset of the input data. Likewise, the
RMS error of the second predicted data is compared to the
power of second subset of the input data. If the RMS error
is greater than 10% of the signal power in either the first or
second subset case, then the model is likely to be “under-
fitted” and the verification is considered to have failed.

In the second test the performance of the fitted function
G(-) is compared between the first and second embedded
data sets. As a rule of thumb, the fitted function is said to
accurately model or predict the performance of the device if
the RMS error associated with the second predicted data is
less than or equal to three times the RMS error associated
with a first predicted data utilizing the training data (i.e., first
subsets). Generally, if the RMS error associated with the
second predicted data is less than the RMS error associated
with the first predicted data then the model is not considered
validated. In fact, in most cases this condition indicates that
the model is likely to be “overfitted”.

The RMS error as used herein is the RMS difference
between the predicted data given by G(-) and the corre-
sponding portion of the measured data 212. The RMS error
associated with the first predicted data is the RMS difference
between a predicted output using the first embedded data set
as an input to G(-) and the first subset of the output data. The
RMS error associated with the second predicted data is the
RMS difference between the predicted data produced using
the second embedded data set as an input to G(-) and the
second subset of the output data. The first predicted data is
produced by applying the fitted function G(-) to the first
embedded data set. One skilled in the art will recognize that
there are numerous other criteria for verifying the fitted
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function G(°) in specific cases all of which are within the
scope of the invention.

If the predicted data and the second subset of the output
data are not sufficiently similar (i.e. either underfitted or
overfitted) for the application then the present invention is a
robust tool for examining and modifying the excitation
signal 204, embedding type, structural parameters and other
choices made in steps 101-105 in an iterative manner.
Advantageously, steps 101-106 can be iteratively repeated
until the predicted data and the second subset of the output
data are rendered sufficiently similar to the artisan. For
example, a determination often can be made whether the
inaccuracy is due to an incorrect choice of fitted function
and/or function parameters, inadequate coverage of the
embedding space by the input signal 204, or an insufficiently
large embedding space dimension. If it is determined that an
incorrect choice of fitting function and/or function param-
eters has been made, such as having chosen a polynomial
function with a degree that is either too high or too low, steps
105-106 may be repeated with different parameters. If there
is inadequate coverage of the embedding space, a new input
signal 204 can be constructed in the step of applying 101 and
steps 102-105 can be repeated. If, on the other hand, the
embedding space is insufficiently large or of an incorrect
type, a new embedding space may be constructed in step 104
and steps 105 and 106 can be repeated. It is well within the
scope of the invention and, in fact, a key feature of the
invention, that the steps 101-106 of the method 100 can be
applied iteratively until the skilled artisan is satisfied with
the accuracy of the behavioral model produced.

For example, adequacy of coverage of the embedding
space may be examined graphically using parametric mul-
tidimensional plots of subsets of input and output variables.
Aparametric plot of the first and second subsets of input data
and output data can be generated and then examined to
determine whether the first subsets fill the same volume on
the plots as that filled by the second subsets.

In another embodiment of the method 100, the step of
verifying 106 further comprises the step of converting the
behavioral model from a discrete time representation to a
continuous time representation. Converting from a discrete
time representation to a continuous time representation is
well known to those skilled in the art.

The apparatus of the present invention is illustrated in a
block diagram in FIG. 2. In accordance with the present
invention, the apparatus 200 for producing a behavioral
model of a nonlinear device from embeddings of time-
domain measurements comprises an excitation signal gen-
erator 202 that produces an input signal or excitation signal
204. The excitation signal generator 202 can be a digital-
to-analog converter (DACs), an arbitrary waveform genera-
tor (AWG), or a set of sine wave generators with amplitude
and phase weighted outputs. Sine wave generators are
especially useful at high frequencies (e.g. RF and above)
where DACs and AWGs are difficult to find or do not exist.
One skilled in the art will recognize that there are other
means for implementing the excitation signal generator 202
besides those listed above, all of which are within the scope
of the invention.

The input signal 204 is applied to an input port of the
nonlinear device to produce an output signal 206 at an output
port of the nonlinear device. While the input signal 204 can
be any time-domain signal or combination of signals, pref-
erably the input signal 204 is constructed in a manner that
insures adequate coverage of the operational range of the
nonlinear device both in terms of amplitude and in terms of
frequency. The specifics of the construction of the preferred
input signal 204 are described further herein below.
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The apparatus 200 of the present invention further com-
prises a data acquisition system 208. The data acquisition
system 208 samples and digitizes the input signal 204 and
the output signal 206 to produce input data 210 and output
data 212. The output data 212 represents a measured
response of the device. The data acquisition system 208 can
be constructed either using analog-to-digital converters
(ADCs) or using traditional frequency domain or time-
domain measurement systems. Examples of traditional
frequency-domain measurement equipment include vector
network analyzers or microwave transition analyzers with
absolute power and phase calibration and software for
reconstructing time-domain voltage and current waveforms
from the frequency-domain measurements. This approach of
frequency-domain measurement is generally required at
high frequencies such as RF and above where it is costly or
impossible to measure voltages and currents directly with
ADCs. One skilled in the art will recognize that there are
other applicable means for sampling and producing the input
data 210 and the output data 212 for a given application of
the apparatus 200, all of which are within the scope of the
present invention.

The apparatus 200 of the present invention further com-
prises a signal processing computer or signal processor 214.
The input data 210 and the output data 212 produced by the
data acquisition system 208 are processed by the signal
processing computer 214. First, the signal processor 214
separates the input data 210 and the output data 212 into first
and second subsets. Second, the signal processor 214 utilizes
the first subset of the input data 210 and the first subset of
the output data 212 to construct an embedding space. Third,
the signal processing computer embeds the first subsets in
the embedding space as the first embedded data set. Fourth,
the signal processing computer 214 fits a function to the first
embedded data set in the embedding space. Then the signal
processing computer 214 verifies the fitted function using
the second subset of the input data and the second subset of
the output data 212. The verified fitted function G(-) is the
behavioral model of the nonlinear device. In another
embodiment, the signal processing computer 214 further
computes a continuous-time model from the discrete behav-
ioral model produced by the fitted function G().

The discussion that follows concerns the details of prac-
ticing the present invention. While written for brevity for the
method 100 the dicussion applies equally well to the appa-
ratus 200 of the present invention.

The method of nonlinear model extraction used in the
method 100 and apparatus 200 of the present invention is an
innovative and non-obvious method based on “dynamic-
reconstruction theory,” which has its origins in the Takens’s
Embedding Theorem (F. Takens, Dynamical Systems and
Turbulence, Lecture notes in Mathematics 898, ed. D. Rand
and L. S. Young, Berlin: Springer-Verlag, 1981; and T.
Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” J. Srar.
Phys., vol. 65, pp. 579-616, 1991). Dynamic-reconstruction
theory has been extensively developed for modeling autono-
mous systems or devices, i.e. systems with no inputs or
driving terms, by the scientific community since its intro-
duction.

The existing dynamic-reconstruction theory is used to
produce models of signals with nonlinear state space equa-
tions. These are represented by difference equations for
discrete time of the form:

X (n+1)=F(x ()
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or differential equations for continuous time of the form:
din
o - F (€10)

where ?(n) or ?(t) is a d-dimensional state vector of the
systems at time n or t respectively, and F(-) is a vector valued
function. According to Takens’s embedding theorem, the
geometric structure of the multi-dimensional dynamics of
such a system can be “unfolded” from the measurement of

a single observable value of the system, 7(n), in a
D-dimensional state space with dimension D<2d. In

—
practice, y (n) is constructed from a scalar time-domain
signal by forming a time-delayed vector

Y @)=ly(), yin=q). - - ., yn-(D-1)g)]

The embedding theorem has a powerful implication as
originally developed for undriven systems and signals.
Namely, the evolution of points in the “reconstructed” state
space follows that of the unknown dynamic in the original
state space. In other words, a continuous path or trajectory
in the reconstructed state space representing a time evolution
of a signal produced by a nonlinear system or device is also
a continuous path or trajectory in the original state space.
Appropriately choosing an embedding space can remove all
ambiguities or overlaps in the continuous path thereby
making the fitting of a function to the continuous path a
unique, unambiguous operation.

The first suggestion of using dynamic-reconstruction as a
general approach to input/output modeling appears to have
been made by Casdagli (M. Casdagli, “A dynamical systems
approach to input-output systems,” Nonlinear Modeling and
Forecasting, vol. X, Santa Fe Institute Studies in the
Sciences of Complexity, eds. M. Casdagli and S. Eubank,
Addison-Wesley, pp. 265-281, 1992). Casdagli extends the
dynamic-reconstruction approach to driven or input/output
devices or systems of the form

-
= PG Y = )

— —
where u is a scalar or vector of external inputs, X is a state

vector and h(?):i}t“—#}tb is a function producing output

vector 7 Dynamic reconstruction is extended to these
input/output systems by considering the embedding of the
inputs and the outputs in the form of equation (A) herein-
above.

Unexpectedly and advantageously, the embedding theo-
rem thus extended can provide a general approach or solu-
tion to the problem of extracting black-box behavioral
models for nonlinear devices directly from time-domain
measurements. The basis of the present invention is the
novel extension of the Takens’s Embedding Theorem and
the work of Casdagli to the problem of black-box behavioral
model development from time domain measured data taken
from nonlinear, driven or “input/output”, devices or systems.

The present invention advantageously fits the function
G(*) to the first embedded data set using standard nonlinear
modeling methods, such as neural networks, radial basis
functions, or global polynomials. Therefore, the larger prob-
lem of input/output behavioral modeling is reduced by the
present invention to a number of smaller sub-problems. The
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sub-problems are (1) the design of appropriate excitation
signals; (2) the determination of model structure or embed-
ding space, (3) the determination of the function G(*) and its
structural parameters (1, m, and T, in the case of a purely
lagged embedding), (4) the determination of model param-
eters implicit in the fitted function G(-) such as coefficients
in the model class, for example polynomial coefficients if the
fitted function G(') is polynomial; and (5) model or fitted
function validation. Although in practice, the approach to
solving these sub-problems may depend strongly on the
particular device being modeled, a general approach meth-
odology for solving the sub-problems (1)—(5) is presented in
the steps 101-106 of the method 100 using apparatus 200 of
the present invention for all applicable devices.

According to the invention, a method 300 of constructing
an input or excitation signal 204 to be applied to a nonlinear
device for behavioral model extraction from embedded
time-series measurements is provided also. As noted above,
in principle, the input signal 204 can be any time-domain
signal or combination of signals. However, in practice, the
method 300 of constructing the input signal 204 is normally
dependent on the characteristics of the nonlinear device. In
particular, knowledge of the dynamic characteristics of the
device or the physics of the device will often be considered
in the construction or selection of the input signal 204.
Therefore, according to conventional approaches, to con-
struct an excitation signal 204 properly requires knowledge
of the device’s state space or an equivalent embedding space
in addition to the operational amplitude and frequency
ranges of the device. However, in accordance with the
present invention, knowledge of the true characteristics of
the device generally comes from the steps in the method 100
of the invention. Therefore, the method of constructing 300
an appropriate excitation signal 204 is often an iterative
process as noted above. The excitation signal 204 is con-
structed in the excitation signal generator 202 of the appa-
ratus 200 of the present invention.

In general, the method of constructing 300 the excitation
signal 204 is based on the engineering assumption that a set
of measurements for characterizing a device must fully
exercise the region of interest in the state space of the device.
Therefore, the method of constructing 300 can begin with an
educated guess at what input variables and derivatives of
these input variables are state variables of the device. These
input variables and derivatives are referred to herein as the
configuration space of the device. As mentioned above, an
incorrect choice of the configuration space will be detected
in the practice of the present invention because the resulting
model will exhibit poor performance at the step of verifying
106. If a poor choice of the excitation signal 204 is deter-
mined to be causing unacceptably high errors at the step of
verifying 106, the excitation signal 204 can be adjusted and
the procedure repeated.

Once a set of input variables and their derivatives have
been selected, or equivalently once a configuration space has
been chosen, some limits on the input signal 204 must be
usually be applied. From these limits, a subset of the
configuration space is defined. This subset of the configu-
ration space is what needs to be covered by the excitation
signal 204 to adequately stimulate the device in order to
produce an accurate model.

Typically, there are limits to the excitation amplitudes that
can be applied to a device. For example, most electronic or
electrical devices have a maximum voltage that can be
safely applied across the device terminals. These limits
translate directly into the choice of the configuration space.
A maximum frequency at which the device will operate is
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also usually specified. This maximum operating frequency
provides a limit or bounds on all time derivative of voltage
since

{d" [A(Dsin(2r f1) + B]}
max{ ——m—————= 1 =
t dr

n T
max{(- V) AwEaf o sin2nf - Xodd(n)z)} = A(DQr S

where
1,
ot =1 ¢

A block diagram of the method of constructing 300 is
illustrated in FIG. 3. The method of constructing 300 the
excitation signal 204 comprises the step of computing 302
an excitation amplitude A(i) for each input port i of the
device. The values of A(i) should be chosen to be as large as
possible given the known limitations of the inputs of the
device. Preferably, A(i) should be chosen such that

n is even

otherwise

AD=V()-v()

where v(i) and V(i) are the minimum and maximum allowed
amplitudes of the ith input of the device respectively.

The method of constructing 300 further comprises the
step of computing 304 an excitation bias B(i) for each input
port i of the device. The bias B(i) is preferably chosen to be
the mean of the minimum and maximum allowed amplitudes
at the ith port given by

V(i) + V(i)

B = ——

The method of constructing 300 still further comprises the

step of computing 306 a ratio r(i) of the ith port according
to
1 fori=1
ry=4 pRi-1)
{p(Zi—Z) for i>1

where p(i), the ith prime number is defined as
PD=1; p2)=2; p3)=3; p@)=5; . . .

An example set of ratios r(i) for a five port device is

)

—
—
o

) 37
M ={L3 51

—
—

The definition of r(i) given hereinabove is preferred because
using it in conjunction with the method of constructing 300
given herein provides good coverage of the state space of the
device without excessively increasing the maximum fre-
quency that must be generated. Other definitions of r(i) may
be readily developed by one skilled in the art and are all
within the scope of the present invention.

The method of constructing 300 the excitation signal 204
still further comprises the step of computing 308 a set of
frequencies given by
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F=-f(D)

b fys TPSD
10! f()+f(F)—f(1)

j=2 .. F-1

where f(1) is a lowest operational frequency of interest for
the device and f(F) is a highest operational frequency of
interest for the device. The value of F is chosen as a
reasonable tradeoff between measurement time and model
accuracy. A preferred value of F is ten. The lowest opera-
tional frequency f(F) of interest for the device refers to the
lowest frequency at which the device is to be modeled which
is generally greater than or equal to the lowest true opera-
tional frequency of the device. Likewise, the highest opera-
tional frequency f(F) is generally less than or equal to the
highest true operational frequency of the device. However,
if, the method of constructing 300 is being repeated at a
given point in time because the step of verifying 106 failed,
then the number of frequencies F should be increased from
that which was used in the previous iteration.

Having chosen a set of frequencies f(j), the method of
constructing 300 still further comprises the step of produc-
ing 310 a set of F excitation signals, each excitation signal
204 comprising i sub-signals, one for each of the i input
ports of the device. The ith sub-signal of the jth excitation
signal 204 is given as a function of time by

s(7,0)=ADsin2nr (D (HNO+B(0)

Therefore, a total of F input signals 204 are applied to the
device and sampled and a total of F measurements of the
device output are performed. The excitation signals 204 are
sampled in the step of sampling 102 and outputs are mea-
sured in the step of measuring 103 for each of the F input
signals 204.

The method of constructing 300 provides an excitation
signal 204 composed of various sine waves. Preferably, the
use of method 300 to construct the excitation signal 204 is
limited to devices that have bandwidths greater than ten
times a sampling frequency of the dual channel data acqui-
sition system 208 used in the step of sampling, 102 and/or
bandwidths greater than five times an analog bandwidth of
the system 208.

In cases where the bandwidth of the device is less than ten
times the sampling frequency of the system 208 and where
the bandwidth of the device is less than five times the analog
bandwidth of the system 208, another embodiment of the
method of constructing the excitation signal 204' is prefer-
ably used instead of the method 300. In this embodiment, the
method of constructing comprises the generation of a set of
K uniformly distributed, pseudo-random noise (PN)
sequences where K is equal to the number of input ports on
the device. PN sequences are periodic sequences of random
values. The excitation signal 204' is then the set of PN
sequences with the members of the set scaled by the device
input minimum/maximum amplitude limitations given by
v(i) and V(i). A uniformly distributed PN sequence and
methods for generating a uniformly distributed PN sequence
are well known to those skilled in the art.

The PN sequences can be applied directly as an excitation
signal 204' in the case of a baseband device. A baseband
device is one that has an input operational frequency range
with a low frequency end extending to zero Hertz. In
practice, the PN sequences can be directly applied as an
excitation signal 204' even when the device is only nearly a
baseband device, that is when the low frequency end of the
operational frequency range is nearly but not quite zero
Hertz. When the device is a passband device or one in which
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the low end of the operational frequency range of the device
is not at or near zero Hertz, then the PN sequence must be
upconverted before it can be applied to the input of the
device. The excitation signal 204' in the case of a passband
device can be constructed by multiplying or mixing the PN
sequences with a sine wave at or near a center frequency of
the operational frequency range of the device. Finally, the
PN sequences can be used on relatively narrowband devices
by filtering the PN sequences with a sharp lowpass filter in
the case of baseband devices or a sharp bandpass filter in the
case of bandpass devices. The objective is to limit the
spectral energy of the PN sequence based excitation signal
204' to be approximately the same as the bandwidth of the
device. One skilled in the art would readily understand how
to select and apply such filters in a given case.

In practice, combinations of sine waves, as described
above in method 300, are chosen for constructing excitation
signals 204 in many applications. Sine waves are simple to
generate, amplify, and apply at all frequencies from
mechanical or sub-audio, through audio, RF and microwave.
However, at lower frequencies the excitation signal genera-
tor 202 (i.e. arbitrary waveform generators or computer-
controlled digital-to-analog converters) of the apparatus 200
can be used to create excitation signals 204 having any shape
whatsoever. The capability of the generator 202 to generate
arbitrary waveforms can be used to reduce the number F of
different excitation signals required by using excitation
signals 204 that are more complex than sine waves. Fourier
showed in the early nineteenth century that such excitations
are sums of sine waves with various phases and amplitude
weights applied to the individual sine waves. Therefore,
steps 104 through 106 of the method 100 can be performed
without modification with arbitrary excitation signals 204,
as well as with sine waves. Consequently, the use of exci-
tation signals 204 other than sine waves may reduce the
number of experiments to be performed, or equivalently the
number F of different excitation signals 204, but does not
otherwise affect the operation of this invention.

There are situations within the scope of the present
invention where it is difficult or impossible to apply an
arbitrary excitation signal 204 to the device because the
device can only be measured while it is being used in normal
operation. A motorized vehicle, such as an automobile, that
is driven on a road is an example of one such device. The
input to the vehicle is limited to those produced by the driver
or vehicle operator. Since the vehicle must remain on the
road for the vehicle to remain operational, neither a set of
sine waves nor another a pre-designed, arbitrary excitation
signal 204 can be used. The vehicle example is one wherein
the operational requirements of the device place constraints
on the type of excitation signal 204 beyond such things as
amplitude and frequency noted hereinabove. The preferred
excitation signal 204 in this situation is one that includes
operating the device near all of its performance limits. For
the motorized vehicle, these limits might include limits in
accelerations, speed, cornering and direction of travel.

In the method 100 of the present invention, the step of
applying 101 the excitation signal 204 to a device is fol-
lowed by the step of sampling 102 the input signal 204 to
produce input data 210 and the step of measuring 103 the
response of the device to the excitation signal 204 to produce
output data 212. The steps of sampling 102 and measuring
103 are performed at discrete time intervals using the data
acquisition system 208 of the present apparatus 200. It is
well known by those skilled in the art that typical measure-
ments for electronic devices include electrical values such as
voltages, currents, incident and reflected power waves at
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various frequencies. Typical measurements for mechanical
or hydraulic devices including but not limited to the motor-
ized vehicle example, are temperature, pressure, volumes,
positions, speeds, and accelerations. For example, measure-
ments taken on the vehicle might comprise driver inputs
such as steering wheel position, brake pressure, throttle
position, gear selection and the response of the vehicle
including speed, lateral and longitudinal acceleration, and
yaw rate. In the preferred embodiment of the present
invention, the input signal 204 to and the response or output
signal 206 of, the device are sampled 102 and measured 103
by sampling and digitizing using system 208 with an appro-
priate sample rate or sample interval At. One skilled in the
art would recognize that there are many approaches to
sampling an input signal 204 and measuring an output signal
206 of a device and without undue experimentation would
be able to choose an appropriate system 208 for a given
device or class of devices.

In the preferred embodiment of the method 100 of the
present invention, the steps of sampling 102 and of mea-
suring 103 are followed by the step of filtering 103a the
sampled and measured results to remove unwanted noise.
The step of filtering 1034 is also called the step of de-noising
since the affect is to reduce or eliminate noise introduced by
the step measuring 103. Often it is only necessary to apply
the step of filtering 1034 to the measured data 212 produced
by the step of measuring 103.

It is well known by those skilled in the art that after
measurements are taken, the data produced by these mea-
surements may be contaminated with excessive noise. When
working with linear devices, linear lowpass filters are often
used to remove high frequency noise. However, using linear
filters, such as a linear lowpass filter, may not be desirable
when dealing with noise corrupted data from nonlinear
devices. Due to the nature of nonlinear devices, their output
signals 206, even without noise, may have spectral compo-
nents at much higher frequencies than those of the inputs.
The high frequency components present at the output of a
nonlinear device are often referred to as spurious responses
and are a direct result of the nonlinear performance of the
device. Preserving these spurious components in the mea-
sured data is desirable in the operation of the present
invention. If conventional linear lowpass filters were to be
used for removing unwanted noise, the passband of the
lowpass filter would have to be wide enough to preserve the
spurious response produced by the nonlinear device. This
could significantly reduce the effectiveness of the linear
filter’s ability to reduce noise. In addition, if ADCs are used
in the system 208 to collect the data in the steps of sampling
102 and measuring 103, much higher than necessary sample
rates would be required to cover the entire passband of the
lowpass filter.

Therefore, while linear filtering may be acceptable for
filtering the data produced by the step of sampling 102,
preferably nonlinear filters are used for the step of filtering
103a or de-noising of the data produced by the step of
measuring 103. Applicable nonlinear filters include median
filters and morphological filters. Nonlinear filters of these
and other types are generally better able than linear filters to
remove most of the noise in a signal produced by a nonlinear
device while maintaining the bona fide abrupt amplitude
swings and sharp edges characteristic of the output signals
206 of such devices.

Morphological filters are based on geometric growing and
shrinking operations. The growing operation can be thought
of as smoothly padding a geometric shape, called a structure
element, above and tangent to the signal being filtered. The
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output of the growing operation is a locus of points traced
out by the top of the structure element. The shrinking
operation is similar to the growing operation. The structure
elements for the growing and shrinking operations should
generally be chosen with some a priori knowledge about the
shapes of features of interest in the signal being filtered (e.g.
location and magnitude of spurious responses). The struc-
turing elements often resemble these feature shapes. If one
has no a priori knowledge about interesting or important
feature shapes, it is difficult or impossible to choose a
reasonable structuring element and therefore, it is advanta-
geous to use a different class of nonlinear filter, such as the
median filter. Like the morphological filters, median filters
preserve sharp edges and do not ring. The construction of a
median filter is relatively simple: replace a sample or data
point in a sequence representing the signal being filtered by
the median of the data point values surrounding it.

Further, in accordance with the invention, the step of
creating 104 a first embedded data set involves operations
that transform the first subset of input data and the first
subset of output data into a new, usually expanded, first
embedded data set by applying selected, linearly indepen-
dent functions to the first input data subset and/or the first
output data subset. In the preferred embodiment, the linearly
independent functions defined by a choice of the embedding
type are either lags of the input and output data (210, 212)
or combinations of lags and wavelets.

As described above, the step of creating an embedded data
set 104 comprises the steps of determining the embedding
type and dimension followed by embedding the data. In the
case of a lagged embedding, the step of determining the
embedding dimension involves the selection of values for
the structural parameters of equation (B), namely the deter-
mination of values for I, m and ©. The preferred method for
determining 1 and m comprises using the method of false-
nearest-neighbor originally developed for autonomous
systems, those for which u(t)=0, by Kennel (Kennel et al,
Phys. Rev., A 45, pp. 3404, 1992). The lag parameter T is
preferably determined by calculating the first zero of the
mutual information of the observed input and output vari-
ables and taking a multiple of the sample time closest to the
minimum of this set. This is the procedure used by Fraser
(Fraser et al. Phys. Rev., A 33, pp. 1134, 1986). The method
of false-nearest-neighbor may also be used for other embed-
ding types. For all embedding types, the dimension of the
embedding is determined by making an assumption of the
dimension, examining the ramifications of using that dimen-
sion and possibly increasing the dimension in an iterative
manner until acceptable results to the artisan are observed.
The discussion below focuses on the lagged embedding.
Equivalent processes with alternative embedding types
should be readily apparent to one skilled in the art and are
within the scope of the invention.

The method of false-nearest-neighbor for determining 1
and m in the case of a lagged embedding type comprises the
steps of picking a point in the reconstruction state space or
embedding space, finding the nearest neighbors to that point
and determining if these neighbors are true or false neigh-
bors. A point for the purposes of this discussion corresponds
to an embedded data sample associated with a specific time
t. Therefore, for a given m and 1, let

€ nD=Dy(=7), . . . YE-F)ut-1), . . . uit-mv)]
be a point defined by t. Examine other points in the recon-
struction space €, () defined at other times 1 that minimize
the Euclidean distance d given by

10

15

20

25

30

35

40

45

50

55

60

65

20
d = lleym(® = em@ll,

where the operator ||.|, is the 2-norm defined on the embed-
ding space. If the two points satisfy

-yo . ©

d

then the two points are true nearest neighbors in the dimen-
sion 1 and m. Otherwise, the point €,,,(f) is a false nearest
neighbor. The value of R depends on the desired accuracy of
the model being developed. Preferably, a value of R should
be in the range of 1-2% of the relative signal size. Nearest
neighbors are examined using equation (C) for all points in
the embedded data set for a given, fixed 1 and m. A
percentage of points with false nearest neighbors is calcu-
lated. If the percentage of false nearest neighbors is small
(typically<1%), the examination process is stopped and the
embedding dimension is given by 1 and m. If the percentage
of false nearest neighbors is not small, repeat the process of
nearest neighbor examination for a larger value of 1 and/or
m.

In some cases, the data in the first input data subset and
the first output data subset are oversampled. Oversampled
means that the sample interval is much smaller than would
normally be necessary according to standard engineering
practices. The result of oversampling is the introduction of
a statistical correlation between adjacent data samples,
which introduces errors. In these cases, the samples can be
de-correlated by defining a minimal time jAt. This minimal
time can be used to then select a new subset of the input data
210 subset and the output data 212 subset to which the above
referenced step of creating an embedded data set 104 can be
applied.

The lag parameter T can be calculated by a number of
methods, however, two methods are preferred. The first
method of calculating T is to use a simple linear statistic, the
mean subtracted autocorrelation, namely

(5n5n0) = ()

o2

1
&v = —5{lsn = {sa))su-y = () =
where

7 = ((s—s)) = f a5 — PPl

—oa

and where the operator <.>, denotes the time average of the
argument.

The autocorrelation measures the similarity of the signal
s,, and its phase shifted replica S,,_,. The lag parameter T is
determined by the first zero of the autocorrelation function,
that is the first value of the phase shift v for which ¢, is zero.

The second method of calculating the lag parameter T is
to use the nonlinear statistic called the mutual information of
the signal advocated by Fraser. The mutual information of
the signal for a given lag parameter T is given by

0= " pij(lnpi(r) =2 pilnp;
i i

where p; denotes the probability that the signal is in the ith
bin of a histogram and p; (1) is the probability that s(t) is in



US 6,850,871 B1

21

bin i and s(t+t) is in bin j. The first minimum of (<) is taken
as the lag parameter T. The minimums of 1(t) are indications
of where the signal redundancy is minimized.

Lagged embeddings, those that utilize lags of the input
data 210 and/or output data 212 samples as described
hereinabove, are sufficient for many applications. The rea-
son lagged embedding are so broadly applicable is that a
wide variety of functions can be approximated using lags of
the available data. Functions that can be approximated by
lags include derivatives, integrals, and other transformations
of lagged variables. For instance, to calculate the derivatives
and integrals, three sequential time points, S(t,), S(t,), S(t5),
are used for the local interpolation by a second order
polynomial where S(-) refers to a selected data set (input
data 210 or output data 212) and t,, refers a selected point
within the time-series represented by the data. Therefore, the
first derivative with respect to time, assigned to the time
point t,, and second derivative with respect to time, assigned
to the time t; are approximated by the following functions of
lags

y1(max(k, m)Ar)

y1 ((max(k, m) + 1)An)

15

yi((max(k, m) + N + DAr)

d
dTJ; = f(t) - f(t1)

2

di
o2 =S =-2f)+ )

Integral and double integrals are another example of
functions that can be approximated with lagged embedding.
Generally speaking, any function of lagged variables G(f(t,),
f(t,), f(t;)) may be used for a lagged embedding. The only
requirement is that if one uses a set of embedding functions,
the functions used should be linearly independent.

A variety of alternative embedding types based on both
linear and nonlinear transformations of the samples and/or
measured data have been developed and are useful in
specific situations.

In accordance with the method 100 of the present
invention, the step of fitting 105 a function is often called
model estimation or training. There are a number of methods
for performing the functional fitting in the embedding space
including but not limited to: least-squares fitting with mul-
tivariate polynomials (described in more detail below); other
appropriate basis functions, such as radial basis functions;
using a neural network as a universal function approximator;
local linear models; and cluster-weighted models.

Any of these and many other similar methods for approxi-
mating a function from data may be used in the step of fitting
105 of this invention. There may be advantages of using one
of these methods over the others in specific practical situ-
ations. Such advantages and the correct choice of a function
fitting method would be obvious to someone skilled in the
art of applied mathematics or in the art of statistical data
fitting.

An example of fitting a function 105 of the preferred
embodiment of the present invention using the method
called least-squares (L-S) with multivariate polynomials of
the desired degree follows. This approach is often called the
principle component method (PCM). First a set of basis
functions {f]j=1, . . ., M} is chosen for the multivariate
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polynomials of the desired degree with N defined as the
number of embedded data points. If delay embedding is
used, N will be less than the number of data points contained

in the first subsets of the data. Second, ?i is defined to be
the ith embedded datum. In the case of lagged embedding

with sample time At then the (k+m) element vector is given
by

C o maxtiomyr=L ¥ GA=T), . ., ¥ (A=(k=1)0), 0 (At=D), . . .,
o (A==

Third, a matrix Ais defined that is obtained by evaluating the
basis functions at the embedded data points, i.e. its (i, j)-th

element is f](?l) Fourth, a matrix Y is defined to be the
matrix of lagged output data 212, i.e., its (i,j)-th element is

—
the value of the jth output at the time associated with e ;.
That is

y2(max(k, m)Ar)
y2((max(k, m) + 1)Ar)

yp(max(k, m)Ar)
yp((max(k, m) + 1)Ar)

y2((max(k, m) + N+ DAD) ... yp((max(k, m)+ N + 1)Ar)

where b is the dimension of the vector of measurements of

Then, the least squares problem to be solved is to find
coefficients C that minimize |AC-Y|, where |.|, is the
standard 2-norm. The conventional method of performing
this minimization involves computing the QR decomposi-
tion or Singular Value Decomposition (SVD) of A. The QR
and SVD methods handle the numerical degeneracy typical
of A well. However, the QR and SVD methods require
storing and factoring the NxM matrix A. The difficulty is
that when performing NLTSA, N typically increases expo-
nentially with the embedding dimension D. Even storing A
in main memory can be impractical when N exceeds a
hundred thousand.

The difficulty of storing and factoring A can be avoided by
solving the least squares problem using the normal equation
approach. The normal equations are explicit equations for
computing C:C=(ATAYA”Y . The key observation is that
these equations can be solved without ever explicitly form-
ing and storing A. This is done as follows. First, the matrix
A"Y is computed, whose (i,j)-th element is

N
Z filew)ye,j
=1

Second, ATA is computed directly where the (i,j)-th element
is given by

N
D fleofien
k=1

Note that A7A is an MxM matrix which is much smaller that
the NxM matrix A because, in practice, M<<N). This step
requires computer time proportional to NM?. Third, C is
computed by first finding the diagonal matrix D of eigen-
values and orthogonal matrix V of eigenvectors of ATA. D
is ordered with descending, non-negative diagonal elements
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(ie. D;;2D,,2 . . . 2D,,,20). Second, an appropriate,
small, positive value ¢, is chosen whose selection trades off
accuracy of fitting against numerical stability. Let D;; be the
diagonal matrix with

5 0 if Dy; /Dy <&
“711/D; otherwise

The new diagonal matrix D is substituted for the original
diagonal matrix, D, in the formula for inversion of

ATA:(ATA) ' ~VDVT
so that finally, C is given by
C=VDV'(ATY)

The above described L-S method can be used in the case
where the number of data points N in the input and output
data subsets 210, 212 is so large that A cannot be stored in
the available memory, whereas the commonly used methods
of QR decomposition and SVD cannot. Both the normal
equation method and the other methods require computer
time proportional to NM?, so neither have a significant
advantage over the other based on computation time.

A behavioral model of a bipolar junction transistor (BJT)
was created using the apparatus 200 and method 100 of the
present invention and it is described below. This example is
illustrative only and it is not intended to limit the scope of
the invention in any way. For the example, the base of the
BIJT is designated as the input port and the collector of the
BIJT is designated as the output port. The emitter of the BJT
is connected to ground that is also used as a reference for all
voltages in the example.

An excitation signal generator 202 made using an arbi-
trary waveform generator (AWG) with an internal digital to
analog converter (DAC) was programmed to generated an
input signal 204 that was made up of a sequence of 20,000
voltage values at a rate of 8,000 voltage values per second.
The input signal 204 was applied 101 to the base of the BJT.
The voltage values programmed into the DAC were also
stored in a computer memory as the input data 210 set. The
device response signal 206 to the input signal 204 was
measured 103 by sampling the output signal 206 at the
collector of the BJT with an analog-to-digital converter
(ADC). The output signal 206 was sampled at a rate of 8,000
samples per second. The sampled data sequence consisting
of 20,000 BJT collector voltage values was stored in the
computer memory as the output data 212 set. The collected
input data 210 and output data 212 was then processed by a
signal processing computer 214 to produce a behavioral
model of the BJT. The signal processing computer 214
processed the input data 210 and output data 212 by execut-
ing a computer program that embodied the steps 103a-106
of the method 100 of the present invention.

The input signal 204 for the BJT example was a PN
sequence of length 10,000. The amplitude of the PN
sequence was constrained to be in the range of {-1V,+1V}
(ie. v(1)=-1 volt and V(1)=+1 volt). The PN sequence
generated was uniformly distributed in a frequency range of
1-200 Hz. The PN sequence was created by using a high
quality computer based random number generator to pro-
duce a sequence of random values and then bandlimiting the
sequence using a bandpass filter between 0-200 Hz con-
structed from a high-order FIR filter like that used in the
CDMA IS-95 specification. A portion of the input signal 204
used and an associated portion of the output signal 206
produced by the BJT is illustrated in FIG. 4 and FIG. 5,
respectively.

10

15

20

25

30

35

40

45

50

55

60

65

24

A dialog box of a computer program used for defining the
input signal 204 of this example is illustrated FIG. 6. In the
dialog box, the PN sequence is referred to as a Pseudo
CDMA (Code Division Multiple Access) signal. The dialog
box used in this example also allows up to three sine waves
to be used along with the PN sequence. The amplitudes of
the sine waves were set to zero for the purposes of this
example resulting in an input signal 204 that included only
the defined PN sequence. A constant bias offset, set to zero
for this example, is also provided for by the dialog box.

The input data 210 and the measured output data 212 were
divided into first subsets and second subsets. For the BJT
example presented herein, the first data subset of the input
data corresponded to half of the available input data 210 and
included data from sample time point 176 to the sample time
point 9642. A corresponding set of time samples from the
output data 212 was used to constitute the first subset of the
output data.

For this BJT example, the method of false nearest neigh-
bor described hereinabove was then used to determine a
reasonable embedding dimension for the output signal 206.
FIG. 7 illustrates a plot of the number of false nearest
neighbors or internal dimension as a function of the number
of lags. As can be seen in FIG. 7, the number of false nearest
neighbors is reduced to essentially zero for lags of four or
more. The method of false nearest neighbors is only one of
several methods, including trial and error that can be used to
determine an appropriate embedding dimension.

Following the estimation of the internal dimension, three
additional (derivative) signals were calculated based on the
input signal 204 by using the wavelet kernels 2, 4, and 8
wavelets implemented in a computer program used for the
BIT example. A dialog box that lists the available embed-
ding functions implemented in the computer program for
this example is illustrated in FIG. 8.

The dialog box allows the selection of the embedding
functions that are to be applied to the first subset of the input
data and the first subset of the output data in the production
of a first embedded data set. The functions listed in the
dialog box correspond to specific functions en, as described
hereinabove. The first embedded data set included the first
subset of the input data as indicated by the checkmark in
columns 1 of the dialog box illustrated in FIG. 8. In addition,
the first embedded data set included data produced from the
input data by applying each of a 2, 4, and 8 wavelet
transformation to the first subset of the input data. As a result
of this embedding there were 4 parts to the embedded data:
(1) the first subset of the input data, (2) a 2-wavelet
transformation of the input data, (3) a 4-wavelet transfor-
mation of the input data, and (4) an 8-wavelet transformation
of the input data. FIG. 9 illustrates a plot of portions of each
of these four parts of the embedded data set 213 produced by
the selected embedding for the BJT example. Only a portion
of the total embedded data set 213 produced is shown in the
figure for clarity.

After the embedded data set 213 was created 104, a
function was fit to the data with the step of fitting 105. The
step of fitting 105 a function in the BJT example was
accomplished with a least squares fitting to a multivariate
polynomial. The function fitting (step 105) was accom-
plished in a point to point manner or mapping. In the case
of the BJT example, the function fitting (step 105) utilized
the first subset of the input data and the wavelet transformed
data, parts (2)—(4), as input values for fitting and the mea-
sured first subset of the output data as a comparison to the
predicted values produced by the function being fitted. The
fitted function is also referred to as a polynomial map in as
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much as it “maps” the input data and embedded input data,
parts (1)—(4) into a prediction of the output data using a
polynomial function.

The average deviation of the measured values of the
output data 212 from the corresponding predicted value
produced by the fitted function is called “deviation” and it is
the main parameter which evaluates the success of the whole
procedure during the development of the black box model of
the device. In general, the polynomial map that minimizes
the deviation is not necessarily the best polynomial map. For
example, a polynomial order can be chosen that is so high
that the number of terms (and correspondingly the number
of parameters for the black box model) is equal or exceeds
the number of measurements itself. In this case, some
polynomials can yield a “zero deviation™ solution.
Therefore, to get an accurate model, a more sophisticated
approach than simply minimizing the deviation must be
used. The approach used in the present invention is embod-
ied in the method 100 in the step of verification 106 of the
present invention.

The computer program used in the BJT example provides
a dialog box to assist in the L-S multivariate polynomial
function fitting process. FIG. 10 illustrates the dialog box
utilized in the BJT example. A polynomial of order 5 was
chosen. The original input data along with the three wavelet
embedded data sets were designated as inputs to the poly-
nomial function and the measured first subset of the output
data was designated as the response data for use in the L-S
process. In addition, the principal components method was
chosen. The result of the fitting process is illustrated in FIG.
11 which is a plot comparing the predicted data produced by
the fitted 57 order polynomial to the first subset of the output
data as a function of time. In the illustrated plot, the dashed
line represents the measured first subset of the output data
and the solid line represents the predicted data. There is very
good agreement between the predicted data and the first
subset of the output data.

The coefficients of the polynomial were saved in a file, to
be used as a polynomial black box model of the BJT device.
The following is the polynomial calculated for the black box
behavioral model of the BJT transistor of this example:

3.980667877363320 - 7.896498597432142F - 001*vI -
3.665585450869457E - 001*vI*v] - 7.112236556643211*vI*vi*vl +
2.501831726751789*vI*vI*vI*vl +
12.215150570587870*vI*vI*vI*vI*vI + 2.079911943056558*v2 +
4.891939518777235E - 001*vi*v2 +
16.180939878427130*vI*vI*y2 -
6.373803999222218*vI*vI*vI*v2 -
55.140018310645250*vI *vI*vI*vI*v2 -
2.404018036290267E - 001*v2*v2 - 14.446749342336260*vI *v2*v2 +
6.510613064063364*vI*vI*v2*v2 +
96.307211278952310*vI*vI*vI*v2*v2 + 1.921257469043439*y2*y2*y2 -
3.513218328654148*vI*v2*y2*y2 -
77.888087324441590*vI*vI*v2*y2*v2 + 8.574613137448068E -
001*v2*y2*y2*v2 + 35.113817098024810*vI*v2*y2*y2*y2 -
5.743404462439912*y2*v2*y2*v2*v2 - 8.574434293365982E -

001*v3 + 2.073473002362789E - 001*vI*v3 +
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-continued
10.233045779267950*v1*vI*v3 - 4.111995841266435*vI*v]*v]*3 -

32.335288970292820*vI*vI*vI*vI*v3 - 7.971206195827563E -
002*y2*y3 -10.603798957973140*vI *v2*v3 +
7.491387667079835*vI*vI*v2*v3 +
90.426919343524790*v1 *vI*vI*v2*y3 + 7.070705577602169*v2*v2*vy3 -
4.653278068108193*vI*y2*y2*y3 -
100.848222710534200*vI *vI*v2*y2*v3 +
1.147863373405016*v2*y2*v2*v3 +
39.476675838030130*vI *v2*v2*12%y3 -
11.386871650858210*y2*y2*v2*y2*y3 - 1.172719917361746E -
001*v3*v3 - 5.791427212485587*vI *v3*v3 +
2.880567672254983*vI*vI*v3*v3 +
46.656706054503280*vI*vI*vI*v3*v3 + 7.724917728507990F -
001*y2*y3*y3 - 3.491721712817707*vI*v2*y3*v3 -
86.992593492564080*vI *vI*v2*v3*y3 +
1.277371388543998 *v2*y2*v3*y3 +
63.891840890386450*v1 *v2*v2*y3*y3 -
7.454699677682015*v2*v2*y2*v3*y3 + 4.070525693187506F -
001*v3*v3*y3 - 7.780535073948158E - 001*vI*v3*y3*y3 -
28.124627527133270*vI*vI*v3*v3*y3 +
3.756441740995342F - 001*v2*v3*v3*y3 +

29.327204403415640*vI *v2*y3*y3*y3 -

In some cases, the experimental errors involved in the
measurements can result in an overfitted model. This situ-
ation is detected in the step of verifying 106 if the model
errors are not approximately equal to the measurement
errors. The overfitting criteria provides a means to “close”
the iteration loop among all possible embeddings and map-
pings to a restricted number of guesses and conduct the
calculation of the black box model of a device in a pure
automated way.

In the case where the experimental error is unknown as in
the example presented above, a so-called “cross-validation”
criterion can be applied to detect overfitting. For the cross-
validation criterion, the deviation for the first subsets is
compared to the deviation for the second subsets. If the
difference between the deviations is more than a factor of
approximately three for example, the model is said to be
overfitted and the model is rejected. At this point, the steps
of method 100 can be repeated with different parameters in
an attempt to eliminate the overfitting.

In a second example, the method 100 and apparatus 300
of the present invention were applied to create a behavioral
model of a sensor system used to facilitate calibration of the
sensor. The sensor in this example was the infrared telescope
of the Hubble Space Telescope (HST) and the calibration
was the calibration of the focusing algorithm used in con-
junction with the infrared telescope. The behavioral model
that was produced by the method 100 and apparatus 300 of
the present invention yielded a 30% improvement in focus-
ing accuracy when compared to a physical model developed
using the best available conventional modeling method. As
in the first example, this example is illustrative only and it
is not intended to limit the scope of the invention in any way.

In this example, the input data 210 comprised measure-
ments of temperature at six locations on the HST, measure-
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ments of focus, and measurements of time. The output data
212 was the focus correction that was applied. The goal of
developing the behavioral model in this example was to
generate a model that enabled the prediction the focus
correction that was required for combinations of measured
input values that did not directly correspond to those mea-
sured. This is typical of a calibration situation wherein a
limited number of measurements of conditions affecting a
sensor are available. These available measurement are then
used to provide predicted correction of the performance of
a sensor over a much greater range of possible conditions.

The embedding dimension for this example was deter-
mined to be eight and embedding types that were chosen
were: 1) time variable, 2) T1 variable, 3) wavelet of order 3
from T1 variable, 4) T4 variable, 5) wavelet of order 3 from
T4 variable, 6) T5 variable, 7) first derivative of T5 variable,
and 8) wavelet of order 3 from T5 variable. The reference to
“T1 variable”, “T4 variable” and “T5 variable” refer to
portions of the input data 210 associated with temperature
sensor 1, 4 and 5 respectively. The above referenced embed-
ding dimension and embedding type was used to generate an
embedded data set 213 from a first subset of the input data.
A function was fit to the embedded data set 213 utilizing a
corresponding first subset of the output data. The function
was a 1°* order polynomial mapping of the eight embedded
data set variables and was generated using the least squares
method. The model was verified using a second subset of the
input and output data. The correspondence between the
measured output and the predicted output generated by the
model was found to be excellent. As noted above, the model
generated by the application of the method 100 of the
present invention in this example unexpectedly and advan-
tageously proved to be 30% more accurate at predicting the
required focus correction of the HST infrared telescope than
a physical model produced using conventional methods.

Thus there has been disclosed a new and non-obvious
method and apparatus for the extraction of a behavioral
model of a nonlinear device from embeddings of time-series
of sampled and measured input and output signals. Changes
and modifications may be made to the invention that may be
readily apparent to those skilled in the art without going
beyond the intended scope of the invention, as defined by the
appended claims.

What is claimed is:

1. A method of producing a behavioral model of a
nonlinear device from embeddings of time-domain
measurements, the device being real or virtual having one or
more input ports and one or more output ports, comprising:

applying an input signal to the input port of the nonlinear

device;

sampling the input signal to produce input data;

measuring a response to the input signal at the output port

of the device to produce output data corresponding to
the input data;

creating an embedded data set using a first subset of the

input data and a first subset of the output data;

fitting a function to the embedded data set; and

verifying the fitted function using a second subset of the

input data and a second subset of the output data,
wherein the verified fitted function is the behavioral
model of the nonlinear device, and wherein the input
signal is a uniformly distributed pseudo random
sequence with a bandwidth equal to or greater than an
input operational bandwidth of the nonlinear device.

2. The method of claim 1 further comprising filtering one
or both of the input data produced in sampling and the output
data produced in measuring before creating the embedded
data set.
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3. The method of claim 2, wherein filtering employs a
nonlinear filtering to preserve a nonlinear response charac-
teristic of the nonlinear device.

4. The method of claim 1, wherein the nonlinear device is
a sensor and the behavioral model is used for generating
calibration data for the sensor.

5. A method of producing a behavioral model of a
nonlinear device from embeddings of time-domain
measurements, the device being real or virtual having one or
more input ports and one or more output ports, comprising:

applying an input signal to the input port of the nonlinear

device;

sampling the input signal to produce input data;

measuring a response to the input signal at the output port

of the device to produce output data corresponding to
the input data;

creating an embedded data set using a first subset of the

input data and a first subset of the output data;

fitting a function to the embedded data set; and

verifying the fitted function using a second subset of the

input data and a second subset of the output data,
wherein the verified fitted function is the behavioral
model of the nonlinear device, and wherein the input
signal comprises a set of 1 sine waves described by the
equation

s(7,0)=ADsin2nr (D (HNO+B(0)

where 1 refers to an ith input port of the nonlinear
device, j refers to a jth measurement performed on the
nonlinear device to produce a jth subset of the output
data and t is time, and where A(i) is an ith amplitude at
the ith input port, r(i) is an ith ratio, f(j) is a frequency
of a jth measurement, and B(i) is a bias level of the ith
sine wave.

6. The method of claim 5 wherein the ratio r(i) is given by

1
(i) ={ p2i-1)

p(2i-2)

for i=1

for i>1

where an ith prime number p(i) is defined as
P(D=1; p(2)=2; p(3)=3; p(4)=5.

7. The method of claim 5, wherein the bias B(i) is given
by

VDY)

B() 2

where amplitudes V(i) and v(i) are maximum and minimum
values, respectively, for the ith input port of the nonlinear
device.

8. The method of claim 5, wherein the nonlinear device is
a sensor and the behavioral model is used for generating
calibration data for the sensor.

9. The method of claim 8, wherein filtering employs a
nonlinear filtering to preserve a nonlinear response charac-
teristic of the nonlinear device.

10. The method of claim 5, further comprising filtering
one or both of the input data produced in sampling and the
output data produced in measuring before creating the
embedded data set.

11. An apparatus for producing a behavioral model of a
nonlinear device from embeddings of time domain
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measurements, the device having one or more inputs and one
or more outputs comprising:

a signal generator for producing an input signal that is
applied to the input of the device;

a data acquisition system for sampling the input signal,
measuring an output signal at the output of the device
in response to the input signal and producing input data
and output data from the sampled input signal and from
the measured output signal; and

a signal processing computer for creating an embedded
data set from a first subset of the input data and a first
subset of the output data, for fitting a function to the
embedded data set and for verifying that the fitted
function models the device using a second subset of the
input data and a second subset of the output data,
wherein the signal generator is an arbitrary waveform
generator, and wherein the input signal produced by the
arbitrary waveform generator is a uniformly distributed
pseudo random sequence with a bandwidth equal to or
greater than an input operational bandwidth of the
nonlinear device.

12. An apparatus for producing a behavioral model of a
nonlinear device from embeddings of time domain
measurements, the device having one or more inputs and one
or more outputs comprising:

a signal generator for producing an input signal that is

applied to the input of the device;

a data acquisition system for sampling the input signal,
measuring an output signal at the output of the device
in response to the input signal and producing input data
and output data from the sampled input signal and from
the measured output signal; and

a signal processing computer for creating an embedded
data set from a first subset of the input data and a first
subset of the output data, for fitting a function to the
embedded data set and for verifying that the fitted
function models the device using a second subset of the
input data and a second subset of the output data,
wherein the input signal comprises of a set of i sine
waves described by the equation

s(7, D=ADsinCar(D)fHNO+B(E)

where 1 refers to an ith input port of the nonlinear
device, j refers to a jth measurement performed on the
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nonlinear device to produce a jth subset of the output
data and t is time, and where A(i) is an ith amplitude at
the ith input port, r(i) is an ith ratio, f(j) is a frequency
of a jth measurement, and B(i) is a bias level of the ith
sine wave.

13. The apparatus of claim 12 further comprising a filter
for removing noise from the input data and the output data
before the embedded data set is created.

14. The apparatus of claim 12, wherein the ith bias B(i) is
given by

v+ V()

B(i) 5

where amplitudes V(i) and v(i) are maximum and minimum
values, respectively, for the ith input port of the nonlinear
device.

15. A method of generating an excitation signal for use in
determining a behavioral model of a nonlinear device having
one or more input ports and one or more output ports
comprising:

producing a set of sine waves wherein the ith sine wave

in the set is given by

(i )=A@sinar(()0)+B6)

where 1 refers to an ith input port of the nonlinear
device, j refers to a jth measurement performed on the
nonlinear device to produce a jth subset of the output
data and t is time, and where A(i) is an ith amplitude at
the ith input port, r(i) is an ith ratio, f(j) is a frequency
of a jth measurement, and B(i) is a bias level of the ith
sine wave.
16. The method of claim 15, further comprising:

computing the ith bias B(i) with the equation

B(i) = w

where amplitudes V(i) and v(i) are maximum and
minimum values, respectively, for the ith input port of
the nonlinear device.



