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METHOD FOR THE RAPID ESTIMATION
OF FIGURES OF MERIT FOR MULTIPLE
DEVICES BASED ON NONLINEAR
MODELING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to co-pending and commonly
assigned U.S. patent application Ser. No. 09/420,607 filed
Oct. 18,1999, entitled “METHOD AND APPARATUS FOR
EXTRACTION OF NONLINEAR BLACK BOX BEHAV-
IORAL MODELS FROM EMBEDDINGS OF TIME-
DOMAIN MEASUREMENTS,” hereinafter referred to as
U.S. application Ser. No. 09/420,607; and U.S. patent appli-
cation Ser. No. 09/511,930 filed Feb. 23, 2000 and published
Aug. 29, 2001 as document EP 1,128,293, entitled “EXCI-
TATION SIGNAL AND RADIAL BASIS FUNCTION
METHOD FOR USE IN EXTRACTION OF NONLINEAR
BLACK-BOX BEHAVIORAL MODELS FROM EMBED-
DINGS OF TIME-DOMAIN MEASUREMENTS,” herein-
after referred to as EP 1,128,293; the disclosures of which
are hereby incorporated herein by reference.

TECHNICAL FIELD

This invention relates to nonlinear mathematical model-
ing and particularly to a method for the rapid estimation of
figures of merit for multiple devices under test based on
nonlinear modeling.

BACKGROUND OF THE INVENTION

One common use of instrumentation in a manufacturing
environment is to determine rapidly “figures of merit” of a
manufactured electronic component or system. Such figures
of merit are used both to determine the quality of component
or system, and also to enable the component or system to be
optimized relative to its performance specification.

For example, in the manufacture of amplifiers for wireless
base stations, nonlinear figures of merit such as third-order
intercept are typically used in the tuning process, and figures
of merit such as the adjacent channel power ratio are used to
check final compliance of an amplifier with federally man-
dated specifications. In the design of an entire wireless base
station on the other hand, the error-vector-magnitude is
monitored across different sub-components of the base sta-
tion in an attempt to optimize the overall bit error rate (BER)
or correlation coefficient (p) of the transmitter. Thus, various
figures of merit come into play in developing and manufac-
turing a component or system, and how they are used
depends on a mix of issues both practical and legal.

Typical figures of merit that play a key role in the
manufacturing and testing of radio frequency (RF) and
microwave components and systems are so-called:

Correlation Coefficient (p),

Error Vector Magnitude (EVM),

Adjacent Channel Power Ratio (ACPR), and

Third-Order Intermodulation Distortion (IMD).

The first two of the above figures of merit, p and EVM,
defined in terms of time domain signals (see for example
Testing and Troubleshooting Digital RF Communication
Receiver Designs, Agilent Application Note AN 1314, pp.
1-24, Mar. 25, 2002), attempt to summarize the distortion
produced by a system in terms of an average difference in
the time domain between the specified and observed behav-
ior of a stimulus and response signal. The latter two figures
of merit, ACPR (see for example Understanding CDMA
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Measurements for Base Stations and Their Components,
Agilent Application Note AN 1311, pp. 1-36, June 2000)
and IMD (see for example Third Order Intermodulation
Distortion Measurements, Agilent Product Note PN 8566B/
8568B-1, 5954-2701, pp. 1-6, October 2000), are defined in
the frequency domain, and are quantities which can be
computed from a power spectral density (PSD) function
using a fast Fourier transform (FFT). However, all four
figures of merit are estimated in prior art instrumentation
through a stimulus and response measurement on each
device under test (DUT), which uses no prior information
about the DUT. Moreover, each figure of merit is computed
by an independent stimulus and response measurement,
even on the same DUT. The advantage of this prior art
approach is that the instrument is able to provide informa-
tion about a large range of different types of devices or
systems, since the algorithms used to compute the relevant
figure of merit do not depend on the type of DUT. A
drawback, however, is that a great deal of data and thus of
measurement time is required to accurately estimate a single
figure of merit for a single DUT.

BRIEF SUMMARY OF THE INVENTION

The present invention is directed to a system and a general
method which estimate figures of merit based on nonlinear
modeling and nonlinear time series analysis. According to
embodiments of the invention, terms in a nonlinear behav-
ioral model that depend on nonlinear combinations of a fixed
input signal value are precomputed, optimizing the behav-
ioral model such that figures of merit are evaluated from a
single short stimulus vector. The optimized nonlinear behav-
ioral model can then be applied to evaluate figures of merit
for multiple devices under test (DUTs) in a manufacturing
line. According to some embodiments, a process continually
verifies and adjusts the nonlinear behavioral model based on
sub-sampling multiple DUTs in a manufacturing line and
comparing their figures of merit based on nonlinear model-
ing with those based on conventional measurement proce-
dures.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention. It should be appre-
ciated by those skilled in the art that the conception and
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry-
ing out the same purposes of the present invention. It should
also be realized by those skilled in the art that such equiva-
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims. The novel
features which are believed to be characteristic of the
invention, both as to its organization and method of
operation, together with further objects and advantages will
be better understood from the following description when
considered in connection with the accompanying figures. It
is to be expressly understood, however, that each of the
figures is provided for the purpose of illustration and
description only and is not intended as a definition of the
limits of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawing,
in which:
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FIG. 1 is a block diagram depicting apparatus in accor-
dance with embodiments of the present invention; and

FIG. 2 is a flow diagram depicting a method, according to
embodiments of the invention, for producing a behavioral
model of a nonlinear device from embeddings of time-
domain measurements.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention is directed to a system and method
that use prior knowledge about a DUT to dramatically
reduce the data needed to accurately estimate a figure of
merit. This prior knowledge can be used to increase the
resolution of a measurement or to reduce the data quantity
needed to make an estimate to a given resolution, or both.
This fact has been appreciated by those doing spectral
estimation, where “prior knowledge” is typically expressed
as a parametric model for the DUT. Parametric spectral
estimation is a well-developed technique both theoretically
and practically (see for example Kay, Modern Spectral
Estimation—Theory and Application, Prentice-Hall, 1988),
and the dramatic advantages in terms of resolution and/or
speed to be gained by having an accurate model when trying
to identify the behavior of a DUT are well documented.
However, parametric spectral estimators depend on an accu-
rate prior model for the DUT before such advantages can be
realized. Moreover, most parametric spectral estimation
methods deal with linear signals and systems (sce for
example Lathi, Linear Systems and Signals, Oxford Uni-
versity Press, Chapter 13, 2002), and figures of merit typi-
cally are focused on capturing relatively small deviations
from linearity, that is, the nonlinear behavior of a component
or system. Further, both the construction and use of such
models with current instrumentation raises problematic
issues for both theory (how to construct accurate nonlinear
models rapidly) and implementation (how to enable instru-
ments to easily handle different algorithms for different
DUTSs). The present invention is directed to the first of these
problems, namely how to rapidly build an accurate nonlinear
model and from it efficiently estimate relevant figures of
merit.

DUTs from a development phase and from sub-samples of
an entire manufacturing line are used to build a nonlinear
“black box” model for the DUT’s time domain response.
After this model is developed, a short stimulus and response
measurement in the time-domain is used to fit any individual
DUT to a precomputed nonlinear model structure. Particular
model structures described herein are nonlinear, but are
linear-in-parameters.

Instrumentation embodying these capabilities is particu-
larly attractive in manufacturing environments, where the
cost associated with the time duration of a test is paramount.
A large number of tests are typically performed on DUTs all
similar except for process variations. Unlike a more general-
purpose instrument needed in a research and development
lab, a dedicated instrument used in manufacturing test
environment performs the same measurements repeatedly
on very similar devices. In such a situation, it would be
advantageous to make use of a model for the DUT con-
structed from a subset of the DUTs to be characterized, and
then use this model to improve or shorten the overall test
time for all DUTs on a manufacturing line.

The present invention is directed to a general method to
do this, when the DUT has significant nonlinear behavior or
must meet stringent linearity requirements that need to be
modeled and quantified by its associated figures of merit.
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Generally, methods for such nonlinear modeling are exten-
sions of nonlinear time series analysis useful to estimate
figures of merit that can be derived from PSD, which are
described for other implementations in co-pending and
commonly assigned U.S. application Ser. No. 09/420,607,
and EP 1,128,293, cited above, the disclosures of which
have been incorporated herein by reference. An embodiment
of these methods is documented specifically to model and
compute figures of merit for HP power amplifier configured
to operate from 1-50 Ghz, subject to an excitation signal
such as CDMA 2000 from a signal source generator model
ESG E4432B (see Measuring Bit Error Rate Using the
ESG-D Series RF Signal Generators. Agilent Product Note
5966-4098E, pp. 1-8, Dec. 8, 2000). The response is mea-
sured with a high performance spectrum analyzer, for
example Agilent model PSA E4440A with time domain
capture option B7J digital modulation hardware required for
cellular communications measurement personalities (see
Agilent Product Note 5966-4098E cited above). A Matlab
script has been developed for the above embodiment (see
Hanselman et al., Mastering Matlab 6, Prentice-Hall, 2000).

Embodiments of the present invention utilize time-
domain measurements of a nonlinear device to produce or
extract a “black box” behavioral model of the device from
embeddings of these measurements. The methods of the
present invention are applicable to modeling devices, where
information about the device is provided by either physical
measurements or simulated measurements.

The use of embeddings to extract models from time
domain measurements of nonlinear devices is called non-
linear time series analysis (NLTSA). The term “black box”
as used herein refers to a model that requires little or no
detailed information of the device, for example topology of
an equivalent circuit or knowledge of underlying physics, be
known before the model is constructed. The term “embed-
ding” as used herein refers to a function or mapping from a
set U to a new set W, where typically W has a dimension
greater than U but not more than twice the dimension of U.
Typically the embedding vector is calculated by the well-
documented method of time-delays (see for example Kantz
et al., Nonlinear Time Series Analysis, Cambridge Univer-
sity Press, Section 3.3, pp. 34-36, 1997). Since the device
contains an input/output system, the normal method of time
delays is augmented as follows: (i) compute the mutual
information of a possible vector of output signals, for
example a two-dimensional vector representing the I and Q
channels of a modulated signal, and take a time delay for all
input/output signals equal to the smallest value of the first
minimum of the mutual information of all the output signal,
(ii) then compute the false nearest neighbor statistics of all
combinations of input and output vectors up to a fixed
number of delays, typically not more than three; (iii) this
typically provides more than one set of candidate embedding
vectors, from which is selected the candidate set having the
fewest number of delayed response variables in the embed-
ding vector. If a nearest neighbor statistic yields a model
with no response embedding variables, then the resulting
model from this embedding variable is called “static.”
Otherwise, the model needs to contain memory effects and
is called “dynamic.” Recent publications describe in more
detail this method to select embedding variables for an
input/output system (see for example Barnard et al., Physical
Review E, V.64, 046201, 2001; Boccaletti et al., Physical
Review E, V.65, 035204-1, 2002).

The method described above in accordance with the
present invention differs from the method disclosed in
co-pending applications Ser. No. 09/420,607, and EP 1,128,
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293, cited above, the disclosures of which have been incor-
porated herein by reference, in that the input signal illus-
trated above is a specific type common to cell phone
modulation schemes such as of CDMA or GSM and is
completely specified by the instrument generating the signal
source, for example Agilent E4432B or E4438C (see Agilent
Product Note 5966-4098E, cited above).

This input or drive signal is typically referred to as a
stimulus signal and is measured in the time domain. The
output, typically called a response signal of the DUT, is also
measured in the time domain with an instrument, for
example Agilent E4440A Performance Spectrum Analyzer
(see Agilent Product Note 5966-4098E, cited above). The
first step of the method consists of time-aligning the stimu-
lus and response signals. This is typically done by maxi-
mizing the cross-correlation function of the stimulus and
response functions, though much more sophisticated meth-
ods can be applied leading to time alignment of far greater
accuracy. Once the stimulus and response signals are time
aligned, the embedding vector is created as described above.

Embedding methods include, but are not limited to, so
called “lagged” embeddings, embeddings using singular
value decomposition (SVD) of the data, wavelet
embeddings, and combinations thereof. The embedding
types differ according to the specific functions that are used.

The next step of the method seeks to fit a function G(*)
from the embedded data set to the corresponding output
data. In general, the function G(-) is a function of the
embedded data set to one component of the output, usually
denoted y(t), while the input data set is usually denoted by
u(t). The dimension of the embedded input is denoted by 1
and is the number of lagged data samples taken from the first
output data subset, m is the number of lagged data samples
taken from the first input data subset and T is a multiple of
a time between samples At(t=kAt), also called a “lag”. The
sample interval or sample time At corresponds to the above
described discrete time interval used in the sampling step
and the measuring step. In the specific case of a lag
embedding, the function G(*) is of the form y(t+1)=G(y(t),y
t-1), . . ., y(t-17), u(t-7), . . . , u(t-mt)). G(*) for other
embedding types would be readily apparent to one skilled in
the art (see for example co-pending applications Ser. No.
09/420,607, and EP 1,128,293, cited above, the disclosures
of which have been incorporated herein by reference).

The next step, called fitting, includes the steps of deter-
mining the function G(-), and after selecting the structural
parameters (T, 1 and m in the lagged embedding case) and/or
other parameters of function G(). For example, other param-
eters may include polynomial coefficients in the case of a
polynomial form of the function G(:). The step of fitting is
often called model estimation or training and is well known
to those skilled in the art. Likewise, when other embeddings
are used, one skilled in the art would readily recognize an
alternative form from those here that would be applicable in
addition to the structural parameters involved.

A verification step, usually called out-of-sample model
validation, checks the fitted function G(-) using a second
subset of the input data and the output data. Further steps are
directed to intended use of the model. A further step includes
using the model to analytically or computationally optimize
the calculation of figures of merit from a single stimulus
signal. This optimization process can be accomplished as
follows: In models that are nonlinear, but are linear-in-
parameters, all nonlinear model terms that depend on non-
linear combinations of the stimulus signals can be precom-
puted before the model is used. For instance, in computing
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ACPR, first the PSD function needs to be computed.
However, each term in the Fourier transform of each term in
the nonlinear “black box” time domain model can be pre-
computed beforehand and stored in memory, for example
within a measuring or computational instrument, such that
the process of estimating PSD or ACPR simply reduces to a
least square fit of parameters of the pre-computed model
structure.

FIG. 1 is a block diagram depicting apparatus 10 in
accordance with embodiments of the present invention. In
accordance with the embodiments, apparatus 10 for produc-
ing a behavioral model of a nonlinear device from embed-
dings of time-domain measurements includes excitation
signal generator 12 that produces input signal (or excitation
signal) 101. Excitation signal generator 12 can be a digital-
to-analog converter (DAC), an arbitrary waveform generator
(AWG), or a set of sine wave generators with amplitude and
phase weighted outputs. Sine wave generators are especially
useful at high frequencies (e.g., RF and above), where DACs
and AWGs are difficult to find or do not exist. Those skilled
in the art will recognize that there are other means for
implementing excitation signal generator 12 besides those
listed above, all of which are within the scope of the
invention.

Input signal 101 is applied to an input port of nonlinear
device under test (DUT) 14, which produces output response
signal 102 at an output port of nonlinear device 14. Although
input signal 101 can be any time-domain signal or combi-
nation of signals, preferably input signal 101 is constructed
in a manner that insures adequate coverage of the opera-
tional range of nonlinear device 14 both in terms of ampli-
tude and of frequency The specifics of the construction of
input signal 101 are described further in co-pending appli-
cations Ser. No. 09/420,607, and EP 1,128,293, cited above,
the disclosures of which have been incorporated herein by
reference.

Apparatus 10 of the embodiment further incorporates data
acquisition system 16, which samples and digitizes input
signal 101 and output signal 102 to produce input data 104
and output data 103, respectively. Output data 103 repre-
sents a measured response of device 14 to input signal 101.
Data acquisition system 16 can be constructed using either
analog-to-digital converters (ADCs) or using traditional
frequency-domain or time-domain measurement systems.
Examples of traditional frequency-domain measurement
equipment include vector network analyzers or microwave
transition analyzers with absolute power and phase calibra-
tion and software for reconstructing time-domain voltage
and current waveforms from frequency-domain measure-
ments. This approach of frequency-domain measurement is
generally required at high frequencies such as RF and above,
where it is costly or impossible to measure voltages and
currents directly with ADCs. Those skilled in the art will
recognize that there are other applicable means for sampling
and producing input data 104 and output data 103 for a given
application of apparatus 10, all of which are within the scope
of the present invention.

Apparatus 10 of the embodiment further includes signal
processing computer (or signal processor) 18. Input data 104
and output data 103 produced by data acquisition system 16
are further processed by signal processing computer 18.
First, signal processing computer 18 separates input data
104 and output data 103 into first and second subsets
designated 104a, 104b, and 103a, 103b, respectively.
Second, signal processor 18 utilizes first subset 104a of
input data 104 and first subset 103a of output data 103 to
construct an embedding space. Third, signal processing
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computer 18 embeds first subsets 104a¢ and 103z in the
embedding space as a first embedded data set designated
105a. Fourth, signal processing computer 18 fits a function
to the first embedded data set 105a in the embedding space.
Then signal processing computer 18 verifies the fitted func-
tion using the second subset 104b of input data 104 and
second subset 1036 of output data 103. The verified fitted
function G(") is the behavioral model of nonlinear device 14.
In another embodiment, signal processing computer 18
further computes a continuous-time model from the discrete
behavioral model produced by the fitted function G(-).

Embodiments of the present invention advantageously fit
the function G(°) to the first embedded data set 105z using
standard nonlinear modeling methods, such as neural
networks, radial basis functions, or global polynomials.
Therefore, the larger problem of input/output behavioral
modeling is reduced according to the present invention to a
number of smaller sub-problems, namely (1) the design of
appropriate excitation signals; (2) the determination of the
function G() and its structural parameters; (3) the determi-
nation of model parameters implicit in the fitted function
G(') such as coefficients in the model class, for example
polynomial coefficients if the fitted function G(*) is polyno-
mial; and (4) model or fitted function validation. Although
in practice, the approach to solving these sub-problems may
depend strongly on the particular device being modeled, a
general approach methodology for solving the sub-problems
()—(4) is illustrated in steps 201-207 of method 200
depicted in FIG. 2, using apparatus 10 to represent all
applicable devices.

FIG. 2 is a flow diagram depicting method 200 according
to embodiments of the invention, for producing a behavioral
model of a nonlinear device from embeddings of time-
domain measurements. Method 200 is an iterative process
starting at step 201 with applying input signal 101 generated
by excitation signal generator 12 to nonlinear device 14.
Input signal 101 can be any time-domain or frequency
domain signal or combination of signals. In general, the
selection or construction of input signal 101 can be iterative
and dependent on particular characteristics of nonlinear
device 14, such as operational frequency range and peak
voltage levels. The construction of input signal 101, also
referred to herein as an excitation signal, is further described
in co-pending applications Ser. No. 09/420,607, and EP
1,128,293, cited above, the disclosures of which have been
incorporated herein by reference.

Method 200 further includes sampling at step 202 input
signal 101 in data acquisition system 16 to produce input
data 104. Input signal 101 is sampled at discrete time
intervals during step 201 of applying as further described in
co-pending applications Ser. No. 09/420,607, and EP 1,128,
293, cited above, the disclosures of which have been incor-
porated herein by reference. In some embodiments, the time
intervals are fixed according to standard engineering
practice, and input data 104 is stored as an array of signal
processing values in memory of computer 18.

Method 200 further includes at step 203 measuring output
signal 102 in response to input signal 101 at an output port
of nonlinear device 14 to produce output data 103 corre-
sponding to input data 104. The response is measured at
discrete time intervals, and output data 103 represents a
time-series of response signal 102. In some embodiments,
response signal 102 is measured at substantially the same
discrete time intervals as used at step 202 for sampling input
signal 101, and output data 103 is stored as a separate array
or set of values in memory of computer 18.

In some embodiments, step 203 of measuring is followed
by step 204 of filtering output data 103. Filtering step 204 is
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used to reduce the noise content of output data 103. Noise
is corruption of the data that may be introduced during step
203 of measuring and is well known to those skilled in the
art. Filtering step 204 may be accomplished using either
linear or nonlinear filtering techniques. Preferably, output
data 103 is filtered using one of several nonlinear filtering
techniques known in the art and further described in
co-pending applications Ser. No. 09/420,607, and EP 1,128,
293, cited above, the disclosures of which have been incor-
porated herein by reference.

Method 200 further includes step 205 of creating an
embedded data set designated 105 in processing computer
18 using a first subset 104z of input data 104 and a first
subset 103a of output data 103. Step 205 of creating an
embedded data set is further described in co-pending appli-
cations Ser. No. 09/420,607, and EP 1,128,293, cited above,
the disclosures of which have been incorporated herein by
reference.

In some embodiments, first subset 104a of input data 104
and first subset 103z of output data 103 contain less data
than the total data produced for each. The remaining por-
tions of input data 104 and output data 103 not included in
the first respective subsets are used at verification step 207
described below and are referred to as second subset 1045 of
input data 104 and second subset 103b of output data 103
respectively. In an another embodiment, first subsets 1044/,
1034’ include all of the available data, and therefore addi-
tional data for use in verification step 207 are generated for
second subsets 104b, 103b’ after step 205 of creating
embedded data set 105. Step 205 of creating embedded data
set 105, in particular determining of the embedding type and
the embedding dimension, is further described in co-pending
applications Ser. No. 09/420,607, and EP 1,128,293, cited
above, the disclosures of which have been incorporated
herein by reference.

Method 200 further includes step 206 of fitting function
G(-) from embedded data set 105 to corresponding output
data 103. In general, G(*) is a function of the embedded data
set 105 created at embedding step 205 as further described
in co-pending applications Ser. No. 09/420,607, and EP
1,128,293, cited above, the disclosures of which have been
incorporated herein by reference.

There are a number of techniques for performing the step
of fitting 206 that are generally applicable to a wide variety
of embedding types. The techniques include, but are not
limited to: (i) least-squares fitting with multivariate
polynomials, (ii) fitting using other appropriate basis
functions, such as radial basis functions, (iii) fitting using a
neural network as a universal function approximator, and
(iv) fitting with local linear models (see for example Kantz
et al., Nonlinear Time Series Analysis, Cambridge Univer-
sity Press, 1997, cited above). In addition, many other
techniques for fitting a function to data may be used in
conjunction with the present invention. There may be advan-
tages of using one of these techniques over others in specific
practical situations. Such advantages and the appropriate
choice of the function fitting method given a particular
embedding will be apparent to those skilled in the art and are
all within the scope of the present invention.

Method 200 further includes at step 207 verifying the
fitted function G(-) using second subset 104b, 103b of input
data 104 and output data 103. Verifying step 207 includes a
sub-step of using second subset 104b of input data 104 to
produce a second embedded data set designated 105b.
Verifying step 207 further includes a sub-step of using first
embedded data subset 105z and second embedded data



US 6,892,155 B2

9

subset 105b in the fitted function G(-) to produce a first
predicted data and a second predicted data, respectively.
Verifying step 207 further includes a sub-step of comparing
the second predicted data from the function G(*) with the
second subset 1035 of output data. The objective of the 5
sub-step of comparing is to determine if the predicted data
are sufficiently similar to second subject 103b of output data
103 from nonlinear device 14. Whether the predicted data
and second subset 103b of output data 103 are sufficiently
similar will depend on the particular application and will be
apparent to those skilled in the art. If the second predicted
data and second subset 103b of output data 103 are suffi-
ciently similar, then the fitted function G(-) accurately mim-
ics (or is said to accurately model or predict) the perfor-
mance of the device. The verified fitted function G(-) then
becomes the behavioral model of nonlinear device 14 in a
discrete time representation.

A first test that can be used at step 207 to verify the
function G(*) is based on the root-mean-squared (RMS) error
of the predicted data relative to input signal power. As a rule
of thumb, the RMS error of the predicted data usually should
be 1-10% of the signal power of input data 104. In this test,
the RMS error of the first predicted data is compared to the
power of first subset 104a of input data 104a. Likewise, the
RMS error second predicted data is compared to the power
of second subset 1045 of input data 104. If the RMS error
is greater than 10% of the signal power in either the first or
second subset case, then the model is likely to be
“underfitted,” and the verification is considered to have
failed.

In a second test, the performance of fitted function G() is
compared between the first and second embedded data sets.
As a rule of thumb, the fitted function is said to accurately
model or predict the performance of the device if the RMS
error associated with the second predicted data is less than
or equal to three times the RMS error associated with a first
predicted data utilizing training data as described in more
detail in co-pending applications Ser. No. 09/420,607, and
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skilled in the art will recognize that there are numerous other
criteria for verifying the fitted function G(-) in specific cases
all of which are within the scope of the invention.

At step 208 an optimization process is performed in
models that are nonlinear, but are linear-in-parameters, such
that all nonlinear model terms that depend on nonlinear
combinations of the stimulus signals are precomputed before
the model is used in measurements. For example, this
optimization can be used to compute a figure of merit such
as Power Spectral Density (PSD) from a very small data set
using parametric spectral estimation instead of traditional
non-parametric methods based on a Fast Fourier Transform
(FFT). In an amplifier with a static cubic distortion, input
signal u(t) generates output signal y(t)=a*u(t)+b*u"3(t), in
which parameters a and b are computed from first subsets
1042 and 103¢ respectively of measured input data {u_ 1,
u_2,...,u_n} and corresponding output data {y_1,y_2,

., y_n}. These measured data pairs can be collected
together as an array {(u_i, y_ i)} In a more general case, y(t)
includes functions of other powers of u(t) and/or derivatives
of u(t). Details of parametric model development are
described for example in Usikov, “Behavioral Modeling of
Nonlinear Systems,” pp. 1-73 (Aug. 10, 1999), which have
been incorporated herein by reference. Power Spectral Den-
sity S(v) can be defined as

SW=(RWP)=XWX*(v)> @

where X(v) is the Fourier transform and star * denotes
complex conjugate,

@

T
m 1 (%
X()=T2 wa:_B'ZM Y.
2

Accordingly,

T (3)

T
im 1 (7 . 7.
S) = T11—> oonj_eﬁmy([)d[f;ejwr Yo,
2

2

or since y(r) = axul(t) + b=u>(r), then

S) =

EP 1,128,293, cited above, the disclosures of which have
been incorporated herein by reference. Generally, if the 0
RMS error associated with the second predicted data is less
than the RMS error associated with the first predicted data,
then the model is not considered validated. In fact, in most
cases this condition indicates that the model is likely to be
“overfitted”.

The RMS error as used herein is the RMS difference
between the predicted output data given by G(-) and the
corresponding portion of measured output data 103. The
RMS error associated with the first predicted data is the
RMS difference between a predicted output using first 60
embedded data set 105a as an input to G(-) and first subset
1034 of output data 103. The RMS error associated with the
second predicted data is the RMS difference between the
predicted data produced using second embedded data set
105b as an input to G(-) and second subset 103b of output 65
data 103. The first predicted data is produced by applying the
fitted function G(°) to first embedded data set 105a. Those

55

0
2@ uln) + b )1 f S e (aru(n) + el (D).

im 1 (%
T—)oo? ,77'

“

2

Defining
o ;o &
I = fru(t)e'zu’dt; L = fTu(T)@z'”TdT;
2 2
LI 3 . (55
L= fT L0 dr Iy = fT (e dr
2 2
then: (6)

—

S = T o [(al, + bly) = (als + by

— ™

=T oo [@L L +abl, I, + abl Iy + B L 14]

=

Since u(t) is known beforehand and is fixed for a given
test procedure, all the integrals I, L,, I, I, can be pre-
computed either numerically or analytically. To compute the
PSD, all that is needed is to know “a” and “b” for a given
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behavioral model. A least squares fit of parameters a and b
is sufficient to rapidly calculate the PSD, if the input signal
is known beforehand.

To find model parameters a, b, minimize least squares
error

7
Erypyinab)= Y (yp -y @

=1

=

(au; + b — )’

T
g

(@Pu? + 2abu} + b2l - 2auy, — 263 y; + y?),

i=1,N

where y, () is predicted time series and y(t) is measured
time series.

To find a and b, minimize error function E* with respect
to a and b, ie.,

dE* (8a)
Friak
ZaZ u‘-z + sz u? - ZZ u;yi
ay w+by ut= iU

03 =3

dE* (8b)
a5 ="

ZaZ u? +2bZ u? —ZZ u?yi =0
ay u+bdy uf=> iy
A ESIT

Note equations (8a, 8b) are linear in a and b. With 2
equations and 2 unknowns, a, b can be calculated with just
two data pairs {(u,, ¥,),(ts, ¥,)}, using various mathemati-
cal methods, for example matrix algebra

5o el

M

A b=C;
Db=A"'C;

or in Matlab language

b=AlC ©

Typically the problem is over-determined (more (u,,y,)’s
than (a, b)’s), and the matrix inverse A™" actually calculated
is a Penrose pseudo inverse by Singular Value Decomposi-
tion (SVD) [see for example Gregorcic, “Singular Value
Decomposition—SVD,” University College Cork, Ireland,
pp- 1-7, Aug. 1, 2001; “The Pseudo Inverse,” P. 1, http://
www.imm.dtu.dk/__mj/MscProject/node18.html; and
“Pseudoinverse,” p. 1, http://ikpe1101.ikp.kfa-juelich.de/
briefbook_data_ analysis/node220.html, Oct. 1, 2002]. For
simple examples, (u,, y,) is same dimension as (a, b)’s, such
that an exact inverse can be calculated. Alternatively, Kal-
man filtering methods (see for example Haykin, “Kalman
Filtering and Neural Networks, John Wiley & Sons, 2001),
including variants (e.g., Extended Kalman filtering, Dual
Kalman filtering, and Unscented Kalman filtering) are used
for parameter estimation. A significant difference between
SVD and Kalman filtering operation is that the Kalman filter
and its variants employ iterative techniques rather than batch
processing techniques employed in SVD. This has particular
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importance in a manufacturing line environment, where
memory and test time constraints are more acute than in
laboratory experimentation. The Kalman filter is much more
amenable to hardware implementation in instrument FPGA
than is the SVD, even though both achieve similar results.

After the behavioral model is optimized by precomputing
all nonlinear terms that depend on nonlinear combinations of
the stimulus signals, at step 209 the optimized model is
applied to figure of merit measurements of an intended
nonlinear device, for example an amplifier in a manufactur-
ing line. Preferably, verification step 207 is repeated at
intervals to determine whether new measured output data are
in agreement with output data predicted by behavioral model
G(").

Thus, there are disclosed methods for extraction of a
behavioral model of a nonlinear device from embeddings of
time-series of sampled and measured input and output
signals utilizing prespecified input signals of a type normally
produced by currently available and/or future signal sources
and analyzers. The model fitting procedure is optimized to
predict figures of merit accurately based on a short stimulus
vector, which allows a precomputed model structure to be
estimated using a very short excitation vector. The required
dimensionality of the stimulus vector is typically more than
two orders of magnitude smaller than that currently required
for standard test equipment. These shorter test vectors can be
used to reduce overall test time or increase measurement
resolution, or both. These methods are particularly attractive
for test equipment to be used in a manufacturing test
environment, where it is expected that there is sufficient data
to estimate an accurate model structure before or during the
process of setting up a large-scale production line.
Preferably, verification step 207 is repeated at intervals to
determine whether new measured output date continue to
agree sufficiently with output data predicted by behavioral
model fitted function G(-). This comparison can be con-
ducted on a sub-sampling DUT basis and can be used to
adjust the behavioral model fitted function G(-) and to
compare figures of merit obtained using nonlinear modeling
with those obtained using conventional measurement tech-
niques.

One embodiment of these methods estimates the PSD of
a HP power amplifier using an Agilent E4432B signal source
and Agilent E4440A performance spectrum analyzer. In this
illustrative example, the signal source is a CDMA 2000
stimulus vector consisting of I and Q channels. To estimate
PSD with a FFT based conventional method currently used
in the performance spectrum analyzer E4440A, where as
many as 100,000 stimulus data samples are used. By
comparison, using methods in accordance with embodi-
ments of the present invention, only 4000 stimulus data
samples are sufficient to estimate the PSD. Matlab code
documents the use of these methods in this particular
embodiment (see Hanselman et al., 2000, cited above; see
also Usikov, 1999, cited above and incorporated herein by
reference).

Although the present invention and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims. Moreover, the scope of
the present application is not intended to be limited to the
particular embodiments of the process, machine,
manufacture, composition of matter, means, methods and
steps described in the specification. As one of ordinary skill
in the art will readily appreciate from the disclosure of the
present invention, processes, machines, manufacture, com-
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positions of matter, means, methods, or steps, presently
existing or later to be developed that perform substantially
the same function or achieve substantially the same result as
the corresponding embodiments described herein may be
utilized according to the present invention. Accordingly, the
appended claims are intended to include within their scope
such processes, machines, manufacture, compositions of
matter, means, methods, or steps.

What is claimed is:

1. A method of estimating a figure of merit for a nonlinear
device under test, comprising:

developing from a first sub-sampling of input signals and

corresponding output signals for said device a nonlin-
ear behavioral model fitted mathematical function for
said device containing terms depending on linear and
nonlinear combinations of said input signals and lin-
early on a set of parameter coefficients;

deriving from said nonlinear behavioral model fitted

mathematical function a figure of merit having terms
depending on linear and nonlinear combinations of said
input signals and linearly on a set of parameter coef-
ficients;

before said nonlinear behavioral model is applied, pre-

computing in advance for a substantially fixed value of
said input signal all terms in said nonlinear model that
depend on nonlinear combinations of said input sig-
nals; and

evaluating said parameter coefficients, such that said

nonlinear behavioral model is optimized.

2. The method of claim 1 wherein said nonlinear behav-
ioral model fitted mathematical function contains terms
depending on linear and nonlinear combinations of said
input signals and/or time derivatives of said input signals.

3. The method of claim 2 further comprising applying said
optimized nonlinear behavioral model to estimate a figure of
merit for a plurality of said nonlinear devices using a second
sub-sampling of said input signal having said substantially
fixed value for all of said plurality of said nonlinear devices.

4. The method of claim 2 further comprising before said
nonlinear behavioral model is applied verifying said non-
linear behavioral model using a third sub-sampling of said
input signals and corresponding output signals.

5. The method of claim 3 wherein said optimized non-
linear behavioral model is continually verified and adjusted
using a fourth sub-sampling of said input signals and cor-
responding output signals.

6. The method of claim 2 wherein said nonlinear behav-
ioral model fitted mathematical function is fitted to an
embedded data set.

7. The method of claim 6 wherein said embedded data set
is embedded using a method selected from the group con-
sisting of lagged embedding, singular value decomposition,
and wavelet decomposition individually and in combination.

8. The method of claim 6 wherein said behavioral model
fitted mathematical function is fitted to said embedded data
set using a method selected from the group consisting of
least squares fit, least squares fit with multivariate
polynomials, radial basis functions, neural networks, uni-
versal function approximation, and local linear modeling.

9. The method of claim 2 wherein said parameter coef-
ficients are evaluated using operations selected from the
group consisting of Kalman filtering, variants of Kalman
filtering, and matrix algebra operations.

10. The method of claim 9 wherein said matrix algebra
operations comprise pseudoinverse matrices and/or singular
value decomposition.

11. The method of claim 2 wherein said figure of merit is
selected from the group consisting of correlation coefficient
(p), error vector magnitude, adjacent channel power ratio,
third-order intermodulation distortion, and power spectral
density.
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12. A system for estimating a figure of merit for a
nonlinear device under test, comprising:

an excitation signal generating module operable to apply
a plurality of input signals to an input port of said
nonlinear device;

a data acquisition module operable to sample said plural-
ity of input signals and to measure a plurality of output
signals generated by said nonlinear device in response
to said plurality of input signals; and

a signal processing computer operable to create from a
sub-sampling of said plurality of input and output
signals an embedded data set and further operable to fit
a nonlinear behavioral model function to said embed-
ded data set, and operable to compute at least one figure
of merit using said nonlinear behavioral model func-
tion.

13. The system of claim 12 wherein said signal processing
computer is operable to create said embedded data set using
a method selected from the group consisting of lagged
embedding, singular value decomposition, and wavelet
decomposition individually and in combination.

14. The system of claim 12 wherein said signal processing
computer is operable to fit said nonlinear behavioral model
function using a method selected from the group consisting
of least squares fit, least squares fit with multivariate
polynomials, radial basis functions, neural networks, uni-
versal function approximation, and local linear modeling.

15. The system of claim 12 wherein said nonlinear
behavioral model function contains terms depending on
parameter coefficients and on linear and nonlinear combi-
nations of said input signals and/or time derivatives of said
input signals.

16. The system of claim 15 wherein said signal processing
computer is operable to evaluate said parameter coefficients
using operations selected from the group consisting of
Kalman filtering, variants of Kalman filtering, and matrix
algebra operations.

17. The system of claim 16 wherein said matrix algebra
operations comprise pseudoinverse matrices and/or singular
value decomposition.

18. The system of claim 12 wherein said figure of merit
is selected from the group consisting of correlation coeffi-
cient (p), error vector magnitude, adjacent channel power
ratio, third-order intermodulation distortion, and power
spectral density.

19. A system for estimating a figure of merit for a
nonlinear device under test, comprising:

an excitation signal generating module operable to apply
a plurality of input signals to an input port of said
nonlinear device;

a data acquisition module operable to sample said plural-
ity of input signals and to measure a plurality of output
signals generated by said nonlinear device in response
to said plurality of input signals; and

a signal processing computer operable to create from a
sub-sampling of said plurality of input and output
signals an embedded data set and further operable to fit
a nonlinear behavioral model function to said embed-
ded data set, wherein said function contains terms
depending on parameter coefficients and on linear and
nonlinear combinations of said input signals and/or
time derivatives of said input signals.

20. The system of claim 19 wherein said signal processing
computer is operable to evaluate said parameter coefficients
using operations selected from the group consisting of
Kalman filtering, variants of Kalman filtering, and matrix
algebra operations.



